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ABSTRACT. The asymptotic homogenization method is applied to obtain formal asymptotic solution and
the homogenized solution of a Dirichlet boundary-value problem for an elliptic equation with rapidly os-
cillating coefficients. The proximity of the formal asymptotic solution and the homogenized solution to
the exact solution is proved, which provides the mathematical justification of the homogenization pro-
cess. Preservation of the symmetry and positive-definiteness of the effective coefficient in the homogenized
problem is also proved. An example is presented in order to illustrate the theoretical results.
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1 INTRODUCTION

The heterogeneous medium is formed by distributions of occupied domains: (a) by different ho-
mogeneous materials called phase, thus constituting a composite; or (b) of the same material
in different states, such as a polycrystal [21], or a functionally graded material [19]. Heteroge-
neous medium abound in nature and in manufactured products. For example: among the natural
medium that have heterogeneity are the bone, atmosphere, soil, sandstone, wood, lungs, veg-
etable and animal tissues, cell aggregates, tumors; (solid, granular or particulate, fibrous, and
combinations thereof), and cell solids, gels, foams, metal alloys, microemulsions, ceramic and
block copolymers [21]. The theoretical prediction of mechanical, electromagnetic, and transport
properties of heterogeneous materials has a long and venerable history, attracting the attention of
science icons, including Maxwell [14], Rayleigh [18] and Einstein [10]. Generally, the physical
phenomena of interest associated with such properties occur in the ”microscale”, called generi-
cally so, because it can be in the order of tenths of nanometers (gels) up to the order of meters
(geological processes). Such medium exhibit separation of structural scales, which is character-
ized by the small parameter ε = l/L, 0 < ε� 1, where l and L are, respectively, the characteristic
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16 HOMOGENIZATION OF A CONTINUOUSLY MICROPERIODIC MULTIDIMENSIONAL MEDIUM

lengths of the micro- and macroscale. Also, these medium are assumed to satisfy the continuum
hypothesis, that is, l is much greater than the characteristic length of the molecular scale. With
such assumptions, micro-heterogeneous medium are regarded as a continuum at the microscale,
so they can be characterized via effective properties [21]. More precisely, the hypothesis of equiv-
alent homogeneity states that, at the macroscale, an heterogeneous medium is physically equiva-
lent to an ideally homogeneous medium in such a way that the effective properties of the former
are the properties of the latter [2]. The process of obtaining the effective behavior of micro-
heterogeneous medium is called homogenization. The periodicity is characterized by periodic
replication of a recurrent element Y called basic cell.

Phenomena occurring within a micro-heterogeneous medium are described by initial/boundary-
value problems whose differential equations have rapidly oscillating coefficients, whereas the
equations of the problems for the equivalent homogeneous medium have constant coefficients
[2]. Thus, the hypothesis of equivalent homogeneity will be valid if the solution uε of a problem
for the heterogeneous medium is ε-near of the solution u0 of the problem for the equivalent
homogeneous medium with respect to some norm, that is, ‖uε −u0‖= O(ε).

We can find various applications of homogenization theory in literature, for example: obtaining
properties coupled nonexistent in the constituents (magnetoelectric [4], pyroelectric and pyro-
magnetic [5]); topology optimization [3]; optimal design of heterogeneous materials [22]; biome-
chanics of bone [16], prediction of structural failures [17]; propagation of seismic waves [7];
physics of nuclear reactors [1]; transport of a chemical species [15].

In this contribution, we study the following elliptic problem: Find uε ∈C2(Ω), Ω = [0,1]d , such
that

L ε uε ≡ ∂

∂x j

(
aε

jl(x)
∂uε

∂xl

)
= f (x), x ∈Ω, uε = 0, x ∈ ∂Ω, (1.1)

where, j, l = 1,2, ...,d, aε
jl ∈C1(Ω) are εY -periodic, Y = [0,1]d , symmetric and positive-definite,

that is, aε
jl(x) = aε

l j(x) for all x ∈ Ω (symmetry) and ∀η ∈ Rd ,∃c > 0 : ∀x ∈ Rd ,aε
jl(x)η jηl ≥

cηlηl (positive definiteness), respectively. In (1.1), and throughout the work, Einstein’s notation
for the sum over repeated indexes is adopted.

Problem (1.1) models, for instance, the distribution of a stationary temperature field uε over a
periodic micro-heterogeneous conductive medium with thermal conductivity aε

jl(x) = a jl(x/ε) in
the presence of a distributed heat source f . Notice that this problem is, in general, hard of to solve
analytically, while a direct numerical approach requires a very fine discretization of the domain
in order to capture the rapidly oscillating behavior of the coefficients aε

jl(x), which increases
considerably the computational cost and compromises the convergence of the adopted numeric
method. An effective and mathematically rigorous alternative is the Asymptotic Homogenization
Method (AHM) [2]. The AHM proposes a formal asymptotic solution (f.a.s.) of the original
problem (1.1), that is, a two-scale asymptotic series of powers of ε ,

u(∞)(x,ε) =
∞

∑
i=0

ε
iui(x,y), y =

x
ε
. (1.2)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Note that, as L ε is a linear operator, the asymptotic series (1.2) is also an asymptotic expansion
of the exact solution of the problem: uε ∼ u(∞). The unknown coefficients ui ∈ C2(Ω×Rd) of
the powers of ε , which are Y -periodic functions with respect to the so-called local variable y,
are obtained as the solutions of a recurrent sequence of problems which results from subsituting
(1.2) into the original problem (1.1).

