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ABSTRACT. In this article, we discuss check digits systems based on modular arithmetic, which are used
worldwide. Check digits were created to eliminate most errors in data input of computational systems.
Though old, a discussion about the optimality of the systems used is not found in the literature. We de-
scribe the main existing systems worldwide and highlight those adopted in Brazil. We present the necessary
improvements in order to make all systems optimal. We also propose a new optimal system with 3 permu-
tations for systems with modular base 10.
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1 INTRODUCTION

Check digits (CDs) are one or more characters, numeric or alphanumeric, which are added to an

original set of characters to verify that information has been correctly entered to computer sys-
tems. They are used everywhere such as in product bar codes, bank accounts, identity documents
and in some important identifiers in Brazil, the CPF, witch is the Brazilian individual taxpayer

registry identification and the CNPJ, witch is an identification number issued to Brazilian com-
panies by the Secretariat of the Federal Revenue. The main problems are due to human error,
which have been categorized by Verhoeff [15] and have been presented here, along with their

frequencies in Table 1.

Phonetic errors are related to the English, Dutch and German languages, where there are numbers
with very similar pronunciation, as in the case of thirty and thirteen in English. All random errors
distinct from those described in Table 1 were grouped as Others and have not been examined.

We shall consider as optimal a system which allows detection, in weighted terms, of the maxi-

mum possible number of errors of the 6 first classes in Table 1.

The check digit systems found in the literature are based on three branches of Mathematics:
Modular Arithmetic, Group Theory and Latin Squares, [2, 4, 14, 16]. Even though there are
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*Corresponding author: Natália Pedroza – E-mail: npsnatalia@gmail.com
IME/DICC – Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, RJ, Brasil.
E-mails: luerbio@cos.ufrj.br; pauloedp@ime.uerj.br



�

�

“main” — 2017/5/12 — 15:57 — page 106 — #2
�

�

�

�

�

�

106 OPTIMAL CHECK DIGIT SYSTEMS

Table 1: Error types and their frequencies.
Error type Abrev Format Frequency (%)

Single errors SNG ..a.. → ..b.. 79.10

Adjacent transposition TRA ..ab.. → ..ba.. 10.20

Alternate transpostion TRL ..abc.. → ..cba.. 0.80

Adjacent twins TWA ..aa.. → ..bb.. 0.50

Alternate twin TWL ..aca.. → ..bcb.. 0.30

Phonetic PHO ..1a.. → ..0a.., a≥ 2 0.50

Others OTH 8.60

various theoretical proposals for the use of those last two branches in the check digit systems, we

found only two practical applications using group theory. The first one is a Verhoeff system based
on anti-symmetric mappings in the numbering used in Deutsche Mark banknotes. However, this
system has been discontinued after the adoption of the euro in Germany, [13]. The second and

more recent one is a check digit system used in MISB Standard 1204.1 for the video community
and is based on a system over an abelian group of arbitrary order created by [3] and is related to
hexadecimal numbers.

Thus, the systems used in practice are in their vast majority based on Modular Arithmetic. How-

ever, for this class of codes, no article discussing their optimality has been found in the literature.

The goal of the present article is to promote this discussion. The conditions for optimality of
the methods currently in use are characterized, particularly of methods with prime modular base
and with base 10. Based on the examined conditions, proposals to improve the existing codes and

which may also serve as a base for new methods are discussed. In the case of prime modular base,
the problem of optimality is totally solved. In the case of modular base 10, optimality is solved
in cases of small identifiers (with up to 6 digits) and a new system is presented which is optimal

under certain restrictions, but it is conjectured to be optimal in general for larger identifiers (over
6 decimal digits).

This paper is structured as follows. In Section 2 we present various examples of practical uses
of check digits based on modular arithmetic. In Section 3 we first deduce the theoretical capa-

bilities of error detection for systems based on modular arithmetic and then we present a report
of non-detection cases, especially for systems used in Brazil. In Section 4 we describe the meth-
ods developed in this work. First, an optimum system for prime bases and, next, two optimum

systems for base 10. The first one was created by Verhoeff, and proved to be optimum by the
authors, for identifiers with up to 6 digits. The second, created by the authors, is conjectured to
be optimum for identifiers with more than 6 digits and proved to be optimum under the restric-

tion of using only 3 permutations. In Section 5 we claim that the proposed methods can bring
improvements for the check digit systems used worldwide.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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2 SYSTEMS BASED ON MODULAR ARITHMETIC

They are the most widely disseminated [1], [5], [6], [7] and [11]. In these systems, arithmetic
operations are conducted in the digits of identifiers and the results are considered as mod n, for

n ∈ N. Given an identifier with m digits a1a2a3 · · · am and a sequence of weights pi , the check
digit am is determined by the direct system equation given by:

a1 p1 + a2 p2 + a3 p3 + · · · + am−1 pm−1 mod n = am .

Or, in some other systems, by the equation of the system by complement given by:

a1 p1 + a2 p2 + a3 p3 + · · · + am−1 pm−1 + am ≡ 0 mod n.

In a more comprehensive manner, we shall, rather than attributing weights to check digits, define

functions σi , for each position 1 ≤ i ≤ m − 1. We justify below that, ideally, these functions are
permutations applied to the modular base digits. Hence, the equation of the direct system may
be re-written as follows:

m−1∑
i=1

σi (ai ) mod n = am.

We describe the main variations of the methods which use modular base 10 or 11 in calculating
the CDs, which are the most common.

2.1 Modulus 10

One of the most natural methods when working with identifiers composed of decimal digits is the

one that uses modular base 10, since the check digit is also an element of the set. The effect of
multiplying each digit by a weight p is equivalent to applying a function, which is a permutation
whenever mdc(10, p) = 1. For instance, the multiplication by 3 of digits from 0 to 9 in mod 10
generates the same values as the application of permutation σ : (0 3 6 9 2 5 8 1 4 7) on digits 0

to 9.

