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ABSTRACT. In this paper, we present and prove a new truncated 7 -fractional Taylor’s formula using the
truncated ¥ -fractional variation of constants formula. In this sense, we present the truncated 7 '-fractional
Taylor’s remainder by means of ¥ -fractional integral, essential for analyzing and comparing the error, when
approaching functions by polynomials. From these new results, some applications were made involving
some inequalities, specifically, we generalize the Cauchy-Schwartz inequality.

Keywords: Truncated ¥ -fractional derivative, multivariable truncated ¥ -fractional derivative, truncated
¥ -fractional partial derivative, truncated ¥ -fractional Jacobian matrix, truncated ¥ -fractional Green’s
theorem.

1 INTRODUCTION

The integer-order differential and integral calculus developed by Leibniz and Newton was a
great discovery in mathematics. The emergence of new tools and methods for calculating angles,
finding solutions to an equation, maximum and minimum of a function, and even making use of
a calculator to find the logarithm or exponential of a number, all of these and more can be done
due to the Taylor series. Given its importance and relevance in applications, Lagrange realized
that the Taylor series was the basic principle of calculus. Thus, over time, many researchers have
been interested in studying the Taylor series and its applications, fundamental in various areas
of knowledge, such as computation, numerical analysis, engineering, economics, and others [14,
11, 4]. It is well known that the Taylor series theory is very important to approximate functions by
polynomials around any point x = a, however, when making certain applications, it is a mistake to
replace the function with a given polynomial, although this error is small. Although, this margin
of error, its precision and efficiency, make it a powerful tool for applications.

The fractional calculus has proved to be very important and efficient to describe physicals prob-
lem and properly for the theoretical advancement in mathematics, physics and other areas. Since
then, there are several definitions of fractional derivatives and fractional integrals, of which we
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mention: Riemann-Liouville, Caputo, Hadamard, Riesz, y-Hilfer among others, being these
based on non-local operators [10, 3, 5, 21, 19]. However, there are yet some derivatives that
fail in the aspect of what is a fractional derivative, such as: the chain rule, the Leibniz rule, and
others [15, 9].

On the other hand, the concept of a local fractional derivative that has the classical properties of
the integer order calculus, has acquired relevance in the scientific community. Recently, Sousa
and Oliveira [16] introduced the truncated 7 -fractional derivative in the domain R, satisfy-
ing classical properties of the integer-order calculus, having as special property, to unify five
other formulations of local fractional derivatives: conformable fractional, alternative fractional,
truncated alternative fractional, M-fractional, truncated M-fractional [6, 8, 18, 20].

In 2014, Anderson [2, 1] using local fractional derivatives and integrals called alternative and
conformable, proposed an extension of the Taylor’s formula in the context of iterated fractional
differential equations and discussed some applications. Noting, Anderson’s approach is similar
to that used for the whole-order derivatives [7]. This paper is devoted to introduces a truncated
¥ -fractional Taylor formula that generalizes these two formulations. An interesting feature of
our results is the fact, in a tentative to approximate functions by polynomials, ensure that the
error is smaller in relation to the integer-order derivative and to with the fractional derivative
used above.

This paper is organized as follows: in section 2, through the truncated six-parameter Mittag-
Leffler function, we present the definition of truncated ¥ -fractional derivative. Also, we present
the ¥ -fractional integral and some results derived from both definitions. In section 3, we intro-
duce and prove one of the important results of this article, the truncated ¥ -fractional variations
of constant theorem and the truncated ¥ -fractional Taylor’s formula. In section 4, to complement
the Taylor’s formula, we introduce the truncated ¥ -fractional Taylor’s remainder by means of
¥ -fractional integral. In section 5, is devoted to ¥ -fractional Holder inequality and to perform
some applications using the Taylor’s formula, that is, inequalities. Concluding remarks close the

paper.

2 PRELIMINARIES

In this section, we will present the definition of the truncated ¥ -fractional derivative through
the truncated six parameters Mittag-Leffler function and the gamma function. In this sense, we
will present theorems related to continuity and linearity, product, divisibility, as well as the chain
rule. We introduce the 7 -fractional integral of a function f. From the definition, we present
some theorem about the ¥ -fractional integral; the inverse property, the fundamental theorem of
calculus and the integration by parts theorem.

Then, we begin with the definition of the six parameters truncated Mittag-Leffler function given
by [16],
L(P) g Zk
.]EP,&Q (Z) — q S (21)
A 21)(5),% I (vk+pB)
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being ¥, 8,p,6 €R, p,g >0, y+p >qand (), (p), given by

L(p +4k)
L(p)

a generalization of the Pochhammer symbol and I'(+) is the function gamma.

