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ABSTRACT. In this paper, a Simulated Annealing (SA) algorithm is proposed for the Battery model
parametrization, which is used for the mathematical modeling of the Lithium Ion Polymer (LiPo) batteries
lifetime. Experimental data obtained by a testbed were used for model parametrization and validation. The
proposed SA algorithm is compared to the traditional parametrization methodology that consists in the vi-
sual analysis of discharge curves, and from the results obtained, it is possible to see the model efficacy in
batteries lifetime prediction, and the proposed SA algorithm efficiency in the parameters estimation.
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1 INTRODUCTION

The development of new technologies for mobile devices is highly dependent on developments
in battery lifetime prediction and management. The battery lifetime is here understood as the
time during which the battery can supply energy to the device before a new recharge [17]. There
are different classes of mathematical models [4, 6, 10, 15, 17, 18] capable of battery lifetime pre-
diction, and among those classes, there is the electrical models class [3, 4, 22]. A considerably
versatile electrical model is the so called Battery model [9, 21, 22], and a crucial aspect of its
application is the parametrization process. Different approaches can be adopted for the parame-
ters estimation, being the subjective visual analysis of discharge curves the traditionally applied
method [2, 16] for some of the Battery model parameters.

Some works have proposed the use of more systematic estimation processes with metaheuris-
tics, obtaining good results for various parameter estimation problems [1, 5, 7, 20]. Among the
most used metaheuristics, the Simulated Annealing (SA) is notable for its efficacy and robust-
ness. This method, proposed by [11], is inspired by the procedure presented in [13] and is based
on the analogy between annealing of solids and the resolution of combinatorial optimization
problems [7]. An important characteristic of this method is the possibility of solutions worst
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then the current solution to be selected for the next iteration, and by doing so, exploring other
solutions in the neighborhood, escaping from local minima. This selection probability is driven
by the temperature simulation variable, which decreases with time, bringing stability to the
method as the search progresses.

The SA method has been used to optimize parameters in a variety of problems. The opera-
tional parameters optimization for fuel economy and lower emission of a Hybrid Electric Vehicle
(HEV) is discussed in [23], where a SA algorithm is proposed and its results are compared with
the method usually employed for the problem, called dividing rectangles (DIRECT). In [14], a
SA method is used for the parameters estimation of an electrical equivalent circuit model of the
Proton Exchange Membrane (PEM) fuel cell system. The model is validated by the comparison
of experimental and simulated data, with good results agreement. A SA algorithm is used in [8]
for the size optimization of a photovoltaic and wind hybrid energy system with battery storage.
The parameters for photovoltaic panel size, wind turbine rotor swept area and battery capacity
are optimized for the minimization the energy system total cost. The results obtained by the SA
algorithm is compared to the Response Surface Methodology (RSM), with SA showing better
results. The estimation of solar cell model parameters is solved by a SA algorithm in [7], and a
comparative study of different parameter estimation techniques is presented to demonstrate the
effectiveness of the proposed SA. In [5], a SA is employed to efficiently find the best control
coefficients for the nonlinear problem of energy management for a hybrid vehicle. With the use
of SA, it was possible to find the motor power and maximum current coefficient with faster cal-
culation time, improving the vehicle energy efficiency when compared to the Charge-Depleting
(CD)/Charge-Sustaining (CS) standard method.

This paper presents the application of the SA method in the parametrization of the Battery
model used for the mathematical modeling of Lithium Ion Polymer (LiPo) batteries. The pro-
posed SA algorithm and the Battery model are both implemented using the Matlab computational
tool. For the parametrization validation, two different methodologies are applied and compared.
The first methodology consists in the model parametrization by discharge curves visual analysis,
which is the traditionally applied method for this problem [2, 16]. The second methodology is the
model parametrization by the SA algorithm proposed in this paper. The discharge curves used in
both parametrization approaches were obtained using a testbed specially built for this task. The
results obtained by the Battery model are compared to the experimental data in order to evaluate
the parametrization procedures.

The rest of the paper is organized as follows. In Section 2 the Battery model is presented, the
experimental data acquisition and the parametrization methods are explained, and the SA pro-
posed parametrization method is detailed. In Section 3 the simulation results are presented and
discussed. In Section 4 the conclusions are drawn.
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2 MATERIALS AND METHODS

This section presents the electrical model used for battery lifetime prediction, the methodo-
logy used for the experimental data obtainment and model parametrization procedure. The first
parametrization methodology is based on the subjective visual analysis of discharge curves, and
second methodology is the proposed SA algorithm.