The most common variants found use permutations indirectly through systems of 2 or 3 weights.
The product barcode identifier internationally used for the commercial identification of prod-
ucts consists of 13 decimal digits. For the calculation of the check digit, an equation by comple-

ment is used, with weights 1 and 3, alternately applied. As an example, we show how the CD
was calculated for the code 7 89102 711427 5. Initially, the 12 first digits are multiplied by 1 and
3:

7 8 9 1 0 2 7 1 1 4 2 7
× 1 3 1 3 1 3 1 3 1 3 1 3

7 24 9 3 0 6 7 3 1 12 2 21

Then the results are added, obtaining 7 + 24 + 9 + 3 + 0 + 6 + 7 + 3 + 1 + 12 + 2 + 21 = 95 ≡
5 mod 10. The value of the CD is the complement of 5 to 10, that is, 5.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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108 OPTIMAL CHECK DIGIT SYSTEMS

Several systems that use mod 10 have been developed. In Mod 10 IBM, proposed by Luhn [9],

once the algorisms of the identifier are alternately multiplied by weights 1 and 2, in each product,
the “proof by nine” operation should be conducted, which consists in adding the algorisms of
this product when it is above 9. This system is used in the document of the General Register
of the State of Rio de Janeiro, which consists of a decimal number of 9 digits, used for civil
identification. As an illustration, let us consider the identity number 21883353-1. We initially
multiply each digit by its corresponding weight:

2 1 8 8 3 3 5 3
× 1 2 1 2 1 2 1 2

2 2 8 16 3 6 5 6

We apply the “proof by nine” to 16, obtaining 1+6 = 7, and the sum of the results is 2 + 2 + 8 +
7 + 3 + 6 + 5 + 6 = 39 ≡ 9 mod 10. We consider the check digit as the complement of 9 to 10,

that is, 1, and therefore the equation of the system is satisfied.

Note that Mod 10 IBM system is equivalent to alternately applying two permutations, identity
and σ : (0 2 4 6 8 1 3 5 7 9), to the identifiers’ digits.

Another example of the use of mod 10 IBM system is in credit card’s identification number,

used in the bank system worldwide.

In order for a check digit system to detect alternate errors, it is necessary the use of at least three
weights or that at least three permutations applied to the identifiers’ digits. That is the case of
the international passport, where the weights 7, 3 and 1 are alternately used. This identifier is

formed by 10 characters, which may be capital letters from A to Z , digits from 0 to 9 and the
symbol <. In order to calculate the CD, the alphanumeric characters must be converted into
numbers. Letter A is mapped to 10, B to 11 and so on, and the character < is mapped to 0.

It is clearly observed that, in this case, it is not possible to detect all single errors, since the map-

ping of several characters to the same decimal digit prevents detection of interchanges between
these characters. For example, 0, A, K , U, < are all mapped to multiples of 10 and, therefore,
any interchange between them is not detected.

2.2 Modulus 11

When we use modulus 11 to calculate the check digit, considering numeric identifiers, we find

a particularity. The rest of the division by 11 could be 10, which will require a special form of
representing this situation. In order to use only one check digit, two solutions are adopted:

1. Mod 11 complete – Character X is used to represent rest 10.

2. Mod 11 restrict – Digit 0 is used to represent rest 10.

Each one of these solutions presents inconveniences in its use. In the case of mod 11 complete, a
non numeric character is introduced, which may bring difficulties. That is the case, for instance,

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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of the transmission of information by telephone, where X has to be mapped to a decimal digit,

transforming the situation into mod 11 restrict. When mod 11 restrict is adopted, it is not possible
to detect error situations that change the calculation of 0 to 10, or vice-versa.

Examples of the use of mod 11 complete in Brazil are bank agency and bank account codes,
with little variation between different banks. Cyclic weights from 1 to 10 are frequently used.

Another example of the use of complete mod 11 is the international book identifier ISBN (In-

ternational Standard Book Number) adopted around the world, whose standardization is done
by ISO (International Organization for Standardization). This standard has undergone variations
over time, and the main ones are called ISBN10 (used until 2007), with 10 digits, and ISBN13

for 13 digits. In the identifier of ISBN10 standard, the first 9 digits denote the language, the
editor and the serial number of the book. The calculation of the check digit is conducted with
the mod 10 system by complement. The ISBN13 standard adopts the same mod 10 system that

is used in product barcodes.

In some countries, variations of mod 11 system are used, with two check digits. For exam-
ple, in Brazil, both the CPF and the CNPJ use 2 check digits. Considering the identifier as
a1a2a3 · · · am−1am , where am−1 and am are the two check digits, the system’s equations are as

follows:

a1 p1 + a2 p2 + a3 p3 . . . am−2 pm−2 mod 11 = am−1 and

a1 p1 + a2 p2 + a3 p3 . . . am−2 pm−2 + am−1 pm−1 mod 11 = am .

In case the result is 10, then check digit is 0.

2.3 Other modular bases

Besides bases 10 and 11, which are the most used in practice, there are examples of the use

of other modular bases in several countries. For instance, IBAN (International Bank Account
Number), which is adopted in international bank transactions, use mod 97, [10]. In [7], the cases
of an aviation company and of an American car rental are presented, which use mod 7.

3 ERROR DETECTION IN SYSTEMS BASED ON MODULAR ARITHMETIC

Considering a modular function σi base n applied to each digit of the identifier, whose image
is contained in set {0, 1, 2, . . . , n − 1}, the error detection capability of a check digit modular
system is reshaped by Theorem 1 which is partially presented, not as a theorem, in [15] and in

[6].

Theorem 1. A modular system of check digits is able to detect:

1. Single errors, the change of a with b if, and only if, the image of σi is a permutation of

0 to n − 1 or pi is relatively prime to n, for every i.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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2. Transposition errors of digits ai e a j between positions i and j if, and only if,

(ai − a j )(pi − p j ) �≡ 0 mod n or (σi − σ j )(ai ) �≡ (σi − σ j )(a j ) mod n.