From Eq.(2.1), we introduce the following truncated function, denoted by ,Hf B. ;’( z), by means
of

i k
P8 N . PSq p

iHy 50 (2) =T (B) 57 ( ; 5), T+ B)’ (2.3)
In order to simplify notation, in this work, if the truncated ¥ '-fractional derivative of order «,
according to Eq.(2.4) below, of a function f exists, we simply say that the f function is -
differentiable.

So, we start with the following definition, which is a generalization of the usual definition of a
derivative presented as a particular limit.

Definition 2.1. Ler f : [0,00) — R. For 0 < o < 1 the truncated ¥ -fractional derivative of f of
order o, denoted by ? "//yaﬁpof (+), is defined as
0.4 (pi—a
F(r et (o)) = £ (1)
Py 8.pq T v.B.p
i VypoS ()= lim : : (2.4)

forallt >0, ,HPB ’;1( ) is a truncated function as defined in Eq.(2.3) and being v,B,p,0 € R
and p,q >0, y+p>qand (5)pk, (p)qk given by Eq.(2.2) [16].

Note that, if f is differentiable in some (0,a), a > 0 and 1im+f “//YSBP "l f (1) exist, then we have
t—0 e

P el £ (0) = lim DA Uf (1)

Below, we recover six theorems (the proof can be found in [16]) without proof which are
important in what follows.

Theorem 1. If the function f : [0,00) — R is a-differentiable for ty > 0, with 0 < a < 1, then f
is continuous in t.

Theorem 2. Letr 0 < o < 1, a,b € R, y,B,p,0 € R and p,q > 0 such that, y+p > q and f,g
a-differentiable, fort > 0. Then,

S S,
L2V (af +bg) (1) = al W d F (0) + bV g (1)

2 PG00 = £ 010 +8 (0 11 )

(f) (1) = g() f“//y’lfgf(t) f )py/yébp;g( )

3 pn// g
le())?

7.B.0
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4. f”f/yal’gp 21 (c) =0, where f(t) = c is a constant.

1T (B)(p), df 0]

T . Py 8.0 _
5. If f is differentiable, then t ¥ f (1) = T7+h) (5),; 7

i "yBa

Pay0.0sq (cay _ F(B)(p)q at— ¢
o apa T T e,

Theorem 3. (Chain rule) Assume f,g: (0,00) — R be two a-differentiable functions where 0 <
o <1. Lety,B,p,0 € Rand p,q > 0 such that Y+ p > q then (f o g) is o.-differentiable and for
allt > 0, we have

VI (fog) (1) =1 (1) P05 ds(0),
Sor f differentiable in g(t).

We present the definition of ¥ -fractional integral and some important theorems that are important
for the development of the article.

Definition 2.2. (¥ -fractional integral) Let a > 0 and t > a. Also, let f be a function defined on
(a,t] and 0 < a < 1. Then, the ¥ -fractional integral of f of order o is defined by

parer _TOHBIG), 150
S YT e

with y,B,p,8 € Rand p,q > 0 such that Y+ p > q.

(2.5)

Remark 4. In order to simplify notation, in this work, the ¥ -fractional integral of order a, is

denoted by
C(r+B)©), o r@)
L(B)(p), /atlfad’*/(lf(f)dwf
L TaER),
where, dgyt = F(ﬁ)(p)q Y dt.

Theorem 5. (Reverse) Leta > 0, t > aand 0 < a < 1. Also, let f be a continuous function such

that § ff [’3” 4 f (t) exist. Then

8,p, 8.p,
Pl (B dar ) = 1),
with y,B,p,0 € R and p,q > 0 such that y+p > gq.

Theorem 6. (Fundamental Theorem of Calculus) Let f : (a,b) — R be a differentiable function
and 0 < a < 1. Then, we have

2aa (A 0) =0 -1@. 1> @9
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with v,,p,8 € Rand p,q > 0 such that y+ p > q.

Theorem 7. Let y,3,p,6 € R such that Y+ p > q and f,g : [a,b] — R differentiable functions
and 0 < o < 1. Then, we have

b
|0 ds (0 dur = 1 ()80 11 - / 8 () PY2PAf () dox,

U(y+B)(8), dx
L) (p), x'—*

with dgx =

3 TRUNCATED 7-FRACTIONAL TAYLOR’S THEOREM

We present the Cauchy’s function and truncated ¥ -fractional differential equation. In this sense,
we discuss and prove the truncated ¥ -fractional variations of constants theorem and truncated
¥ -fractional Taylor’s formula.

