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ABSTRACT. The identification of the cyclical and seasonal variations can be very important in time series.
In this paper, the aim is to identify the presence of cyclical or seasonal variations in the indices of the
multipath effect on continuous GPS (Global Positioning System) stations. Due to the model used to obtain
these indices, there should not have cyclical variations in these series, at least due to the multipath effect. In
order to identify the presence of cyclical variations in these series, correlograms and Fourier periodograms
were analyzed. The Fisher test for seasonality was applied to confirm the presence of statistical significant
seasonality. In addition, harmonic models were adjusted to check in which months of the year the cyclical
effects are occurring in the multipath indices. The possible causesof these effects are pointed out, which will
direct the upcoming investigations, as well as the analysis and correlations of other series. The importance
of this analysis is mainly due to the fact that errors in the collected signals of these stations will directly
influence the accuracy of the results of the whole community that directly or indirectly uses GPS data.

Keywords: harmonic analysis, multipath index, time series.

1 INTRODUCTION

Data from GNSS (Global Navigation Satellite Systems), or specially, GPS system are affected by
several errors, which may occur on satellite, signal propagation, and receiver or ground station.
Most of these errors can be eliminated, reduced or modeled, depending on the applied position-

ing method or desired accuracy. One of the most used positioning methods is the relative one,
where is possible to estimate a receiver position in relation to a reference station (generally this
reference station belongs to a continuous monitoring network). Applying relative positioning,
most of the errors are eliminated, depending on receiver’s distance. But, there is a kind of error

that is not eliminated, the multipath effect. This error occurs because reflected signals arrive to
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1Department of Statistics, UEM – Maringá State University, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil.
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Brazil. E-mail: fernandalschumacher@gmail.com



�

�

“main” — 2015/4/27 — 11:01 — page 72 — #2
�

�

�

�

�

�

72 HARMONIC ANALYSIS OF MULTIPATH INDEX TIME SERIES

the receiver antenna together the direct one. Antenna can receive signals reflected in neighboring

surfaces (indirect), like buildings, cars, trees, water etc. Therefore, the received signals can be
composed by direct and indirect signals and introduce distortions in signal and its modulation [8].
Multipath modeling is very difficult because it depends on physical conditions of each receiver’s

location. So the ideal is to collect the data avoiding such effect, but in many times this is not
possible.

After data collection, we can estimate some indices that can represent multipath effect, indicating
its presence in the data. One of these is the Multipath (MP) index, which is obtained from linear

combinations of GPS signals. The development and details concerning this index can be found
in [8] and [6].

When data from continuous monitoring stations are used, mainly as base station in relative po-
sitioning, it is expected a minimum of multipath effect, because these stations are, theoretically,

well located in places without obstructions. Otherwise, if there is multipath presence in a ref-
erence station, this error will affect directly the user positioning. Therefore, in this paper, the
main goal is to evaluate the existence and magnitude of multipath in continuous monitoring sta-

tions from temporal series of MP index, which also provides information about data quality.
Furthermore, we aim to verify which events can influence the index values, and to investigate
the presence of cyclic variations and seasonality statistically significant in the series. In this

investigation, the multipath repeatability will be very useful to prove the multipath presence.
This repeatability occurs because if the receiver remains stopped and the environment nearby
remains unchanged, the multipath effect should repeat every day according to the satellite move-
ment. Thus, behaviors or periodicities beyond the multipath repeatability might indicates other

effects influencing the MP calculus, or in other words, been taken into account together with
multipath effect.

An important effect that can influence the MP index series and motivates this investigation is

related to ionospheric irregularities, called ionospheric scintillation ([3], [4]). This effect can be
described as a fast change in phase and amplitude of GPS signal, caused by irregularities of
electron density. Scintillation can degrade or cause the GPS signal lost. The Brazilian territory
is one of the most affected regions of the Earth, with high scintillation activity in sunset hours.