3. Twin errors between a and b, in positions i and j if, and only if, (a − b)(pi + p j) �≡ 0

mod n or (σi + σ j )(a) �≡ (σi + σ j )(b) mod n.

4. Phonetic errors in positions i and i + 1 if, and only if, pi �≡ (pi − pi+1)a mod n or
(σi − σi+1)(a) �≡ σi+1(0) − σi (1) mod n, for a �= 0, 1.

Proof. In order for a check digit system to detect:

1. the change of a with b, a �= b, it is sufficient that the image of σi be a permutation of digits
from 0 to n − 1, as long as there are n digits and it is necessary that σi (a) �≡ σi (b) mod n.
For the same reason it is necessary that pia, with a varying from 0 to 9, be a permutation
mod n for each pi . It is a well-known result in Modular Arithmetic that this occurs if and

only if pi is relatively prime to n.

2. the transposition of digits between positions i and j , besides ai �= a j , we shall have

σi(ai ) + σ j (a j ) �≡ σi (a j ) + σ j (ai ) mod n.

By the definition of the difference of functions, we may write,

(σi − σ j )(ai ) �≡ (σi − σ j )(a j ) mod n.

Considering weights, the condition may be described as:

piai + p j a j �≡ pia j + p jai mod n.

or, equivalently, (ai − a j )(pi − p j ) �≡ 0 mod n.

3. twin errors from a to b in positions i and j , we shall have a �= b and

σi (a) + σ j (a) �≡ σi (b) + σ j (b) mod n.

By the definition of sum of functions, we may write,

(σi + σ j )(a) �≡ (σi + σ j )(b) mod n.

Considering weights, the condition may be re-written as:

pia + p ja �≡ pib + p j b mod n.

or, equivalently, (a − b)(pi + p j) �≡ 0 mod n.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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4. phonetic errors in positions i and i + 1, we shall have a �= 0, 1 and

σi (1) + σi+1(a) �≡ σi (a) + σi+1(0) mod n.

By the definition of sum of functions, we may write,

(σi+1 − σi )(a) �≡ σi+1(0) − σi (1) mod n.

Considering weights, the condition may be re-written as:

pi1 + pi+1a �≡ pia + pi+10 mod n.

or, equivalently, pi �≡ (pi − pi+1)a mod n. �

3.1 Detection capability in current systems

We have conducted extensive practical experimentation in error detection of different systems
used in Brazil. Table 2 shows the percentage of non-detected errors in these systems. Columns
2 to 7 (SNG, TRA, TRL, TWA, TWL, PHO, respectively) show the percentage of non-detected
errors of each type according to Table 1. The last column, AVE, is a weighted average of non-
detected errors, according to the weights of same table. For identifiers up to 9 digits, we have
exhaustively considered all possible errors. For larger identifiers, such as CNPJ, we have con-
ducted a large statistical sampling, considering samples of 109 values. Systems that use 2 check
digits are represented only by the CNPJ, since it is the one that presents the best detection rate.

Table 2: Percentage of non-detected errors.

System SNG TRA TRL TWA TWL PHO AVE (%)

10 - 2 weights 0 11.11 100.00 11.11 11.11 0 2.02

10 - 3 weights 0 11.11 11.11 49.23 40.73 0 1.59

10 alphanum. 3 weights 7.81 18.02 18.02 48.76 41.57 0 8.53

10 IBM 0 2.22 100.00 6.67 11.11 12.50 1.16

11 complete 0 0 0 14.29 0 6.25 0.10

11 restrict 1.82 1.82 1.82 15.85 1.82 14.61 1.80

11 CNPJ 0.04 0.14 0.14 0.83 0.03 2.36 0.06

It is observed that none of the systems detects all error types. The worst system observed was
that of the passport, which uses mod 10 with 3 weights, and alphanumeric identifiers. The system
that adopts restrict mod 11 is inferior to two of the mod 10 systems. By its turn, complete mod 11
system stands out among all systems with one check digit. However, it is not a totally satisfactory
solution, as it is inadequate in situations that require numeric keyboards. The best of all methods
is the CNPJ, which uses mod 11 with two check digits, as it would be expected.

We shall discuss below the conditions for optimality in check digit systems that use modular
arithmetic. The discussion considers two cases: mod 10 and mod p, where p is a prime number,
considering the case of mod 11, and generalizing it to other aforementioned situations.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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4 OPTIMAL SYSTEMS FOR CHECK DIGITS WITH MODULAR ARITHMETIC

An optimal system is the one which fails to detect the lowest weighted percentage of errors. The
equation for minimizing the weighted average of errors is given by:

μ = 0, 791 p1 + 0, 102 p2 + 0, 008 p3 + 0, 005 p4 + 0, 003 p5 + 0, 005 p6.

Where pi is the probability of non detection of the 6 first types of errors in Table 1, SNG, TRA,
TRL, TWA, TWL and PHO, respectively.

As a reminder, a check digit system consists in applying k functions to the m − 1 first digits of
an identifier of digits, in order to obtain the last one of them. Given the high frequency of single
errors, their detection is mandatory and, thus, these functions must be permutations, according
Theorem 1.

4.1 Optimal system for prime modular bases

Next, we shall develop a general optimal system for prime modular bases. We are particularly
interested in bases 11, which are appropriate for identifiers composed by decimal digits, and 37,

for alphanumeric digits.