The work is structured as follows: in section 2, we develop the AHM in detail to build the f.a.s.;
in section 3, we mathematically justify the AHM, i.e., we prove that ‖uε −u0‖H1

0 (Ω) = O(
√

ε),

where H1
0 (·) is the space of null-trace square-integrable functions whose generalized first-order

derivatives are square-integrable; in sections 4 and 5, we show some properties preserved on
apply of the AHM; an example is solved in section 6, showing the development analytical (sep-
aration of variables) and numerical (finite difference method) applied; finally, in section 7 we
describes the conclusions about development realized in the previous sections.

2 APLICATION OF THE AHM

Following [2], consider the f.a.s

u(2)(x,ε) = u0(x,y)+ εu1(x,y)+ ε
2u2(x,y), y =

x
ε
, (2.1)

for problem (1.1). By substituting (2.1) into the equation of (1.1), applying the chain rule

∂Ψε

∂x j
=

∂Ψ

∂x j
+

1
ε

∂Ψ

∂y j

∣∣∣∣
y=x/ε

,

where Ψ
ε = Ψ(x,xε), and grouping by power ε , we have

L ε u(2)− f (x) = ε
−2Lyyu0 + ε

−1 (Lxyu0 +Lyxu0 +Lyyu1)

+ ε
0 (Lxxu0 +Lxyu1 +Lyxu1 +Lyyu2− f (x))+O(ε), (2.2)

where the differential operators Lαβ , α,β ∈ {x,y}, are defined as

Lαβ ≡
∂

∂α j

(
a jl(y)

∂

∂βl

)
.

Thus, in order to u(2) given by (2.1) be a f.a.s of problem (1.1), that is, for the right-hand side
of (2.2) be assimptotically null, its unknown coefficients ui must satisfy the following recurrent
equations:

ε
−2 : Lyyu0 = 0 (2.3)

ε
−1 : Lyyu1 =−Lxyu0−Lyxu0 (2.4)

ε
0 : Lyyu2 =−Lxxu0−Lxyu1−Lyxu1 + f (x). (2.5)

The following Lemma [2] guarantees the existence of Y -periodic solutions ui of (2.3)-(2.5):

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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18 HOMOGENIZATION OF A CONTINUOUSLY MICROPERIODIC MULTIDIMENSIONAL MEDIUM

Lemma 1. Let a jl(y) and F(y) be Y -periodic differentiable functions, such that a jl(y) is symmet-
ric and positive definite. Then, a necessary and sufficient condition for a Y -periodic solution of
the equation

LyyN ≡ ∂

∂y j

(
a jl(y)

∂N
∂yl

)
= F(y), (2.6)

to exist is that F(y) has null mean value, that is,

〈F(y)〉 ≡
∫

Y
F(y)dy = 0,

where 〈·〉 is the local averaging operator over the periodic cell.

Remark 2. Note that the Y -periodic solution N of (2.6) is unique up to an additive constant, that
is, N(y) = Ñ(y)+C, where Ñ(y) is the null-average Y -periodic solution of (2.6), 〈Ñ〉= 0, and C
is an arbitrary constant.

Remark 2 of Lemma 1 applied to (2.3) implies that u0 does not depend on y:

u0(x,y) = u0(x). (2.7)

By substituting (2.7) into (2.4), we have

Lyyu1 =−Lyxu0, (2.8)

which, by applying Lemma 1, implies that there exists u1, Y -periodic solution of (2.8), as a jl(y)
is Y -periodic, so 〈∂a jl/∂y j〉= 0. In order to solve (2.8), we seek its solution u1 by separation of
variables as

u1(x,y) = Np(y)
∂u0

∂xp
. (2.9)

Substitution of (2.9) into (2.8) yields

∂

∂y j

(
a jl(y)

∂Np

∂yl

)
∂u0

∂xp
=−

∂a jl

∂y j

∂u0

∂xl
, (2.10)

which, by replacing the index l by p in the right-hand side, leads to

∂

∂y j

(
a jp(y)+a jl(y)

∂Np

∂yl

)
∂u0

∂xp
= 0. (2.11)

Assume that ∂u0/∂xp 6= 0. Then, (2.11) is satisfied by Np(y), p = 1, . . . ,d, the Y -periodic
solutions of the so-called local problems:

