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ABSTRACT. In this work we study the numerical solution of one-dimensional heat diffusion equation
subject to Robin boundary conditions multiplied with a small parameter epsilon greater than zero. The
numerical evidences tell us that the numerical solution of the differential equation with Robin boundary
condition are very close in certain sense of the analytic solution of the problem with homogeneous Dirichlet
boundary conditions when ε tends to zero.
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1 INTRODUCTION

It is well known that the diffusion differential equation models the transient conduction phe-
nomenon that occurs in numerous engineering applications and may be analyzed by using dif-
ferent analytic and numerical methods. Many transient problems involving geometry and sim-
ple boundary value conditions, their analytic solution are known explicitly, especially the one-
dimensional (1D) case. Still for the two-dimensional (2D) and three-dimensional (3D) cases
some of the analytic solutions are known (see [1, 2]). However, in most cases, the geometry or
boundary conditions make it impossible to apply analytic techniques to solve the heat diffusion
equation.
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210 NUMERICAL SOLUTION OF HEAT EQUATION

In this work we use the Crank-Nicolson Finite Difference Method (FDM) (see [9]) to solve the
1D heat diffusion equation in transient regime with Robin boundary conditions given by

ut = uxx, −1 < x < 1, t > 0,

−εux(−1) = u(−1),

εux(1) = u(1),

(1.1)

where ε ∈ (0,1].

If ε = 0 in (1.1) we have the classical problem with homogeneous Dirichlet boundary conditions
for the heat equation which is well known.

There is great interest on heat problems and much work was done considering different bound-
ary conditions. Nevertheless, the particular (1.1) problem with singular boundary conditions,
depending on a positive parameter, has not been studied previously neither analytically nor nu-
merically. Our little contribution with this kind of problems which depend of a small parameter
is to show numerical solutions when we vary the values of ε .

Many problems in the industry are modeled by the heat equation subject to specific initial and
boundary conditions, and sometimes it is not possible to get the analytic solution. Actually many
researchers use different numerical techniques to understand the behavior of the solution (for
more details see [5, 6, 10] and in references therein).

This paper is organized as follows. In Section 2, we state that the equation (1.1) has unique
solution for each ε > 0. Also we study asymptotic behaviour of the eigenvalues of (Eε ) when ε

tends to zero. In Section 3 a brief description of the problem with Robin boundary condition in
conjunction with the FDM approach is presented. The numerical experiments are discussed in
Section 4, and finally the conclusions are presented in Section 5.

2 ON THE EXISTENCE OF SOLUTION

Let Ω = (−1,1) and the Lebesgue space X = L2(Ω). Let Aε : D(Aε) ⊂ L2(Ω)→ L2(Ω) be an
unbounded linear operator defined through

D(Aε) =
{

u ∈ H2(Ω) :−εux(−1) = u(−1), εux(1) = u(1)
}
, (2.1)

Aε u = u′′. (2.2)

Thus we can write the equation (1.1) as an evolution equation in L2(Ω) (see [7]) as follows{
u̇ = Aε u, t > 0,

u(0) = u0 ∈ H1(Ω).
(2.3)

Theorem 1. For each u0 ∈ H1(Ω), there exists a unique solution u = u(t,u0) of (2.3) defined on
its maximal interval of existence [0,τu0) which mean that either τu0 = +∞, or if τu0 < ∞ them
limsup

t→τ
−
u0

‖u(t,u0)‖=+∞.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Proof. See [1, 7]. �

It is well known that for a fixed value ε > 0, the problem (2.3) generates a well-defined linear
semigroup in H1(Ω), the solutions enter W 1,p(Ω) for any p such that 1 < p < ∞ and are classical
for t positive (for more details see [1, 7]).

2.1 Equilibrium solution for (1.1)

The equilibrium solution of (1.1) satisfy the elliptic boundary value problem
uxx = 0, t > 0, −1 < x < 1,

−εux(−1) = u(−1),

εux(1) = u(1).

(2.4)

Theorem 2. For every ε > 0 the unique equilibrium solution of (2.4) is uε ≡ 0.