It has been observed that, when modular base n is a prime number, we may use systems of
weights varying from 1 to n − 1, as we then guarantee the detection of single errors. In order to
detect transpositions, it suffices to have at least three distinct weights, repeatedly applied, since

the difference between these weights will always be a number relatively prime to n. In order to
consider twin errors, the sum of consecutive or alternate weights must not be equal to n. For the
detection of phonetic errors, it is necessary that:

pi �≡ (pi − pi+1)a mod n, for 0 ≤ a ≤ 9. (1)

From modular arithmetic theory, we know that products pa, where p is an integer and a varies
from 0 to n − 1, generate a permutation of numbers from 0 to n − 1 in modulo n. Hence,
any number pi from 0 to n − 1 may be written as pi ≡ (pi − pi+1)a mod n, for some 0 ≤
a ≤ n − 1. Therefore, in order to satisfy the inequality 1, only numbers pi remain, such that
pi ≡ (pi − pi+1)a mod n, for values of a varying from 10 to n − 1. We have thus determined a
relation which pi and pi+1 must satisfy.

In the case of mod 11, the inequality is fulfilled only for a = 10. Replacing this value in the

equation, we have:

pi ≡ 10(pi − pi+1) mod 11 =⇒ pi+1 ≡ 2 pi mod 11.

Therefore, when choosing each weight as the double of its predecessor in mod 11, we meet the

conditions for detecting phonetic errors. That is, by alternately applying any circular permutation
of weights 〈1, 2, 4, 8, 5, 10, 9, 7, 3, 6〉.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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For n > 11, there are several other possible relations between two consecutive weights. There-

fore, we shall use a different framework in order to generate these various combinations. We
shall create a digraph with n − 1 vertices, where there is an edge between vertices u and v,
1 ≤ u �= v < n, if weights u and v, applied to two consecutive positions of the identifier, are

able to detect all phonetic errors. Note that the relation is not cumulative, the pair (u, v) may be
able to detect all phonetic errors, while the pair (v, u) may not have this property. In creating
this digraph, in order to avoid twin errors, we have not considered pairs where u + v = n.

After creating the digraph, we look for cycles in it, of the desired size, such that, for every two

alternate elements of the cycle, their sum is never n.

The digraph for n = 13 is shown in Figure 1. We have highlighted, as examples, the cycle of size
3: 〈1, 2, 4〉; and the cycle of size 12: 〈1, 2, 3, 4, 6, 8, 12, 11, 9, 5, 10, 7〉.

Figure 1: Digraph for n = 13.

In order to obtain these cycles, we could use the Dijkstra algorithm. However, as we have the
special test for alternate twins, and also as, in general, we look for cycles of small size, we

may use the backtracking algorithm shown in the sequence. In this algorithm, L is the set of
weights aimed at, and k > 2 the size of the desired cycle. T is an auxiliary vector to indicate
elements which have already entered the cycle. The variable can is true when it is possible to
add a new element to the cycle. For that, it should be checked if the new element to be added

has not already entered the cycle, if the sum of alternate elements is different from n and if the
cycle appropriately closes when the kth element is placed in the cycle.

Table 3 shows some of the algorithm’s outputs for four prime bases: 11, 13, 37 and 97 and values
for k: 3, 6 and 10.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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Algorithm 1:
Config();
for i from 1 to n − 1 :

can ← true;
if (not T [i]) then can ← false;
else if (l > 0) and (E[L[l], i] = 0) then can ← false;
else if (l > 1) and ((L[l − 1] + i) = n) then can ← false;
else if (l = (k − 1)) and ((E(i, L[1]) = 0) or ((L[l] + L[1]) = n)) then

can ← false;
if (can) then

l ← l + 1; L[l] ← i; T [i] ← false;
if (l = k) then Print;
else Config();
l ← l − 1; T [i] ← true;

Begin
l ← 0; T [∗] ← true; Config();

Table 3: Examples of cycles with k weights for prime bases n.
������n

k
3 6 10

11 – – 1 2 4 8 5 10 9 7 3 6

13
1 2 4 1 2 3 6 9 5 1 2 3 4 6 8 12 11 9 5

3 4 8 1 8 3 6 12 5 1 2 3 4 6 12 5 10 9 7
5 10 7 2 3 6 9 5 10 1 2 3 4 6 12 11 9 7 5

37
1 2 3 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10

1 2 8 1 2 3 4 5 8 1 2 3 4 5 6 7 8 9 11
1 2 12 1 2 3 4 5 12 1 2 3 4 5 6 7 8 9 12

97
1 2 3 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10

1 2 5 1 2 3 4 5 9 1 2 3 4 5 6 7 8 9 12
1 2 12 1 2 3 4 5 14 1 2 3 4 5 6 7 8 9 14

4.1.1 Optimal system for mod 11, with one check digit

It should be noted that currently found problems in the use of mod 11 are mainly due to an

inadequate sequence of weights in the system for calculating CDs. In the case of complete mod
11, it suffices to use the sequence of weights 〈1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 〉and we obtain detection
of all six types of errors considered in this paper.

In the case of restrict mod 11, non detected errors correspond to 1,82% of cases of each type of

error, due to the situations where the calculation initially indicates 10 and, with the error, turns
to 0, or vice-versa, that is, 2/110 of cases of error.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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4.1.2 Optimal system for alphanumeric identifiers with one check digit

In this case, we can use the general system presented, with modular base 37. The check digit
must also be alphanumeric. As we have 36 alphanumeric digits in the Latin alphabet, a natural
solution is to consider an additional character. In the case of passports, this character corresponds

to <. Besides, non-numeric characters, that is, those belonging to set {A, B, . . . , Z , <} would be
mapped to the numeric set {10, 11, 12, . . . , 36}. The simplest set of weights to be used consists
of 3 weights 〈1, 2, 3〉 used repeatedly.

This solution is associated with a significant improvement when compared to the system cur-

rently used for passports.

4.1.3 Optimal systems for mod 11 with two check digits

An optimal system consists in using the general system, as described in the case with one digit.
Also, it is possible to conduct only one calculation and the result should be represented with two

digits. That is, results from 0 to 9 would be represented with 0 in the first check digit and the
result itself in the second. The result 10 would normally be represented with two digits.