∂

∂y j

(
a jp(y)+a jl(y)

∂Np

∂yl

)
= 0, y ∈ Y, 〈Np(y)〉= 0. (2.12)

Lemma 1 guarantees the existence of Np(y), Y -periodic solutions of LyyNp = F with F =

−∂a jp/∂y j, and their uniqueness is ensured by condition 〈Np(y)〉= 0.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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Application of Lemma 1 provides a necessary and sufficient condition for the existence of u2,
Y -periodic solution of (2.5):

〈Lxxu0 +Lxyu1 +Lyxu1〉− f (x) = 0. (2.13)

Substitution of (2.9) into (2.13) followed by the appropriate index replacement yields〈
∂

∂yl

(
al j(y)Np(y)

)
+a jl(y)

∂Np

∂yl
+a jp(y)

〉
∂ 2u0

∂x j∂xp
= f (x). (2.14)

Notice that,
〈
∂
(
al j(y)Np(y)

)
/∂yl

〉
= 0, as a jp(y) and Np(y) are Y -periodic. Thus, (2.14) can be

rewritten as

â jp
∂ 2u0

∂x j∂xp
= f (x), (2.15)

which is the equation of the so-called homogenized problem, and

â jp =

〈
a jl(y)

∂Np

∂yl
+a jp(y)

〉
(2.16)

are the so-called effective coefficients. The homogenized problem is defined as: find u0 ∈C2(Ω)

such that

â jp
∂ 2u0

∂x j∂xp
= f (x), x ∈Ω, u0(x) = 0, x ∈ ∂Ω (2.17)

where â jp are the effective coefficients given by (2.16). Also, notice that the existence of u0(x)
solution of (2.17) guarantees the existence of u2(x,y)Y -periodic solution of (2.5). By substituting
(2.9) and (2.15) into (2.5), we have

Lyyu2 =−
(

∂

∂yl

(
al j(y)Np(y)

)
+a jl(y)

∂Np

∂yl
+a jp(y)− â jp

)
∂ 2u0

∂x j∂xp
.

This show that the solution u2 can be sought as

u2(x,y) = Npq(y)
∂ 2u0

∂xp∂xq
, (2.18)

where Npq(y) is the Y -periodic solution of the so-called second local problem, which is obtained
by substituting (2.15) and (2.18) into (2.5) and following the same steps as for obtaining u1. The
second local problem is

LyyNpq = âpq−Tpq, y ∈ Y, 〈Npq〉= 0, (2.19)

where

Tpq(y) = apq(y)+aql(y)
∂Np

∂yl
+

∂

∂yl

(
alq(y)Np(y)

)
.

The existence of the Y -periodic solution Npq of problem (2.19) is guaranteed by Lemma 1.

Finally, the second-order f.a.s. u(2)(x,ε) of the original problem (1.1) is

u(2)(x,ε) = u0(x)+ εNp

( x
ε

)
∂u0

∂xp
+ ε

2Npq

( x
ε

)
∂ 2u0

∂xp∂xq
. (2.20)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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On the other hand, we show in the next section that the first-order f.a.s u(1)(x,ε) consisting of
the two first terms of u(2)(x,ε) in (2.20) yields a good approximation of the exact solution uε(x)
of the original problem (1.1).

3 PROXIMITY

In general, the f.a.s u(2), constructed to approximate the exact solution uε of the original problem
(1.1), does not satisfy the boundary condition uε |∂Ω = 0. As the solution u0 of the homogenized
problem (2.17) satisfies the boundary condition u0|∂Ω = 0, it follows that the error of u(2)|∂Ω is
nonzero of order ε . In order to overcome such a situation, we multiply εu1 + ε2u2 by a function
χ(x) to force the f.a.s. to satisfy exactly the boundary condition, but this adds some new terms to
the error. However, these terms are evaluated as being of order

√
ε in the norm of H−1(Ω), that

is, the error in form f0+∂ fi/∂xi, with ‖ f0‖L2(Ω) and ‖ fi‖L2(Ω) of order
√

ε , where L2(·) is space
of square-integrable functions, so we can apply an estimate for the solution in H1

0 (Ω).

Specifically, if Np are solutions of the local problems (2.12), Npq are solutions of the second local
problems (2.19), u0 is the solution of the homogenized problem (2.17), and u0(x) ∈C2(Ω), then
the f.a.s (2.20) is solution of the equation

L ε u(2)− f (x) = εr(2)(x,ε)

where εr(2)(x,ε) is the error of taking u(2) as the solution of the original problem:

εr(2)(x,ε) = ε (Lxyu2 +Lyxu2 +Lxxu1)+ ε
2Lxxu2, y =

x
ε
.

Notice that, by assuming that u0 ∈ C 4(Ω), the application of Weierstrass theorem [13] ensures
that ‖r(2)(x,ε)‖L2(Ω) = O(1). However, the error of u(2) in the boundary ∂Ω is of order ε:

u(2)|∂Ω = εu1|∂Ω + ε
2u2|∂Ω.