Letr;: [0,00) = R, 1 < j < n, n €Ny continuous functions and consider the higher-order linear
truncated 7 -fractional differential equation:

n
Ly=0,  where  Ly=""ula"y 4 Y Py ey, 3.1)
=

wherep%l’f{;’" p”//yéﬁ”;" 1(‘)7/5;;))) v,B,p,0 € Rand p,q > 0 such that y+p > ¢.

On the other hand, for n = 0, we have

Ly =0, where “//aép (;1 Y.

Note that, £ ¥/ ‘Sﬁp 'y is a continuous function in [0, ), because the function y : [0,00) — R is a
solution of the Eq.(3.1) in [0,00) knowing that y is n times a-fractional differentiable in [0, o)
and satisfies Ly(t) = 0, t € [0,00).

Let f : [0,00) — R continuous functions and consider the non homogeneous equation

PH (1 +Zw”7/ﬂ’;",§’" () =f(). (3.2)

Definition 3.1. We define the Cauchy’s function, y : [0,e0) X [0,00) — R for the fractional linear
equation Eq.(3.1) to be, for each fixed s € [0,0), the solution of the initial value problem

Ly=0, PV 0y (s5,5) =0, 0 < j <n—2, DXy (s.5) = 1, 3.3)
where v,B,p,0 € R and p,q > 0 such that y+p > q.

Note that, 7 7/ 8.p.any, _ (), where

7.8,
5 a_sa n—1
V(t,s) = (njl)! (F(Y+B)( )t > 3.4)

rB)p), «
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is the so-called Cauchy’s function and can be easily verified using item 6 of the Theorem 2. Note
that Eq.(3.4) is the Cauchy function in the particular case where L = ? "I/ysl;p ).

Theorem 1. (Truncated ¥ -fractional variation of constants) Ler 0 < ot < 1 and s,t € [0,0). If f
is a continuous function, then the solution of the initial value problem

Ly=f@),  PIPEy(s) =0,  0<j<n—1, (3.5)
is given by
v = [ y(67) £ (D) dor, (3.6)

where y(t,7) is the Cauchy’s function for the Eq.(3.1) and with v,3,p,0 € R and p,q > 0 such
that y+p > q.

Proof. Applying the derivative operator £ ¥, 5ﬁp o “/y(-) on both sides of Eq.(3.6) and using the

properties of Cauchy’s function, we have

7/31317(;11})() — p"f/fﬁp(f]/y (t,7) f(1)dpT
_ / PSPy (1,7) f (¢ )dm%g;f (6.0 £ (1)

_ /p”i/aﬁp;jy(t 1) £ () dor, 3.7)
for0<j<n—1.

On the other hand, for j = n, we get
PySrany@) = [ PRI (10 £ (2)dat+ PH LA (1) £ (1)
vBa Y i g Y » vha YOS
[0 0,0 f (@) dot+ £ ), (3.8)

because p"//”;p(f" Y, =1.

So, from Eq.(3.7) and Eq.(3.8), we have

POy (1) =0,0< j<n—1

and

Ly(r) = PV +Zr,""fj;’;"f (1)
_ / PSP (1,7 £ (2)dut+ £ (1 +z/r,,nﬁﬁpgn y(6,7) £ () dot
= /(p”I/aﬁpof’"ytT +er’%f,;’;” y(t, r))f(r)dwr+f(r)
= [0 @dot+r 0= 10).
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Therefore, we conclude Ly(z)=£(t).

Remark 2.

1. Choosing p =v=B =0 =p=q =1 and applying the limit i — 0 at Eq.(3.5), then
the Theorem 1 becomes the parameter variation theorem for the conformable fractional
derivative [1].

2. Taking p =y= B =6 = p=q =1 and applying the limit i — oo at Eq.(3.5), then the The-
orem 1 becomes the parameter variation theorem for the alternative fractional derivative

[2].