This solution is much simpler and more efficient than the several existing cases with two check
digits, since it detects all error situations.

Its advantage in relation to mod 11 with only one check digit is the fact that it avoids non-numeric

character X , always dealing with decimal digits only. However, it has the disadvantage of using
an additional digit in each identifier.

4.2 Optimal systems for mod 10 check digit

All mod 10 systems shown, which are effectively used in practice, adopt the strategy of modu-
lar multiplication by weights. This result corresponds to the use of permutation, as long as the
weights are relatively prime to 10. These weights are 1, 3, 7 and 9, and the equivalent permu-
tations are σ1 : (0 1 2 3 4 5 6 7 8 9), σ3 : (0 3 6 9 2 5 8 1 4 7), σ7 : (0 7 4 1 8 5 2 9 6 3)

and σ9 : (0 9 8 7 6 5 4 3 2 1), respectively. It is easily observed that none of the pairs in these
permutations satisfies the equations in Theorem 1 of Section 3. This explains the percentages of
non-detected errors shown in Table 2. Aggravating the difficulties with mod 10 systems, we have

the following theorem, proven in [8].

Theorem 2. Suppose a check digit system mod n, where n is even, which detects all single errors.
Then there is at least one change of adjacent digits that this system does not detect.

Proof. Since the system must detect all single errors, σi (a) is a permutation, for every i. In
order to detect all adjacent transposition errors, one should have

σi (ai) + σi+1(ai+1) �≡ σi (ai+1) + σi+1(ai ) mod n, for all ai �= ai+1.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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Therefore, the difference σ(a) = σi (ai ) − σi+1(ai ) should also be a permutation. However, the

sum of elements in σi(a) in Zn is given by:
n∑

i=0

i = n

2
+ (1 + n − 1) + (2 + n − 2) + (3 + n − 3) + . . . +

(n

2
− 1 + n

2
+ 1

)
≡ n

2
mod n.

This implies that:
n

2
≡

∑
σ(a) ≡

∑
(σi (ai ) − σi+1(ai )) =

∑
σi (ai ) −

∑
σi+1(ai ) ≡ n

2
− n

2
= 0 mod n.

According to the last equality,
n

2
≡ 0 mod n, this is a contradiction. �

The considerations above show that there is no way to improve mod 10 systems used in practice.
New methods should be considered. The search for optimal mod 10 systems has led to the strat-
egy of searching for more adequate permutations than the ones shown above. We shall present

two mod 10 systems which are optimal, given certain restrictions. The first one is Verhoeff sys-
tem [15], described below, and the second is a new optimal system developed by the authors,
when the use of only three permutations is desired.

We shall explore in detail the properties of the intended permutations. We first consider the

calculation of non-detected transposition errors for two permutations p and q applied to digits
ai and a j of an identifier. A transposition error is not detected if p(ai ) + q(a j ) ≡ p(a j ) +
q(ai ) mod 10 or, in an equivalent manner, p(ai)−q(ai ) ≡ p(a j )−q(a j ) mod 10. Each equality

in the equation corresponds to 2 non-detected errors, the change of ai with a j and vice-versa.

Let us illustrate with permutations p : (1 4 2 5 0 9 3 6 8 7) and q : (3 7 0 8 5 1 4 6 2 9). In order to
find the cases of non-detected errors, the mod 10 difference between these permutations should
be calculated: d = p − q : (8 7 2 7 5 8 9 0 6 8). This difference shows that the transpositions

between numbers 1 and 3, in the positions where p and q were applied, are not detected, since
p(1) − q(1) = 4 − 7 = −3 ≡ p(3) − q(3) = 5 − 8 mod 10, that is, the same result is obtained.

This shows that, in order to calculate all non-detected transposition errors, we shall count the
amount s of each result in the difference function, and, for each distinct s, add the number of

arrangements As,2 = s(s − 1) to the total. In the example, there are two repetitions of number 7
and three of number 8. The total of transposition errors non-detected by the pair of permutations
considered is, thus, t = 2.1 + 3.2 = 8. The 8 pairs of non-detected changes are (1, 3), (3, 1),

(0, 5), (5, 0), (0, 9), (9, 0), (5, 9) and (9, 5).

In order to calculate non-detected twin errors, rather than subtracting the permutations involved,
they should be added, since non-detection of the change of a digit a in positions where p and q
are applied, by another digit b �= a, occurs if p(a) + q(a) ≡ p(b) + q(b) mod 10.

Finally, a phonetic error, which occurs in consecutive positions where p and q are applied, is not

detected when p(1) + q(a) ≡ p(a) + q(0) mod 10, for a = 2, 3, . . . , 9. Similarly, when we
have p(1)−q(0) ≡ p(a)−q(a) mod 10. Whenever equality occurs, 2 errors fail to be detected,
the change 1a by a0 and vice-versa.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)



�

�

“main” — 2017/5/12 — 15:57 — page 117 — #13
�

�

�

�

�

�

FARIA, PINTO and PEDROZA 117

4.2.1 Verhoeff Mod 10 system

The best mod 10 check digit system known was, until recently, the one proposed by Verhoeff.
He developed a system with the following characteristics:

1. it uses m − 1 distinct permutations, one for each digit in the identifier with m digits.

2. each pair of consecutive permutations fails to detect the least number of twin errors and
transposition errors (2 cases in 90 of each type).

3. each pair of alternate permutations fails to detect 4 errors in 90 possible ones, for both twin

and transposition errors.

4. only 2 in 16 phonetic errors fail to be detected for every set of 6 permutations used.

Due to computational limitations of the time of its development, this system was found through a
mixed process where several mathematical properties of the system have been deduced and many

results have been achieved computationally. Verhoeff has not proven the method’s optimality. As
shown below, this method is optimal only for identifiers up to 6 digits.