Let χ(x) be an infinitely differentiable function with support contained inside the ε-
neighbourhood of ∂Ω and such that χ|∂Ω = 1, |χ| ≤ 1, and ‖ε∂ χ/∂x‖C(Ω) ≤ c1, where c1 is
a constant independent of ε .

Consider the modified second-order f.a.s

ũ(2)(x,ε) =u(2)(x,ε)−χ(x)
(
εu1(x,y)+ ε

2u2(x,y)
)

=u0(x)+ ε (1−χ(x))u1(x,y)+ ε
2 (1−χ(x))u2(x,y), y =

x
ε

(3.1)

that satisfies exactly the boundary conditions of the original problem (1.1). In order to assess how
good ũ(2) is as an approximation of uε , we have to estimate the error given by the right-hand side
of

L ε ũ(2)− f (x) = εr(2)(x,ε)− ∂

∂x j
Φ j(x,ε), (3.2)

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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where

Φ j(x,ε) = a jl

( x
ε

)[
ε

∂ (χu1)

∂xl
+ ε

2 ∂ (χu2)

∂xl

]
. (3.3)

First, by the hypotheses on χ , we have that Φ j(x,ε) is such that
∣∣Φ j(x,ε)

∣∣≤ c2 for every x ∈Ω,
where c2 is a constant independent of ε , and its support is contained inside the ε-neighbourhood
of ∂Ω. For instance, for d = 3, we have that

Φ j(x,ε) = 0, x ∈ [ε,1− ε]3, (3.4)

and ‖Φ j(x,ε)‖L2(Ω) = O(
√

ε). Indeed, by (3.4) we have that

‖Φ j(x,ε)‖2
L2(Ω) =

∫
Ω

Φ
2
j(x,ε)dx =

∫
Ω\[ε,1−ε]3

Φ
2
j(x,ε)dx. (3.5)

Consider the domains Ω∗ = Ω\ [ε,1−ε]3 3 x and Ω∗ε 3 x/ε such that Ω∗ = εΩ∗ε . By substituting
(2.9) and (2.18) into (3.5) with (3.3), and differentiating, we obtain

∫
Ω∗

[
a jl

( x
ε

)(
ε

∂ (χu1)

∂xl
+ ε

2 ∂ (χu2)

∂xl

)]2

dx

=
∫

Ω∗

[
a jl

( x
ε

)(
εNp

( x
ε

)(
∂ χ

∂xl

∂u0

∂xp
+χ(x)

∂ 2u0

∂xp∂xl

)
+ε

2Npq

( x
ε

)(
∂ χ

∂xl

∂ 2u0

∂xp∂xq
+χ(x)

∂ 3u0

∂xp∂xq∂xl

))]2

dx.

By Weierstrass theorem, there are constants B0, B1 e B2 such that |a jl | ≤ B0, |Np| ≤ B1 and
|Npq| ≤ B2 for every x/ε ∈Ω∗ε . By taking B = max{B0,B1,B2}, we have that

∫
Ω∗

[
a jl

( x
ε

)(
ε

∂ (χu1)

∂xl
+ ε

2 ∂ (χu2)

∂xl

)]2

dx

≤ B4
∫

Ω∗

(∣∣∣∣ε ∂ χ

∂xl

∣∣∣∣ ∣∣∣∣∂u0

∂xp

∣∣∣∣+ ε |χ|
∣∣∣∣ ∂ 2u0

∂xp∂xl

∣∣∣∣
+ε

∣∣∣∣ε ∂ χ

∂xl

∣∣∣∣ ∣∣∣∣ ∂ 2u0

∂xp∂xq

∣∣∣∣+ ε
2|χ|

∣∣∣∣ ∂ 3u0

∂xp∂xq∂xl

∣∣∣∣)2

dx.

By Weierstrass theorem, there are constants C0, C1, C2 and C3 such that∣∣∣∣ε ∂ χ

∂xl

∣∣∣∣≤C0,

∣∣∣∣∂u0

∂xp

∣∣∣∣≤C1,

∣∣∣∣ ∂ 2u0

∂xp∂xl

∣∣∣∣≤C2,

∣∣∣∣ ∂ 3u0

∂xp∂xq∂xl

∣∣∣∣≤C3, ∀x ∈Ω
∗.

By recalling that |χ| ≤ 1 and taking C = max{1,C0,C1,C2,C3}, we have that∫
Ω∗

[
a jl

( x
ε

)(
ε

∂ (χu1)

∂xl
+ ε

2 ∂ (χu2)

∂xl

)]2

dx≤ B4C4(1+ ε)4
∫

Ω∗
dx.