Ionospheric scintillation occurs mainly around the peak of the 11-year ionosphere solar cycle
and the most affected months are March, April, September and October, near equinox.

Thus, Section 2 presents how to build the harmonic models to investigate the cyclic variations
of this time series. The results and analysis are discussed in Section 3. Finally, the concluding

remarks are presented in Section 4.

2 INVESTIGATING CYCLIC VARIATIONS

Considering that the MP index is generated daily, the time series have 365 observations per year.

Although the daily repeatability and the variations over the day can not be verified by this index,
it is very useful to investigate behaviors that are repeated with larger intervals, such as months and
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years. The analysis of the autocorrelation function (ACF) or correlogram is useful in identifying

the presence of autocorrelation, however its correct interpretation is one of the most difficult tasks
in time series [2]. In that sense, particularly for investigation of periodicities, harmonic analysis
and Fourier periodogram can be very helpful. The harmonic analysis is historically known for

allowing the investigation of “hidden” periodicities in time series. In usual regression models in
the form:

Yt = μt + εt , (2.1)

where μt is a deterministic function and {εt } is a sequence of independent white noise of Yt ,
with mean zero and variance σ 2

ε [5], seasonality or cyclical effects can be incorporated via cosine
functions:

μt = δ cos(2πωt + φ), (2.2)

where δ > 0 is the amplitude, ω is the frequency and φ, which follows uniform distribuition

φ ∼ U (−π, π), is the curve phase. As t varies, the curve oscillates between the maximum δ

and minimum −δ. Since the curve repeats itself exactly every 1/ω time units, 1/ω is called the
period of the cosine curve. However, equation (2.2) is not appropriate because the nonlinearity

of the parameters δ and φ. Hence it is convenient to use the reparametrization:

δ cos(2πωt + φ) = α1 cos(2πωt) + β1 sin(2πωt), (2.3)

where δ =
√

α2
1 + β2

1 , 
 = arctan(−β1/α1), α1 = δ cos 
 and β1 = −δ sin 
.

Then for a fixed frequency ω we can use cos(2πωt) and sin(2πωt) as predictor variables and

adjust the α j and β j by the least squares method (LSM). The model can thus be written as:

μt = β0 + α1 cos(2πωt) + β1 sin(2πωt). (2.4)

where the constant term β0 can be interpreted as a cosine with frequency equal to zero.

In this sense we could write the decomposition of Yt in terms of periodic functions. Thus the

general linear combination of m cosine curves with arbitrary amplitudes, frequencies and phases
can be written as:

Yt = β0 +
m∑

j=1

(
α j cos(2πω j t) + β j sin(2πω j t)

)
. (2.5)

Although the α j and β j can be estimated by the LSM, for some frequencies the procedure is

simplified. If n is odd we have n = 2k + 1 and the sine and cosine predictor variables with
frequency 1

n , 2
n , . . . , k

n , where k
n can be written as 1

2 − 1
2n , are orthogonal, beyond ω = 0. These

frequencies are called Fourier frequencies and

β̂0 = Ȳ = 1

n

n∑
t=0

Yt , α̂ j = 2

n

n∑
t=1

Yt cos

(
2π j t

n

)
and β̂ j = 2

n

n∑
t=1

Yt sin

(
2π j t

n

)
. (2.6)

where Ȳ is the arithmetic mean. If n is even, n = 2k and the equations in (2.6) are still valid for
j = 1, . . . , k − 1 and ωk = k/n = 1/2. Moreover, it is possible to show that the contribution
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of the harmonic δ j in (2.3) is given by nδ2
j/2, which is the known Fourier periodogram [2, 5].

Therefore:

I

(
j

n

)
=

n
(
α̂2

j + β̂2
j

)
2

, (2.7)

for j = 1, . . . , k if n is even and j = 1, . . . , k − 1 if n is odd. Actually, other representations for
the periodogram can be constructed, but the meaning is the same.