We present Algorithm 2 which finds a system equivalent to Verhoeff in the search for a set of
permutations with the properties described.

Algorithm 2:
Config()
for i from 1 to s :

q ← MapP erm(S[i], L[l]); e ← ErrorsP hon(q, L[l]);
if (l mod 6 = 0) then e ← e − 2;
if (l > 1) then

e ← e + ErrorsT win(q, L[l − 1]) + ErrorsT rans(q, L[l − 1])
else e ← e + 8;
if (e = 8) then

l ← l + 1; L[l] ← q;
if (l = m) then

Print
else Config();
l ← l − 1;

Begin
Obtain S; Define m; L[1] ← r; l ← 1; Config();

In Algorithm 2, s and l respectively refer to the sizes of S, the set of all permutations that
minimize non-detection of both transpositions and twin errors in relation to the identity permu-
tation, r : (0 1 2 3 4 5 6 7 8 9), and L , the set of permutations to be used in the system.

Procedure Con f ig successively fulfills set L , where, after each group of 6 permutations, 2 pho-

netic errors are admitted. Function Map Perm conducts the mapping of one permutation of S,
such that a new permutation has the desired properties in relation to the permutation already
placed in L . Variable e counts the cases of non-detected phonetic and alternate errors. When

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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e = 8 the permutation is accepted in set L , according to the rules of the system. For the second

permutation this test is not necessary, so 8 is artificially added to e to force the permutation to be
accepted.

Table 4 shows an example of a set obtained by Verhoeff for m = 18.

Table 4: Set with 18 permutations.

1 0123456789 7 3456710298 13 6752498310

2 9460571382 8 8359472106 14 8310795264

3 3620845197 9 0397568421 15 2931568704

4 1290857436 10 0189723564 16 6582741903

5 8340971265 11 0562184739 17 0541823976

6 8142630579 12 4175908236 18 4189053627

Even though Verhoeff’s system has been the best mod 10 system since 1969, we have not found
any reference to its practical application. We suppose this is due to a psychological barrier that
considers the system’s implementation complicated and subject to errors, as it involves a large
number of permutations.

4.2.2 The search for an optimal mod 10 system with 3 permutations

As shown, an optimal base 10 system should not be based on weights, but rather on the use of at
least three permutations.

Until 2013 there have been several attempts to find such a system, all of them are described in
[5], but none of them has achieved the optimal method.

An initial improvement attempted to resolve the problem of mod 10 IBM, by using powers of
permutation σ : (0 2 4 6 8 1 3 5 7 9). The equation of the system, in this case, is given by:

m−1∑
i=1

σ i−1(am−i) ≡ am mod 10.

In another variant, called Generalized IBM code, the permutation σ is modified to μ(a) =
σ(a) + 6 mod 10, where a = 0, 1, . . . , 9, that is, μ : (6 8 0 2 4 7 9 1 3 5). The detection of
single, transposition and twin errors is the same as in mod IBM, but this method is better for

other types of error.

Two variations have also been tried, called the Colenbrander code, which differ only in the per-
mutation used in the system. The equation for calculating the check digit is once again as the
one for generalized Mod 10 IBM, only changing the permutation. The Colenbrander method

uses the permutation f : (9 2 4 6 8 0 1 3 5 7). In the Modified Colenbrander, permuta-
tion is λ : (1 3 5 7 9 0 2 4 6 8). Permutation λ is obtained from f through the equation
λ = ( f ((a + 1) mod 10) − 1) mod 11.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)
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Another method of this kind has been created by a German bank. The following three per-

mutations are applied alternately to the digits of the identifier: σ1 : (1 2 3 4 5 6 7 8 9 0),
σ2 : (2 4 6 8 0 1 3 5 7 9), and σ3 : (3 6 9 1 4 7 0 2 5 8). These permutations are reached through
the formula σi (a) = ((ia + i) mod 11) mod 10.

An optimal code was finally obtained in 2013 by the authors [12] and is described below.

4.2.3 Optimal system for mod 10 check digit with 3 permutations

In the optimal base 10 modular system with three permutations, these permutations are alter-
nately applied to the digits of the identifier. We shall consider, without loss in generality, the first

of these permutations as identity: σ1 : (0 1 2 3 4 5 6 7 8 9).

Next, we show the stages in constructing this system and prove its optimality. Initially, the
error detection capability of one of these systems is analyzed, formed by permutations σ1 :
(0 1 2 3 4 5 6 7 8 9), σ2 : (0 8 6 4 2 7 9 1 3 5) and σ3 : (1 6 3 2 8 7 4 0 5 9).

Lemma 3. The mod 10 check digit system that uses three permutations σ1 : (0 1 2 3 4 5 6 7 8 9),

σ2 : (0 8 6 4 2 7 9 1 3 5) and σ3 : (1 6 3 2 8 7 4 0 5 9) fails to detect:

1. 0 single errors;

2. 2/90 of transposition errors;

3. 16/270 of twin errors;

4. 0 phonetic errors.

This way, the rate of non detection of errors is

μ = 0, 102(2/90) + 0, 008(2/90) + 0, 005(16/270)+ 0, 003(16/270) = 0, 29%.

Proof. The system detects all single errors, as it uses permutations. A check digit system does

not detect transposition errors in positions i and j when (σi − σ j )(ai ) ≡ (σi − σ j )(a j ) mod 10;
twin errors in positions i and j when (σi + σ j )(a) ≡ (σi + σ j )(b) mod 10 and phonetic errors
when σi (1) − σi+1(0) ≡ (σi − σi+1)(a) mod 10, for a �= 0, 1. Table 5 shows the cases where

equalities are satisfied for each type of error.

It should be noted that, in order to analyze adjacent errors, permutations should be linked as
follows: σ1 with σ2, σ2 with σ3 and σ3 with σ1. For alternate errors, we link σ1 with σ3, σ2 with
σ1 and σ3 with σ2. In the general case of transposition and twin errors, it suffices to analyze

combinations two by two of the three permutations.