Proof. The solution of the problem (2.4) is given by

u(x) =
(u(1)−u(−1)

2

)
x+

u(1)+u(−1)
2

, x ∈Ω. (2.5)

By the boundary conditions (2.4) in (2.5) we have that u(−1) and u(1) satisfy

u(1) = ε
u(1)−u(−1)

2
=−u(−1). (2.6)

Thus we have u(−1)+u(1) = 0, and (2.5) provides

u(x) =
(u(1)−u(−1)

2

)
x. (2.7)

Again, by using the boundary conditions (2.4) we have

u(1)−u(−1)
2

= ε
u(1)−u(−1)

2
, (2.8)

and for ε 6= 1 we have
u(1)−u(−1) = 0. (2.9)

Finally, from (2.9) we conclude that uε ≡ 0. �

Remark 3. From the Theorem 2 we can say that uε ≡ 0 converges to the solution u ≡ 0 of the
problem with homogeneous Dirichlet bounday conditions.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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212 NUMERICAL SOLUTION OF HEAT EQUATION

2.2 Eigenvalue problem

Consider the eigenvalue problem associated with the linear operator Aε
uxx = λ ε u, in Ω,

−εux(−1) = u(−1),

εux(1) = u(1).

(Eε )

For each ε > 0, the problem (Eε ) has a sequence of real eigenvalues {λ ε
n }∞

n=1, with an L2(Ω)-
orthogonal and complete associated system of eigenfunctions {ϕε

n}∞
n=1. This conclusion is

possible because the operator Aε is densely defined closed and self-adjoint in L2(Ω).

From (2.4) we conclude that zero is not an eigenvalue for (Eε ). The variational formulation for
λ ε

n is given by

λ
ε
n = min

ψ∈Yn

ε(ψ ′(1)2 +ψ ′(−1)2)−
∫

Ω
|ψ ′|2∫

Ω

ψ2

 , (2.10)

where

Yn =
{

w ∈C2(Ω) : w 6= 0,w
∣∣1
−1 =±εw

∣∣1
−1,
∫

Ω

wϕ
ε
j = 0,∀ j = 1,2, · · · ,n−1

}
.

For more details about the variational formulation of boundary value problems see for example
[3, Chapter 8] and [4, Chapter 5].

Let λ ε = ω2, ω ∈ R, and ϕε(x) = cosh(ωx) the eigenfunction associated with λ ε . From the
boundary conditions for ϕε , we have

tanhω =
1

εω
. (2.11)

The solutions of (2.11) can be determined numerically. They can also be obtained approximately
by sketching the graphs of ψ1(ω) = tanhω and ψ2(ω) = 1

εω
for ε = 0.1,0.09,0.08,0.07, and

identifying the points of intersection of the curves (see in Fig. 1). Let ω1(ε) be the interception
points of the curves ψ1(ω) and ψ2(ω). Thus λ ε

1 = ω1(ε)
2.

Now, taking the eigenfunction ϕε(x) = sinh(ωx) and using the boundary condition, we have

tanhω = εω. (2.12)

In Fig. 2 we also have plotted the graphs of φ1(ω) = tanhω and φ2(ω) = εω for ε =

0.1,0.09,0.08,0.07, as function of ω . Let ω2(ε) be the interception points of the curves φ1(ω)

and φ2(ω). Thus λ ε
2 = ω2(ε)

2.

From Figs. 1 and 2 we can observe that the eigenvalues λ ε
1 and λ ε

2 increase continually when ε

tends to zero, respectively.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Figure 1: Graphical solution of tanh(ω) = 1
εω

for ε = 0.1,0.09,0.08,0.07.

Figure 2: Graphical solution of tanh(ω) = εω for ε = 0.1,0.09,0.08,0.07.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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214 NUMERICAL SOLUTION OF HEAT EQUATION

Lemma 4. Let ε > 0. Then λ ε
1 > λ ε

2 . Moreover λ ε
1 ,λ

ε
2 → ∞ when ε → 0.