2.1 Battery Model

The Battery model is a dynamic model that simulates the behaviour of rechargeable batteries
of different technologies under different charge and discharge conditions [9]. The following as-
sumptions are considered for the model [21]: the internal resistance of the battery is constant, not
varying with the current amplitude; the effective capacity of the battery does not change along
with changes in the current amplitude; the temperature is neglected, not affecting the model be-
haviour; self-discharging of the battery is not considered; and the model has no memory effect.

The Battery model is part of the SimPowerSystems library, in the Matlab/ Simulink compu-
tational tool. For each battery type there is a specific equation to describe the voltage decay.
Therefore, for LiPo battery, the simulated voltage V; is obtained by the equation

VS=Eo—Ri—K<Qgit>i*—K(%)ithAexp(—Bit), (1)
where: Eq is the constant voltage, R is the internal resistance, i is the battery current, K is
the polarization constant or the polarization resistance, i* is the filtered current, iz is the actual
battery charge, Q is the battery maximum capacity, A is the exponential zone amplitude and B is
the inverse of the exponential zone time constant [22]. The constant voltage E is obtained from
the equation

Eo=Vpur + K+ Ri — A, ()

where: Vg, is the fully charged voltage [21]. The polarization constant K is given by

_ (VFuwl — Vom + Alexp(=BQOnom) — D)(Q — Onom)
QNom '

K

3)

where: Vo, is the voltage at the end of the nominal zone and Q y,, is the capacity at nominal
voltage [21]. The parameters A and B can be obtained from the equations (4) and (5), respec-
tively,

A=Vpu — VExpa 4

3
B= ,
QExp

where: Vg, is the voltage at the end of the exponential zone and Q gy is the capacity at the end

5

of the exponential zone [21].

Most of the model parameters are obtained from the datasheets supplied by the battery manufac-
turer. Obtaining the parameter Vg, is trivial, since it corresponds to maximum battery voltage.
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The parameter Vy,,, directly depends on the parameter Q n,,. The parameters that need to be
estimated using discharge characteristic curves, as proposed by [9], are: O nom, VExp and Qgxp.
The methodology usually adopted for these parameters estimation is based on the visual analysis
of some specific points in the discharge curves [16]. This paper proposes a new methodology for
the parameters estimation, based on SA method, and compares it to the visual analysis method.

2.2 Experimental Data

For the parametrization process and model validation, this study uses actual discharge curves
generated using data from a testbed developed by the Industrial Automation and Control Group
(GAIC), of the Regional University of Northwest of Rio Grande do Sul State (Unijui). This
platform captures the curves of the battery discharge process, obtaining instant information that
can be saved as images in bitmap and reports in text format.

For the experimental tests, the batteries are initially connected to an external power source and
subjected to a full charge process with a applied current corresponding to 20% of the battery
rated capacity [12], which is equivalent to 160 mA. The charge process is considered complete
when battery voltage reaches 4.2 V, than the batteries are disconnected from the charging station
and subsequently connected to the testbed for the discharge process. The discharge process is
considered complete when the battery reaches the cutoff voltage of 2.7 V. The battery lifetime
is the discharge time from the battery fully charged down to the cutoff voltage.

A wide range of discharge currents were used for the experimental tests in accordance to the
minimum and maximum acceptable limits for the LiPo battery model PL383562 — 2C. A total
of 31 constant discharge profiles were used, ranging from 50 mA to 800 m A, at 25 m A intervals,
and 8 independent experimental tests are performed for each discharge profile.

2.3 Parameters estimation methodologies

The Battery model parameters can be divided in two sets. The first parameters set does not
depend on the calibration discharge current and is show in Table 1. The value of the internal
resistance parameter is derived from rated voltage and rated capacity parameters, corresponding
to 1% of these two parameters product. The value of the maximum capacity parameter is 105%
of the battery rated capacity. The initial state of charge SO C(t), at the beginning of the discharge
process when battery is fully charged, is set to 100%. The response time parameter is set to 30
s, a value that satisfactorily represents the battery voltage dynamics. The parameters values are
chosen according what is advised in [9].