Lines 1 to 3 in Table 5 show cases of non-detection of transposition errors. Every pair of values
whose images of σi − σ j are equal will not be detected. Therefore, 2 (= A2,2) transpositions in
90 possible ones will be undetected.

Tend. Mat. Apl. Comput., 18, N. 1 (2017)



�

�

“main” — 2017/5/12 — 15:57 — page 120 — #16
�

�

�

�

�

�

120 OPTIMAL CHECK DIGIT SYSTEMS

Table 5: Positions of non-detected errors

1 σ1 − σ2 0 3 6 9 2 8 7 6 5 4

2 σ2 − σ3 9 2 3 2 4 0 5 1 8 6

3 σ3 − σ1 1 5 1 9 4 2 8 3 7 0

4 σ1 + σ2 0 9 8 7 6 2 5 8 1 4

5 σ2 + σ3 1 4 9 6 0 4 3 1 8 4

6 σ1 + σ3 1 7 5 5 2 2 0 7 3 8

7 σ1(1) − σ2(0) 1

8 σ2(1) − σ3(0) 7

9 σ3(1) − σ1(0) 6

Lines 4 and 5 show cases of non-detection of twin errors in general. In line 4, there are 2 (= A2,2)

cases of non-detection. In line 5, 2 (= A2,2) errors correspond to the change between elements

whose images of σ2 +σ3 are equal to 1, and 6 (= A3,2) errors correspond to the change between
elements whose images are equal to 4, thus adding to a total of 8 non-detected errors.

In line 6, to the change between elements whose images σ1 + σ3 are equal to 2, 5 and 7, there is
a correspondence of 3 (= A2,2) errors.

Lines 7 to 9 show that no phonetic error fails to be detected, since σi (1) − σi+1(0) �≡ (σi −
σi+1)(a) mod 10, for 0 ≤ a ≤ 9. This equation may be generalized for any value of a, since in
cases of a = 0 or 1, the equation corresponds to single errors �

Lemma 4. An optimal mod 10 check digit system with three permutations fails to detect 2/90 of
transposition errors.

Proof. Suppose an optimal system where all phonetic errors are detected and all pairs of permu-

tations fail to detect 2/90 of twin errors (the best possible rate), two of 3 pairs fail to detect 2/90
of transposition errors and only one pair fails to detect 4/90 (the following lowest value possible).
Hence, the percentage of non-detection μ = 0, 102(6/270) + 0, 008(6/270) + 0, 005(2/90) +
0, 003(2/90) = 0, 0034 is superior to the Lemma 3 system. This is a contradiction. �

Corollary 5. An optimal mod 10 check digit system should minimize non detection of twin and

phonetic errors.

The optimal system was obtained through an exhaustive computational process, though with
several optimizations. Being r the identity permutation, we have created vector S with permuta-
tions p such that ErrorsT ra(r, p) = 2, where ErrosT ra indicates transposition errors. Thus,

non-detection of transposition errors is minimized. Experimentally, it has been verified that S
has 46.400 permutations. All triples {r, p, q} have been examined, where p, q ∈ S, such that
ErrorsT rans(p, q) = 2. For each value k, vector CG counts for each 0 ≤ k ≤ 90, the total
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amount of twin errors not detected by the permutation pairs of each triple. It was experimen-

tally obtained that the total of triples where all pairs of permutations fail to detect 2 transposition
errors is 12.654.000. The lowest rate not zeroed of vector CG is for k = 16, which is thus the
minimum number of non-detected twin errors. The minimum of 16 errors is relative to the total

of 270 errors, since we have three distinct pairs in each triple and the number of errors refer to
the three permutations as a whole.

The minimization of phonetic errors has been treated independently of that of twin errors,
since there are triples capable of detecting all phonetic errors, as is shown by the result of

Algorithm 3 below.

Algorithm 3:
r ← (0 1 2 3 4 5 6 7 8 9); p ← r; m ← 0;
Begin

for i from 2 to 10! :
p ← Nextperm(p);
if (ErrorsT rans(r, p) = 2) then m ← m + 1; S[m] ← p;

for i from 1 to m − 1 :
for j from i + 1 to m :

if (ErrorsT rans(S[i], S[j]) = 2) then
k ← ErrorsT win(r, S[i]) + ErrorsT win(S[i], S[j]) + ErrorsT win(S[j], r);
f ← ErrorsP hon(r, S[i]) + ErrorsP hon(S[i], S[j]) + ErrorsP hon(S[j], r);
if ((k = 16) and (f = 0)) then Print r, S[i], S[j];

Algorithm 3 obtains 100 triples with the desired characteristics. It may be experimentally ob-
served that the distribution of non-detected twin errors between pairs of permutations is only

of two kinds: 〈2, 8, 6〉 e 〈6, 8, 2〉. Triples of the first kind are preferred, since they minimize
non-detection for identifiers of all sizes. Based on this observation, it is possible to modify
Algorithm 3 such that non-detection of twin errors for the first pair of each triple is equal to

2. This leaves a total of 48 optimal triples. Table 6 shows the last two permutations of the 48
triples, which has the identity as initial permutation, obtained with the use of this algorithm.

Lemma 6. An optimal mod 10 check digit system with three permutations should detect the same
errors as the Lemma 3 system.

This result is experimentally proved by Algorithm 3.