Then, from (3.5) it follows that

‖Φ j(x,ε)‖2
L2(Ω) ≤ 2B4C4(1+ ε)4|Ω∗|= 2B4C4(1+ ε)4D(ε),

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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where D(ε) = 3ε−6ε2 +4ε3 is of order O(ε). Therefore,

‖Φ j(x,ε)‖L2(Ω) ≤
√

2B2C2(1+ ε)2
√

D(ε),

which proves that ‖Φ j(x,ε)‖L2(Ω) = O(
√

ε).

Now, subtracting of the equation of problem (1.1) from (3.2) yields

∂

∂x j

(
aε

jl(x)
∂

∂xl
(ũ(2)−uε)

)
= εr(2)(x,ε)− ∂

∂x j
Φ j(x,ε),

from which, recalling that (ũ(2)− uε)|∂Ω = 0, the maximum principle for elliptic equations [2]
provides the estimate

‖ũ(2)−uε‖H1
0 (Ω) ≤ c3

(
ε‖r(2)(x,ε)‖L2(Ω)+

3

∑
j=1
‖Φ j(x,ε)‖L2(Ω)

)
, (3.6)

where constant c3 is independent of ε . Recall that, for u0 ∈C4(Ω), we have ‖r(2)(x,ε)‖L2(Ω) =

O(1). Then, (3.6) implies that the modified second-order f.a.s (3.1) satisfies the relation

‖ũ(2)−uε‖H1
0 (Ω) = O(

√
ε)

and, in particular,
‖ũ(1)−uε‖H1

0 (Ω) = O(
√

ε),

where ũ(1)(x,ε) = u(1)− εχu1 is the related first-order modified f.a.s

Finally, in order to show the proximity between u0 and uε , it suffices to prove, following the
procedure described above, that

‖ũ(1)−u0‖H1
0 (Ω) = O(

√
ε).

Therefore, from the Minkowski inequality’s [11]

‖uε −u0‖H1
0 (Ω) ≤ ‖u

ε − ũ(1)‖H1
0 (Ω)+‖ũ

(1)−u0‖H1
0 (Ω),

it follows that
‖uε −u0‖H1

0 (Ω) = O(
√

ε).

An alternative approach to estimate uε − ũ(1) and ũ(1)− u0 is through an estimative for the so-
lution of non homogeneous Dirichlet problem provided in [9]. In that book, such an approach
was applied and similar results were obtained, that is, the O(

√
ε) proximity for homogeneous

boundary condition. Other approaches can be applied to know to proximity between the uε and u0

solutions, for instance, proposes asymptotic expansions of which its coefficients are convolution
forms of Green function and the source term of the elliptic equation, so from the representation of
the elliptic solution by the Green function, we estimate the proximity of the expansion truncated
and the exact solution [8].

Other two important results of the AHM in multidimensional problems is that the effective co-
efficients preserve the symmetry and the positive-definiteness of the original coefficients, which
will be proved next in detail.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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4 PRESERVATION OF SYMMETRY

First, observe that the effective coefficients (2.16) can be rewritten as

â jp =

〈
akl(y)

∂M j

∂yk

∂Mp

∂yl

〉
−
〈

akl(y)
∂N j

∂yk

∂Mp

∂yl

〉
, (4.1)

where Mp = Np+yp. We will show that the first term on the right-hand side of (4.1) is symmetric
with respect to indexes j and p, and that the second term is null.

First, we show that the second term of (4.1) is null. Consider the equation of the local problem
(2.12) rewritten as

∂

∂y j

(
a jl(y)

∂Mp

∂yl

)
= 0, y ∈ Y.

Let φ = φ(y) be Y -periodic and continuously differentiable. Then,

∂

∂y j

(
a jl(y)

∂Mp

∂yl

)
φ(y) = 0, y ∈ Y, (4.2)

so
∂

∂y j

(
a jl(y)

∂Mp

∂yl
φ(y)

)
= a jl(y)

∂Mp

∂yl

∂φ

∂y j
.

By applying the average operator, we get〈
∂

∂y j

(
a jl(y)

∂Mp

∂yl
φ(y)

)〉
=

〈
a jl(y)

∂Mp

∂yl

∂φ

∂y j

〉
. (4.3)

Note that Mp is not Y -periodic. However, ∂Mp/∂yl = ∂Np/∂yl + δpl is Y -periodic. So,
φ(y)a jl(y)∂Mp/∂yl is Y -periodic, which implies that the term on the left-hand side of (4.3) is
null. Therefore, we have 〈

a jl(y)
∂Mp

∂yl

∂φ

∂y j

〉
= 0,

for every Y -periodic φ ∈C1(Y ). In particular, by taking φ = Nk, it follows that〈
a jl(y)

∂Mp

∂yl

∂Nk

∂y j

〉
= 0. (4.4)

Thus, by putting (4.4) into (4.1), we have

â jp =

〈
akl(y)

∂M j

∂yk

∂Mp

∂yl

〉
. (4.5)

Finally, the symmetry of â jp follows from interchanging the indexes k and l, and considering the
symmetry of alk:

â jp =

〈
alk(y)

∂M j

∂yl

∂Mp

∂yk

〉
=

〈
alk(y)

∂Mp

∂yk

∂M j

∂yl

〉
=

〈
akl(y)

∂Mp

∂yk

∂M j

∂yl

〉
= âp j.