The idea of locating hidden frequencies or periodicities in time series comes from repeating the

analysis in (2.3) for all frequencies 1
n , . . . , k

n , correlating them with the series for a intensity
measure. In other words, quantifying the importance of each frequency to the series in question.

By adjusting a model for the Fourier frequencies we have the harmonic analysis. If the series can
be considered deterministic with periodicity S, then the harmonic model in equation (2.5) can be

adjusted for j = 1, . . . , S/2 [7].

Even if α j and β j were null for all j , it is possible that peaks occur on the ordinate of the
periodogram due to random fluctuations. Thus, to verify whether the periodicity is significant or
not, assuming that the process Yt is Gaussian, Fisher shows a procedure to test the hypothesis

H0 : α j = β j = 0 ∀ j (there is no periodicity) based on the statistic:

gobs =
max I

(
j
n

)
∑[K ]

j=1 I
(

j
n

) , (2.8)

where [K ] = k if n is even and [K ] = k − 1 if n is odd [7]. Fisher showed that for n odd the
exact distribution of gobs, under H0, is given by:

P(g > a) = m(1 − a)m−1 −
(

m

2

)
(1 − 2a)m−1 + . . . + (−1)x

(
m

x

)
(1 − xa)m−1, (2.9)

where m = [K ] and x is the largest integer smaller than 1
a

(
x =

[
1
a

])
. The expression given in

(2.9) can be approximated using only the first term of the expansion, that is:

P(g > a) ∼= m(1 − a)m−1. (2.10)

For a given significance level α, we can find the critical value a(α) such that P(g > a(α)) = α.
If the observed value of the statistic (gobs) is greater than a(α) we must reject H0, which means

that there is a periodicity. Substituting a for gobs the approximate test p-value can be found.

3 RESULTS

For the application of this research, data from a continuous monitoring stations of the Brazil-
ian Network for Continuous Monitoring (RBMC – http://www.ibge.gov.br/home/geociencias/

geodesia/rbmc) were used. The station is located in Sao Paulo (POLI). This choice was made
based on the amount of data available (at least six years of data) and because any antenna or
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software change occured in this period for this station. More details and the time series for other

RBMC stations can be seem in [1].

The TEQC software (http://facility.unavco.org/software/teqc/) was used to obtain the MP daily
indices of the station, with data from 2006 to 2012. All the other analyzes were performed in
R software (http://cran.r-project.org/).

Figure 1 shows the MP time series of the POLI station and their respective ACF.

Figure 1: Top: MP time series of the POLI station. The red solid lines indicates the beginning

of October. The red dashed lines indicates the end of March. Bottom: Autocorrelation function
(ACF).

It is possible to see in Figure 1 that from beginning of October (red solid line) to the end of
March(red dashed line), the effects are more intense. We can also note two peaks per year, which
occurs in this period, around March and October. Furthermore, the magnitude of these peaks is

increasing with time. The presence of effects that are repeated every year in the time series can
also be seen in ACF (Fig. 1, bottom). To confirm such seasonalities, which refer to the presence
of effects that are being repeated in periods of 12 months, the Fourier periodogram was estimated

and the result is shown in Figure 2.

In Figure 2 one can notice a peak in blue, which occurs at the frequency 0.002734375 and
represents a periodicity of 365 days (= 1/0.002734375). The red line is indicating exactly this
frequency, which coincides with the estimated (in blue). So we can confirm the seasonality by

Fourier periodogram. Concerning to the Fisher periodicities test, from equation (2.8) is obtained
gobs = 0.25. By equation (2.10) we have P(g > gobs) < 0.0001. Therefore we reject H0, i.e.
there is a statistically significant periodicity, confirming the previous results.

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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Figure 2: Top: Fourier periodogram for time series MP for POLI. Bottom: Time series of MP for
station POLI and the estimated harmonic models.