Proof. We know that the functions tanhω and cothω can be write as

tanhω = 1−2e−2ω +2e−4ω −2e−6ω + · · · (2.13)

cothω = 1+2e−2ω +2e−4ω +2e−6ω + · · · (2.14)

From the equation (2.11), we have

ω =
1
ε

1
tanhω

. (2.15)

When ω is large enough, tanhω approaches 1. Thus, from (2.15) we have

ω =
1
ε

coth
1
ε
=

1
ε

(
1+2e−2/ε +2e−4/ε +2e−6/ε + · · ·

)
. (2.16)

Since λ ε
1 = ω1(ε)

2, we have

λ
ε
1 =

1
ε2 +

4
ε2 e−2/ε +

8
ε2 e−4/ε + · · · . (2.17)

From (2.12) we obtain

ω =
1
ε

tanhω. (2.18)

When ω is large enough, tanhω approaches 1. Thus, from (2.18) we have

ω =
1
ε

tanh
1
ε
=

1
ε

(
1−2e−2/ε +2e−4/ε −2e−6/ε + · · ·

)
. (2.19)

Since λ ε
2 = ω2(ε)

2, we have

λ
ε
2 =

1
ε2 −

4
ε2 e−2/ε +

8
ε2 e−4/ε −·· · . (2.20)

From (2.17) and (2.20) follow the results. �

Also from (2.17) and (2.20) we have that the gap between λ ε
1 and λ ε

2 is given by

λ
ε
1 −λ

ε
2 ≈

8
ε2 e−2/ε . (2.21)

Remark 5. When ε tends to zero, the problem (Eε ) becomes{
uxx = λ 0 u, −1 < x < 1,

u(−1) = u(1) = 0.
(E0)

We known that the eigenvalues of the problem (E0) are given by λ 0
n =−n2π2, n ∈N.

When ε tends to infinity, the problem (Eε ) becomes{
uxx = λ 0 u, −1 < x < 1,

ux(−1) = ux(1) = 0.
(E∞)

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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3 THE FDM APPROACH

In this section we present the numerical schemes to solve (1.1) by applying the finite difference
method (FDM) combined with the classic and unconditionally stable Crank-Nicolson method
(see [8]).

To solve (1.1), the spatial domain [−1,1] is discretized with uniform grid of n divisions of size h,
where each spatial nodal points are xi = ih−1. Similarly, the temporal domain [0,T ] is divided
in m parts of size k, where T > 0 and the temporal nodal points are indexed by t j = jk. With this
indexes, we can use the following notation for the values of u: ui j = u(xi, t j) and ui = u(xi, t).

From the boundary condition given in (1.1) at x =−1 and for ε > 0 we write

ux(−1, t) =
−u(−1, t)

ε
.

Assuming that at x =−1, the function u is twice differentiable in x, so that we can write

uxx(−1, t) =
−ux(−1, t)

ε
=

u(−1, t)
ε2 ,

and in the same way at x = 1 we get

uxx(1, t) =
ux(1, t)

ε
=

u(1, t)
ε2 .

Also, by using the finite difference approach for uxx(t) (see [9]), the problema (1.1) can be write

dui(t)
dt

=
ui+1(t)−2ui(t)+ui−1(t)

h2 (3.1)

for i = 1, ...,n−1, and for i = 0 and i = n, we have

du0(t)
dt

=
u0(t)

ε2 , (3.2)

and
dun(t)

dt
=

un(t)
ε2 , (3.3)

respectively. Thus by using (3.1)-(3.3), the problem (1.1) can be transformed into the first-order
matrix differential equation given by

∂

∂ t



u0

u1

u2
...

un−2

un−1

un


=

1
h2



h2

ε2 0 0 · · · 0 0 0

1 −2 1
. . . 0

0 1 −2
. . . . . . 0

...
. . . . . . . . . . . . . . .

...

0
. . . . . . −2 1 0

0
. . . 1 −2 1

0 0 0 · · · 0 0 h2

ε2





u0

u1

u2
...

un−2

un−1

un


, (3.4)

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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or in compact way
dU
dt

= LU, (3.5)

where, the matrix L represents the discrete counterpart of the corresponding differential operator
given in (1.1), which is a tridiagonal band matrix and U denotes a vector with the unknown values
of u defined over the nodes of the spatial mesh.
There are two general methods to solve (3.5): the explicit and implicit finite difference schemes.
The type of implicit scheme adopted in this work was the Crank-Nicolson algorithm (see [8]).