Therefore, â jp = âp j, which provides a way to control calculations of the effective coefficients
performed via other analytical or numerical techniques.
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5 PRESERVATION OF POSITIVE-DEFINITENESS

Preservation of positive-definiteness of the effective coefficients implies that the equation of the
homogenized problem is elliptic. Recall from the formulation of the original problem (1.1) that
the coefficient a jl is positive definite, that is, ∃c > 0, ∀η ∈ Rd | a jl(y)η jηl ≥ cηlηl , ∀y ∈ Y .
In order to show the positive-definiteness of â jp, a similar relation must be proved. Indeed, it
follows from (4.5) that

â jpη jηp =

〈
akl(y)

∂Mp

∂yk

∂M j

∂yl

〉
η jηp =

〈
aklηp

∂Mp

∂yk
η j

∂M j

∂yl

〉
. (5.1)

As akl is positive-definite, we have

akl(y)ηp
∂Mp

∂yk
η j

∂M j

∂yl
≥ c

d

∑
l=1

(
η j

∂M j

∂yl

)2

, ∀y ∈ Y. (5.2)

Then, by substitution (5.2) into (5.1), we have

â jpη jηp ≥ c
d

∑
l=1

〈(
η j

∂M j

∂yl

)2
〉
.

From the Cauchy-Buniakovski inequality [12], we have

â jpη jηp ≥ c
d

∑
l=1

〈
η j

∂M j

∂yl

〉2

,

which can be rewritten as

â jpη jηp ≥ c
d

∑
l=1

[〈
η j

∂N j

∂yl

〉
+

〈
η j

∂y j

∂yl

〉]2

, (5.3)

where 〈
η j

∂N j

∂yl

〉
= 0 and

〈
η j

∂y j

∂yl

〉
= η j〈δ jl〉= ηl .

So, it follows from (5.3) that

â jpη jηp ≥ c
d

∑
l=1

η
2
l = cηlηl ,

that is, the effective coefficient â jp is positive-definite, which provides another way to control
calculations of â jp performed via other analytical or numerical techniques.

6 EXAMPLE

Consider problem (1.1) with the source term f (x) = −1 and isotropic coefficients aε
jl(x) =

aε(x)δ jl , where aε(x) = 1 + 0.25sin(2πx1/ε)sin(2πx2/ε). Figure 1 shows the behavior of
function aε(x), for different values of ε:
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Figure 1: Continuously differentiable, positive, bounded and rapidly oscillating coefficients for
the three-dimensional elliptic linear problem.

For this problem, we solve the local problem (2.12), obtain the effective coefficients (2.16) and
solve the homogenized problem (2.17). Notice that the first of these problems is two-dimensional
from the point of view of the homogenization, as a jl(y) depend only on y1 and y2 because aε(x)
depend only on x1 and x2. Therefore, from (2.12), we solve the following local problem:

∂

∂y1

(
a(y)

∂Np

∂y1

)
+

∂

∂y2

(
a(y)

∂Np

∂y2

)
=− ∂a

∂yp
, y ∈ Y, 〈Np(y)〉= 0, (6.1)

for each p = 1, 2, 3. The equation in (6.1) is a Poisson equation’s for p = 1, 2 and a Laplace
equation’s for p = 3. To solve it, the finite difference method was used [20, 6], which comprises
the following steps:

• A mesh of (N+2)2 nodes for the periodic cell Y in the y1y2-plane is defined. In particular,
the local functions Np are taken to be null on the nodes of ∂Y .

• The discretization of the equation in (6.1) on an arbitrary point (y1i ,y2 j) is

ci, jN
p
i+1, j +di, jN

p
i−1, j + ei, jN

p
i, j+1 + fi, jN

p
i, j−1 +gi, jN

p
i, j = F p

i, j,

where

ci, j =
a(1)i, j

2h
+

ai, j

h2 , di, j =
ai, j

h2 −
a(1)i, j

2h
, ei, j =

a(2)i, j

2h
+

ai, j

h2 , fi, j =
ai, j

h2 −
a(2)i, j

2h
,

gi, j =−
ai, j

h2 , F1
i, j =−a(1)i, j , F2

i, j =−a(2)i, j , F3
i, j = 0,

a(1)i, j =
∂a
∂y1

(y1i ,y2 j), a(2)i, j =
∂a
∂y2

(y1i ,y2 j),

and h = 1/(N + 1) is the spacing between the mesh points in y1 and y2, being N an even
number that define the number of points inside of the region Y with y3 fixed.

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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• A system of linear equations Ab = Fp is assembled as follows. The N2×N2 matrix A is
structured in blocks as:

A =



S1 R1 0 · · · · · · 0

T2 S2 R2
. . . . . .