4.2.4 Optimality of mod 10 methods

When Verhoeff proposed the system described above, he did not prove its optimality. His system
was obtained through a mixed process of theory and experimentation. The present authors have
recently developed a program which exhaustively searches for sets of up to 6 permutations that

are better, in terms of error detection, than Verhoeff system. The program has not found such
sets, thus proving the optimality of Verhoeff system for identifiers of up to 6 digits. Over 6 digits,
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Table 6: Mod 10 optimal systems with three permutations

1 0864279135 1632874059 25 2086491357 9410652837

2 0864279135 2743985160 26 3197502468 3854096271

3 0864279135 3854096271 27 3197502468 4965107382

4 0864279135 4965107382 28 3197502468 5076218493

5 0864279135 5076218493 29 3197502468 6187329504

6 0864279135 6187329504 30 3197502468 7298430615

7 0864279135 7298430615 31 3197502468 8309541726

8 0864279135 8309541726 32 3197502468 9410652837

9 0864279135 9410652837 33 4208613579 4965107382

10 1975380246 2743985160 34 4208613579 5076218493

11 1975380246 3854096271 35 4208613579 6187329504

12 1975380246 4965107382 36 4208613579 7298430615

13 1975380246 5076218493 37 4208613579 8309541726

14 1975380246 6187329504 38 4208613579 9410652837

15 1975380246 7298430615 39 5319724680 6187329504

16 1975380246 8309541726 40 5319724680 7298430615

17 1975380246 9410652837 41 5319724680 8309541726

18 2086491357 2743985160 42 5319724680 9410652837

19 2086491357 3854096271 43 6420835791 7298430615

20 2086491357 4965107382 44 6420835791 8309541726

21 2086491357 5076218493 45 6420835791 9410652837

22 2086491357 6187329504 46 7531946802 8309541726

23 2086491357 7298430615 47 7531946802 9410652837

24 2086491357 8309541726 48 8642057913 9410652837

the system of three permutations described becomes better than Verhoeff and it is conjectured
that it is not only an optimal system with three permutations, but that it is also optimal in general,

with identifiers of 7 or more digits.

Next, we sum up the error detection capability of optimal methods.

4.3 Error detection capability of optimal methods

Table 7 shows the percentage of non-detected errors in several optimal methods. For the case
of base 10 Verhoeff’s method, two lines are presented, one for identifiers of up to 6 digits, and

another for identifiers of more than 6 digits. The case of restrict mod 11 is also illustrated.

It is observed that methods with prime modular base may detect all errors considered in this
paper, with the exception of restrict Modulus 11.
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A comparison with Table 2, Section 3, shows the margin for possible improvement in check

digit error detection, in relation to current applications. The case of passports is highlighted,
where one could have benefited from the fact that it is a very adequate situation to use prime base
37, exactly the number of symbols used in this document.

Table 7: Percentage of non-detected errors for optimal methods

Systems SNG TRA TRL TWA TWL PHO AVE %

Mod 10 3P optimal 0 2.22 2.22 5.93 5.93 0 0.29

Mod 10 Vehroeff (≤ 6) 0 2.22 4.44 2.22 4.44 0 0.28

Mod 10 Vehroeff (≥ 7) 0 2.22 4.44 2.22 4.44 3.57 0.30

Mod 11 restrict 1.82 1.82 1.82 1.82 1.82 1.82 1.66

Prime modular bases 0 0 0 0 0 0 0

5 CONCLUSION

In this work, we have presented and discussed check digit systems based on modular arithmetic,
which are used in almost all computational records of modern life. In particular, we have exam-
ined their conditions of optimality, which is a theme that has not been treated in the literature of
the field yet.

We have developed an optimal method for prime modular bases which is capable of detecting all
main error types considered in this work. Recent works based in group theory, such as [3] have
been proposed for the same purpose. Nevertheless, they have not arrived yet to optimal methods,
since they can not detect all phonetic errors.

For modular base 10 systems, we have characterized the fact that it is imperfect to use weights
in the calculations. We have presented two optimal systems, given certain restrictions. The first
one is an old system, developed by Verhoeff, which we have proved, through an extensive com-
putational experiment, to be optimal for identifiers of up to 6 digits. We have described a new

optimal system, when only three permutations are used, developed by the present authors which
is conjectured to be also optimal for identifiers of more than 6 digits. It should be noted that
the Verhoeff system for base 10, based on group theory, is superior to both modular arithmetic

systems discussed, but is not used in practice anymore.

In recent years a new base has been considered and is related to identifiers using hexadeci-
mal digits. Examples are International Standard Audiovisual Number (ISAN) which enables
the identification of any kind of audiovisual works and the International Mobile Equipment

Identifier (MEID) which is unique for each mobile station. In both cases the check digit is calcu-
lated transforming base 16 to base 10. A more adequate method was created by [3] using group
theory, as mentioned before.
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We have verified that all check digit systems used in Brazil can be improved with the proposals

presented in this work, considering the six most common error types in data input and their
probability of occurrence.

For the reader’s convenience, four programs which implement the four main algorithms presented
in this work are available at: http://www.ime.uerj.br/$\sim$pauloedp/MEST/TESES/

NATALIA/Pagina.html,

1. ALG8.pas: implementation of Algorithm 1 to obtain mod 10 systems equivalent to Verho-

eff.

2. ALG9.pas: implementation of Algorithm 2 to obtain optimal mod 10 systems with three
permutations.

3. ALG11.pas: implementation of Algorithm 3 to obtain optimal modular systems of prime
bases.

4. ALG12.cpp: Verification of Verhoeff’s system optimality.

RESUMO. Neste artigo discutimos os sistemas de dı́gitos verificadores baseados em arit-

mética modular, utilizados mundialmente. Dı́gitos verificadores são usados para eliminar a

maioria dos erros na entrada de dados em sistemas computacionais. Embora antigos, não é

encontrada na literatura uma discussão sobre a otimalidade dos esquemas utilizados. Des-

crevemos os principais esquemas existentes e destacamos aqueles adotados no Brasil. Apre-

sentamos as melhorias necessárias para tornar os diversos esquemas ótimos. Propomos,

também, um novo esquema ótimo com 3 permutações para sistemas com base modular 10.

Palavras-chave: Dı́gitos verificadores, detecção de erros, aritmética modular.
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