Although the presence of seasonality has been confirmed, it is still necessary to identify its be-
havior, indicating the times when its effect is more expressive. In this sense, the Fourier harmonic
modeling presented in Section 2 is quite useful. In Figure 2 adjustments of two harmonic mod-
els for the MP of POLI station are illustrated. Model 1 considers the series with deterministic

seasonality of 365 days (green) and model 2 was adjusted for Fourier frequencies without con-
sidering deterministic seasonality (black).

The main harmonic in the model 1 occurs in j = 1, with frequency 1/365 = 0.002734375 and
amplitude δ1 = α2

1 + β2
1 = 0.04364 + 0.00544 = 0.04908. This harmonic is responsible for

71.64% of the variance of the series. In model 2 various components of frequency contribute to
the variance of the series. The most important harmonic in model 2 has amplitude δ = 0.04871+
0.00588 = 0.05459. This harmonic along with the annual harmonic contribute with 84.86% of

the variance of the series.

Both modelings were statistically significant. The adjust of the second model was better, with
σε smaller and R2 larger (Table 1). Even the model 1 showing an R2 of 0.4485, one can see in
Figure 2 that the harmonic model was able to detect the peaks near to October and March.

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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Table 1: Adjusts of the harmonic models for time series of the MP for the POLI station.

Model Par Estimates SE t -values P(> |t |) σε R2 P-value

1
α1 0.2089 0.0069 29.86 < 0.0001

0.2266 0.4485 < 0.0001
β1 –0.0737 0.0069 –10.63 < 0.0001

2

α1 0.0371 0.0050 7.37 < 0.0001

0.1506 0.7566 < 0.0001
β1 –0.0912 0.0051 –17.75 < 0.0001

α6 0.2207 0.0052 42.40 < 0.0001

β6 –0.0767 0.0050 –15.47 < 0.0001

4 CONCLUDING REMARKS

The positioning performed using data from continuous monitoring stations has been much
employed in recent years. In order to evaluate the quality of data from these stations were
generated and evaluated MP time series data of POLI station of the RBMC.

Only with the time series graph it was noticeable variations that repeat periodically. To evaluate
this phenomenon more effectively, correlograms, periodograms and harmonic adjusts of the se-
ries were analyzed. With the results presented in Figures 1 and 2 the seasonality became clear.
To confirm the seasonality, Fisher’s exact test was performed, where it was possible to verify the
presence of statistically significant seasonality. Moreover, by harmonic adjustments that consider
or not deterministic seasonality, it was possible to identify peaks in March and October. The fact
that these peaks are in the months of March and October coincides with recent research related
to the effects of ionospheric scintillation, which has been more intense in those months. It is
expected that non-modeled effects can be absorbed in the calculation of these indices, which ex-
plains the appearance of the seasonal effect on the index studied. These results will direct future
research towards the correction of the effect of ionospheric scintillation.

RESUMO. A identificação de variações cı́clicas e sazonais é muito importante em séries

temporais. Neste artigo, objetiva-se identificar a presença de variações cı́clicas e sazonais nos

ı́ndices do efeito do multicaminho em estações GPS (Global Positioning System) de moni-

toramento contı́nuo. Devido ao modelo usado na obtenção de tais series, não deveriam existir

variações cı́clicas nas mesmas, pelo menos devido ao multicaminho. No sentido de identificar

a presença de variações cı́clicas nestas séries, foram analisados correlogramas e periodogra-

mas de Fourier. Para confirmar a presença de sazonalidade estatisticamente significativa, foi

utilizado o teste de Fisher para sazonalidade. Além disso, modelos harmônicos foram ajus-

tados para verificar em que meses do ano os picos dos efeitos cı́clicos estão ocorrendo. As

possı́veis causas dos efeitos são apontadas, as quais direcionarão investigações futuras, bem

como a análise e correlações com outras séries. A importância desta análise se deve princi-

palmente ao fato de que erros nos sinais coletados afetarão a acurácia dos resultados de toda

a comunidade que usam dados GPS diretamente ou indiretamente.

Palavras-chave: análise harmônica, ı́ndice de multicaminho, séries temporais.
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