...

0 T3 S3 R3
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . TN−1 SN−1 RN−1

0 · · · · · · 0 TN SN


N2×N2

, (6.2)

where {S j}1≤ j≤N , {R j}1≤ j≤N−1 and {Tj}2≤ j≤N , are N×N blocks given by:

S j =



c1, j d1, j 0 · · · · · · 0

e2, j c2, j d2, j
. . . . . .

...

0 e3, j c3, j d3, j
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . eN−1, j cN−1, j dN−1, j

0 · · · · · · 0 eN, j cN, j


N×N

,

R j =



f1, j 0 0 · · · · · · 0

0 f2, j 0
. . . . . .

...

0 0 f3, j 0
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . 0 fN−1, j 0
0 · · · · · · 0 0 fN, j


N×N

,

and

Tj =



g1, j 0 0 · · · · · · 0

0 g2, j 0
. . . . . .

...

0 0 g3, j 0
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . 0 gN−1, j 0
0 · · · · · · 0 0 gN, j


N×N

.

The vector b of unknowns in the linear system is defined as:

b = [w1 w2 ... wN2 ]
T
N2×1 , (6.3)
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where wk, k = 1, . . . ,N2 are defined as N p
i, j for i, j = 1, . . . ,N. Finally, vector Fp is defined

as:
Fp =

[
F p

1,1 F p
1,2 ... F p

1,N F p
2,1 F p

2,2 ... F p
2,N ... F p

N,1 F p
N,2 ... F p

N,N

]T

N2×1
. (6.4)

The following results were obtained for a mesh of 10000 nodes, for each p. The full time of
this simulation was approximately 100 seconds. Figure 2 shows the solutions Np of the local
problems, for p = 1,2, as N3(y) = 0.

Figure 2: Solutions of the local problems N1 and N2, being N3 = 0.

Notice that the local solutions Np were calculated assuming homogeneous Dirichlet conditions
on the boundary of the periodic cell, that is, the condition 〈Np〉 = 0 in local problem (2.12)
was replaced by Np|∂Y = 0, in order to ensure that the first-order f.a.s u(1) satisfy exactly the
boundary conditions of the original problem. On the other hand, notice that Lemma 1 uses the
null-average condition for uniqueness. In general, different choices of uniqueness conditions on
the local solutions will affect the behavior of u(1) only in the neighborhood of the boundary.
However, the difference between the local solutions obtained from these different conditions is
an additive constant and, as the effective coefficients depend only on the derivatives of the local
solutions, such a difference does not affect its values. So, in order to assess the consequence of
using such an alternative uniqueness condition, we calculated the averages of the local solutions
obtained with homogeneous conditions, which were found to be very close to zero. Specifically,
〈N1〉 = 2.365× 10−5, 〈N2〉 = −2.309× 10−5 e 〈N3〉 = N3 = 0. Furthermore, these values tend
to zero as the step of the discretization tends to zero, h→ 0, which means that the exact local
solutions of this example satisfy both uniqueness conditions.

Now, in order to calculate the effective coefficients â jl , we start by simplifying (2.16), as it
requires to obtain the derivative of the solutions Np, which would require extra steps in program-
ming. In addition, the numerical calculation of the derivatives would increase the simulation time

Tend. Mat. Apl. Comput., 19, N. 1 (2018)
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with the consequent increase of computational cost and numerical error. So, in order to simplify
(2.16), we rewrite the term that contains the derivative of Np as

a jl(y)
∂Np

∂yl
=

∂

∂yl

(
Np(y)a jl(y)

)
−Np(y)

∂a jl

∂yl
. (6.5)

By substituting (6.5) into (2.16), we get

â jp =
〈
a jp(y)

〉
−
〈

Np(y)
∂a jl

∂yl

〉
,

as Np(y) and a jl(y) are Y -periodic. As the coefficient in this example is isotropic, we have

â jp = 〈a(y)〉δ jp−
〈

Np(y)
∂a
∂yl

〉
δ jl ,

that is,

(â jp)1≤ j,p≤3 =


〈a(y)〉−

〈
N1(y)

∂a
∂y1

〉
−
〈

N2(y)
∂a
∂y1

〉
0

−
〈

N1(y)
∂a
∂y2

〉
〈a(y)〉−

〈
N2(y)

∂a
∂y2

〉
0

0 0 〈a(y)〉

 .
We calculated each element of the effective coefficient matrix by the Simpson’s Method [6],
which yields

(â jp)1≤ j,p≤3 =

 0.994587 0.000103 0
−0.000084 0.994607 0

0 0 1

 .
Notice that this matrix is positive-definite, and that the elements off the main diagonal are very
close to zero, that is, we can to assume that â jp satisfy the symmetry condition. Indeed, finer
meshes would produce values closer to 1 in the main diagonal and to 0 outside it, respectively,
but the computational cost would be also much higher, which might compromise convergence of
the numerical method. Thus, when the step of the discretization tends to zero, h→ 0, we have
that â jp = δ jp, which is, obviously, symmetric and positive definite, as expected. Also, this result
can be controlled via variational bounds for the effective coefficients [2]

〈a−1(y)〉−1
δ jp ≤ â jp ≤ 〈a(y)〉δ jp,

where 〈a(y)〉= 1 and 〈a−1(y)〉−1 = 0.984055.