The second set of parameters is estimated using discharge curves that describe the voltage
decay over time and are generated by the experimental data provided by the testbed. Two dis-
tinct regions in a discharge characteristic curve must be considered: exponential area and nomi-
nal area. The parameters Vg, and Q. are obtained from the curve analysis at the end of the
exponential area. The parameter Q ., is obtained from the curve analysis at the end of the
nominal area.
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Table 1: Battery model parameters.

Parameters Values
Battery type LiPo

Rated voltage 27V

Rated capacity 0.8 Ah

Initial SOC(t) 100%
Maximum capacity 0.84 Ah
Fully charged battery voltage 42V
Internal resistance 0.0216 Ohms
Response time 30s
Simulation time unity s

Two different methodologies are used for the estimation of the parameters Qnom, VExp and
QExp- Methodology 1 consists in the visual analysis of the discharge curve where the corres-
ponding experimental lifetime is found to be nearest to the average experimental lifetime of
the 8 independent experiments for the considered calibration profile. Methodology 2 is the use
of the SA method proposed by this paper. It is important to note that, for the two adopted
methodologies, the parameters estimation the Battery model is performed for a given calibration
discharge profile and then validated for all other discharge profiles. The two methodologies are
better explained in the following subsections.

2.4 Methodology 1: Visual analysis of discharge curve

In this methodology, 8 discharge curves are generated, according to 8 independent experiments
performed for the considered discharge profile. The lifetime of each experimental discharge
curve is computed, the average experimental lifetime of the discharge profile is obtained, and
the curve with the lifetime nearest to the average experimental lifetime is then selected. Using
the selected curve, the 3 parameters of the Battery model are obtained by means of a visual
analysis at specific points, following the same procedure found in [16]. The model is then sim-
ulated for the 31 discharge profiles for its validation. This whole procedure is repeated for each
discharge profile.

2.5 Methodology 2: Simulated Annealing

The optimization problem considered by this work consists in finding the parameters that min-
imize the objective function given by equation (6), that represents the difference between the
results obtained by the Battery model and the experimental data. The experimental lifetimes
are computed for the 8 discharge curves of the selected calibration profile. The curve with the
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experimental lifetime nearest to the calibration profile average lifetime is selected and used to
compute the objective function

L(’ll
E=fc</0 |VS_V€|dt>+fL(|LS_L€(l|)9 (6)

where: f; is the discharge curve importance factor, L., is the average experimental lifetime, V
is the voltage simulated by the model according to equation (1), V, is the experimental voltage,
f1 1is the average experimental lifetime importance factor and L is the lifetime simulated by
the model. The L is obtained by computing the simulated time interval from the battery fully
charged down to the cutoff voltage. The f. and f; factors are constants used to define whether
the model should look for a better fit to overall curve, or a better fit for the average experimental
lifetime, since the model does not always achieve these two objectives simultaneously, espe-
cially due to the sudden drops in voltage at the beginning and end of the experimental curve.
This factors were empirically determined, and values used were f, = 0.175 and f; = 1.

The SA algorithm proposed to solve this optimization problem can be summarized by the fol-
lowing steps:

e An initial random solution for the parameters is generated.

e The initial temperature of the method is set.

e For each method iteration:

— For each solution perturbation:

* A new random candidate solution is generated in the vicinity of the current so-
lution, according to the method temperature.

x The Battery model is parametrized with the new candidate solution.

*

The Battery model is simulated for the calibration discharge profile.
* The objective function is computed.

x If the objective function is smaller than the result of the current solution, or the
new solution passes in the Metropolis criterion [13]:

- The new candidate solution is now the current solution.
— The method temperature in decreased.

— The stop criterion is verified.

e The best solution found by the method is returned.

The stop criterion is based in two conditions, the method stops if no better solution is found in
the iteration or if a maximum number of iterations is reached. The Metropolis criterion is used
to select solutions that do not minimize the objective function but can help the method to escape
local minima and is based on Boltzmann probability and calculated according to the statistic
expression in [7].
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3 RESULTS AND DISCUSSIONS

This section presents the simulation results of the Battery model considering 31 calibration pro-
files. For each calibration profile, the model was simulated for all 31 discharge profiles in order to
evaluate the calibration efficacy. The results show the differences between the simulated battery
lifetimes and the average experimental battery lifetimes. The discharge profiles have constant
currents with values ranging from 50 mA to 800 mA at 25 mA intervals. Also, the average er-
ror of each calibration is computed using the results of all 31 discharge profiles. The results are
presented and discussed according to the methodology used for the model parametrization.