4 NUMERICAL RESULTS

For the numerical examples we consider the initial condition given by

u(x,0) = cos
(

π

2
x
)
, (4.1)

where for homogeneous Dirichlet boundary condition, which is obtained from (1.1) with ε = 0,
the analytical solution is

u(x, t) = exp
(
−π2

4
t
)

cos
(

π

2
x
)
. (4.2)

Figure 3: Numerical solutions of (1.1) when ε → 0 at t = 1.5.

The examples were solved using n = 20 divisions in x axis and m = 100 divisions in temporal
axis t. In Fig. 3 we display the spatial behavior of the solution for t = 1.5 considering several
values of ε: ε = 0.08, ε = 0.05, ε = 0.025, ε = 0.0075. The absolute error and the maximum
error norm between analytical and numerical solution, ua and un, are calculated and shown in
Tables 1 and 2, respectively. In Fig. 4 we show the temporal behavior of the solution for the same
values of ε used in the Fig. 3 but at x = 0.8. From these simulations, shown in Figs. 3 and 4 and

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Figure 4: Numerical solutions of (1.1) when ε → 0 at x = 0.8.

Table 1: Absolute error ‖ua−un‖ in function of x
calculated from the data of Fig. 3.

0.0075 0.025 0.05 0.08

0 0.0012 0.0040 0.0076 0.0115
0.1000 0.0012 0.0039 0.0076 0.0114
0.2000 0.0012 0.0038 0.0076 0.0111
0.3000 0.0011 0.0036 0.0070 0.0105
0.4000 0.0010 0.0034 0.0065 0.0098
0.5000 0.0010 0.0031 0.0059 0.0088
0.6000 0.0009 0.0027 0.0052 0.0077
0.7000 0.0007 0.0023 0.0044 0.0064
0.8000 0.0006 0.0019 0.0034 0.0050
0.9000 0.0005 0.0014 0.0025 0.0034
1.0000 0.0003 0.0008 0.0014 0.0018

in Tables 1 and 2, we can see that the numerical solutions of (1.1), which is a boundary value
problem with Robin boundary conditions, converges to the exact solution of the problem with
homogeneous Dirichlet boundary conditions, when ε tends to zero.

The Figs. 5 and 6 display the temporal evolution of the solutions with the initial condition given
by (4.1), the numerical solution for ε = 0.05 in Fig. 5 and analytical solution in 6. It is worth
noting that the numerical solution presented in Fig. 5 for ε = 0.05 agrees very well with analytic
solution of the problem with homogeneous Dirichlet boundary conditions presented in Fig. 6.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Figure 5: Temporal evolution of the numerical solution obtained with initial condition given by
(4.1) and for ε = 0.05.

Table 2: Maximum error norm of the
difference of solutions ua and un.

Simulation ε ‖ua−un‖

1 0.0075 0.00121
2 0.0250 0.00395
3 0.0500 0.00765
4 0.0800 0.01151

5 CONCLUSIONS

In the first part of the paper, we prove several results on the well-posedness of the system (1.1)
and the associated stationary problem. In the second part, the application of the Crank-Nicolson
for the numerical solution of (1.1), involving the Robin boundary condition, has been presented
here. The usefulness of this numerical technique has also been demonstrated by means of exam-
ples involving the solution of (1.1) for several values of ε . Analytical approaches and numerical
simulations have clearly illustrated the asymptotic behaviour of the solution of (1.1) when ε

tends to zero. Continuous dependence of the solutions of (1.1) from the ε parameter has also
been demonstrated.

Tend. Mat. Apl. Comput., 19, N. 2 (2018)
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Figure 6: Temporal evolution of the analytical solution obtained in (4.2), with initial condition
given by (4.1).
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RESUMO. Neste trabalho, obtemos soluções numéricas da equação diferencial de difusão
do calor unidimensional com um parâmetro pequeno ε nas condições de contorno de Robin.
Exemplos numéricos demonstram que as soluções numéricas do problema com condição
de contorno de Robin convergem para a soluções analı́ticas do problema de Dirichlet
homogêneo quando ε tende a zero.

Palavras-chave: Problema de Autovalores, Método de Diferenças Finitas, Condições de
Contorno de Robin, Soluções Numéricas.
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