Using the fact that â jp = δ jp as h→ 0, the homogenized problem (2.17) is given by the following
Poisson equation with homogeneous Dirichlet conditions:

∂ 2u0

∂x2
1
+

∂ 2u0

∂x2
2
+

∂ 2u0

∂x2
3

=−1, x ∈Ω u0 = 0, x ∈ ∂Ω. (6.6)
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Figure 3: First-order f.a.s u(1) (left) and homogenized solution u0 (right).

Figure 4: Absolute differences between the first-order f.a.s u(1) and the homogenized solution u0

for ε = 1/2,1/4,1/8.

We solve problem (6.6) via separation of variables as in [23], which leads to a Fourier series with
orthogonal basis {sin(nπxi)}(n,i)∈N×{1,2,3}. Then, the solution u0 is

u0(x) =
64
π5

∞

∑
i, j,k=1

sin(iπx1)sin( jπx2)sin(kπx3)

((2i−1)2 +(2 j−1)2 +(2k−1)2)(2i−1)(2 j−1)(2k−1)
.

Figures 3 and 4 show the first-order f.a.s u(1) and the homogenized solution u0, and the absolute
differences |u(1)−u0| for ε = 0.5, 0.25 and 0.125, respectively:

In the three-dimensional visualization corresponding to Figure 3, it is not possible to distinguish
the slight differences between the first-order f.a.s u(1) and the homogenized solution u0. However,
such differences are observable in the two-dimensional representation. Specifically, the left plot
in Figure 3 shows a slight asymmetry, whereas the right plot is perfectly symmetrical. However,
both solutions are very close, as shown in Figure 4.
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7 CONCLUSIONS

The example presented in this work illustrates the fact that the AHM is an efficient alternative
approach to the direct resolution of problems with rapidly oscillating coefficients. Indeed, a di-
rect approach via a traditional method, such as the finite difference method used here, would
require an extremely fine three-dimensional discretization of the domain in order to capture the
rapid variation of the coefficients. This implies a high computational cost and compromises the
convergence of the numerical method, which in fact happened when we attempted to solve the
original problem of this example by the finite difference method. Thus, AHM provided a useful
alternative to obtain an approximate solution of this problem in the form of a formal asymptotic
solution, which was proved to be very close to the exact solution. Moreover, from a practical
point of view, the problems generated from the application of AHM, that is, the homogenized
and local problems, are much easier to solve. In this case, local problems are two-dimensional
and their coefficients, although non-constant, they do not oscillate rapidly, which allowed the
finite difference method to be successfully applied. Also, as the homogenized problem has con-
stant coefficients, it was solved analytically via the Fourier method’s. On the other hand, the
search of the exact solution of the original problem would require non-traditional approaches,
such as multiscale numerical methods.The example is important for those who will go study the
AHM, so know the practical process after applying the method, such: sequence of solve the prob-
lems decoupled in the process of homogenization, possible analytical and numerical methods to
be used, how to control numerical results for the effective property. This example is a particular
case (isotropic property, constant source, homogeneous Dirichlet boundary conditions and con-
tinuous coefficients) of much more general and complex problems, but it illustrates essentially
the sequence of resolutions to obtain an exact solution approximation, indeed, an approximation
of O(

√
ε).

RESUMO. O método de homogeneização assintótica é aplicado para obter a solução
assintótica formal e uma solução homogeneizada de um problema de valor de contorno
de Dirichlet para uma equação elı́ptica com coeficientes rapidamente oscilantes. A proxi-
midade da solução assintótica formal e a solução homogeneizada para a solução exata
é provada, a qual fornece a justificativa matemática do processo de homogeneização.
A preservação da simetria e definição positiva do coeficiente efetivo no problema ho-
mogeneizado é também provada. Um exemplo é apresentado para ilustrar os resultados
teóricos.

Palavras-chave: Meio microperiódico, comportamento efetivo, método de
homogeneização assintótica.

REFERENCES

[1] G. Allaire & G. Bal. Homogenization of the criticality spectral equation in neutron transport.
Mathematical Modelling and Numerical Analysis, 33(4) (1999), 721–746.

[2] N.S. Bakhvalov & G.P. Panasenko. Homogenisation: Averaging Processes in Periodic Media. Kluwer
Academic Publishers, Dordrecht (1989).

Tend. Mat. Apl. Comput., 19, N. 1 (2018)



i
i

“A2˙997” — 2018/5/3 — 16:52 — page 31 — #17 i
i

i
i

i
i
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