3.1 Simulation results for Methodology 1

The errors obtained by the model calibrated by this methodology, in which the parameters are
obtained from the visual analysis of the discharge curves, are shown in Figure 1, where the lighter
gray corresponds to the lowest error and the darker gray to the highest error rates. It is possible
to note by darker gray regions in the figure that lower current calibration profiles present higher
error rates. This is expected for the Battery model since the nonlinear effects are more present
at lower current discharges profiles. The most satisfactory results are observed in calibration
with rated current of 525 m A, with average error equals to 0.845%. The calibration that has the
highest average error is the 125 m A profile with an error rate of 5.425%.
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Figure 1: Error (%) of Battery model parametrized with Methodology 1.
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Considering this parametrization methodology, the Battery model presents a total average error
of 2.057%.

3.2 Simulation results for Methodology 2

The results of the Battery model parametrized by Methodology 2, the proposed SA algorithm,
are presented in Figure 2, where the lighter gray corresponds to the lowest error rates and the
darker gray to the highest error rates. The calibration profiles with lowest average error rates
are 350 mA and 650 mA profiles, both with a 0.821% error rate. The calibration that has the
highest average error is the 75 mA profile with a 3.675% error rate. The same trend of higher
error rates for lower current calibration profiles seen in Methodology 1 can also be note here, but
much more lighter areas and considerably less darker areas can be seen in Figure 2, showing the
overall better performance of the SA algorithm. The total average error rate of the Battery model
parametrized by the SA algorithm is of 1.352%, considerably lower than the Methodology 1
result of 2.057%.

800 8

700 7

1]
—

600 6
<5001 5
E
'=.IZ
2 400+ = 4
=~
5
& 300 . 3

200 [ H B 2

100 F I

0 1 1 1 1 1 1 1 ] ()
0 100 200 300 400 500 600 700 800

Discharge profiles (mA)

Figure 2: Error (%) of Battery model parametrized with Methodology 2.

The average errors for each calibration profile for Methodologies 1 e 2 are presented in Figure 3.
The better performance of the SA algorithm is evident, since it achieved lower error rates for
most calibration profiles, with most of its rates under the 1% mark.

In Figure 4, 8 experimental curves from the 500 mA discharge profile and the curve simulated
by the Battery model are shown. The model was parametrized by the SA algorithm according
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Figure 3: Average error (%) of calibration profiles.

to the 350 m A calibration profile, and then applied to a 500 m A battery discharge. The average
experimental lifetime is 90.58 min and the simulated time is 90.15 min. For this particular case,
the model presents an error of 0.47%. It is noteworthy that the major discrepancies occur at the
beginning and end of the discharge process. It happens mainly due to the capacity rate effect
[19], an important nonlinear effect that is not captured by the Battery model.
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Figure 4: Experimental and simulated curves for the 500 m A discharge profile.

4 CONCLUSIONS

The correct prediction of battery lifetimes is of paramount importance in the development of
mobile device technologies. The Battery model was used in this paper to predict the lifetime
of LiPo batteries obtaining good results. The correct parametrization of the Battery model is
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extremely important for its accuracy, and the main contribution of this work is the proposition of

a SA method for the optimization of three key parameters, VEyp, Qpxp and O nyom. These para-
meters are usually estimated by the visual analysis of discharge curves, but in contrast, proposed
SA method proved to be a less subjective and more systematic approach. In this paper, expe-

rimental data obtained by a testbed was used to validate the Battery model, obtaining a total
average error rate of 2.057% when parametrized by the visual analysis method, and a total aver-
age error rate of 1.352% when parametrized by the proposed SA algorithm.

RESUMO. Neste trabalho é proposto um algoritmo de Simulated Annealing (SA) para a
parametrizacdo do modelo Battery, utilizado para a modelagem matematica do tempo de vida
de baterias de Litio fon Polimero (LiPo). Dados experimentais obtidos em uma plataforma de
testes s@o utilizados para a parametrizacdo e a valida¢ao do modelo. O algoritmo SA proposto
é comparado a metodologia usual de parametrizacdo, que consiste na andlise visual de curvas
de descarga, e a partir dos resultados obtidos, € possivel verificar tanto a eficdcia do modelo
em predizer o tempo de vida das baterias estudadas, quanto a eficiéncia do algoritmo SA

proposto para a estimagdo de seus parametros.

Palavras-chave: modelo Battery, estimacio de parametros, simulated annealing.
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