Theorem 3. (Truncated ¥ -fractional Taylor’s formula) Let 0 < x < 1,n €N, 7,,6,p € R and
D,q > 0 such that y+ p > q. Suppose f is (n+ 1) times a-fractional differentiable in [0,%) and
s,t € [0,00). So, we have

k
0 = Yq (F(HB)(S)’” o ) S MIORS

Sk \ TP, «
L (4B (8,1 —2\" s pgnin
= oy O PGt doT. 3.9
: ( CEp), ) e SOGE G
Proof. Consider the following function g (f) := ”Vyaﬁp (f;"ﬂ f(#). So, f solves the initial value
problem '
S,p,qin+1 8,p,q:k 8,p.q:k
P s DR = D6, 0<ken
where the Cauchy’s function for ? 7, 5[’5" i 1y, — 0 is given by
Sy L (FEEB®) Y’
ot TB)(p), o« '

Using the variation of constants formula, i.e, f(z) = u(r) +y(z), with

v = [ ye.9)8 (@) dor

we have

F()=u(t)+ 1 /sr (F(”ﬁ)@)pﬂ_w

! T(B)(p) p ) 8(7)dot, (3.10)
’ q

where u solves the initial value problem:

Py =0, YN u(s) = PP (s),  0<m<n, (.11
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Now, let u(z) the solution of Eq.(3.11) given by

S (TR E) s\ s
”(”_kzoks< rB)(p), « ) rpa )

Thus, to validate u(¢), we consider the following set,

n L (T+B) ), %~ s\ ) 5.0
W<t)::k_zok!< T )f-’“f/y%’?o?kf(s).

Py 0. pgintl
So, ; 7/7.,[3,05 w = 0 and we have

k
Py 8,p.qsm Py S.pgm < i F(Y+ﬁ)(6)p 1% —s® 0.1 8.p.q:k
i 41/”370{ w(t) = 7/;/,[3,05 (kzbk! ( r(B) (p)q a i 7/”3@ fis)]-

In fact, note that for m = 1, we can write

et (1 (T@B)E), 0% —s\" 1) 50
Phgaw o = T 1(,;)k'< F(B)(P)qp o ) Gﬂyjﬂk)ﬂ”)

_ n l-a T(B)(p), k<r(7+ﬁ)(5)pta_sa>k1
& K Tr+p)), \ T'B)p), «

at* 1T (y+B) (5)p Py 8,03k

a  T(B)lp), ' rhe

n g (T(r+B)(8), s\
- I;OH< TH ). e ) R 0P

f(s)

and for m = 2, we get
pyipan o K ITTBR), (TEEB)8), s\

ot ! F(}/-‘r B) (6);7 9,1/5,p,q;k
@ TE)p), b

_ ke (rmm@p —)W

f(s)

e \TBp), «

k=0
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For any m, we have

e <F(Fy<+ﬁ>ﬁ<)ﬂ(>i)pta;sa>k_m

Thus, it follows that

6.pugim w1 (T E), 5% s\ "y spa 5
iy o4 W(s)_kz;n(k—m)!< F(ﬁ)(p)qp p” ) PV F ) = PV (s),

for0 <m <n.

Consequently, we have that: w solves the Eq.(3.11), and then u = w by the uniqueness, which
concludes the proof.

Remark 4.
1. Choosing p =7y=B =06 =p=q=1 and applying the limit i — 0 at Eq.(3.9), then
Theorem 3 becomes Taylor’s formula for the conformable fractional derivative [1].

2. Taking p =y= B =8 = p=q =1 and applying the limit i — o at Eq.(3.9), then Theorem

3 becomes Taylor’s formula for the alternative fractional derivative [2].

4 TRUNCATED 7-FRACTIONAL TAYLOR’S REMAINDER

In this section, we present the truncated 7 -fractional remainder function, as well as discussing
and proving the main result of the truncated ¥ -fractional Taylor’s remainder theorem.

Using the truncated ¥ -fractional Taylor’s formula, we define the truncated ¥ -fractional
remainder function, given by

R*I,f('ﬂs) ::f(s)
and forn > —1,

w PV () (T 8), 57— @\
Rof(ts) = =f(s)=Y s ([)< (r+B)(9), t )

k=0 k! r(ﬁ)(P)q o
1L (T +B)(8), s -1 Y o Spamtl
— n'/t ( F(ﬁ)(p)q o ) iﬂ//y,ﬁ,(x f(T)da)Tv

A.1)
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534 TRUNCATED V-FRACTIONAL TAYLOR'S FORMULA WITH APPLICATIONS

where 0 < o < 1 and 7,8,8,p € R such that y+ p > g and f is (n+ 1) times o-differentiable

on [0,00).

Lemma 1. Let 0 < @ < 1 and y,,0,p € R and p,q > 0 such that Y+ p > q. The following

identity involving the truncated ¥ -fractional Taylor’s remainder; holds

PP ) (T B) (9), 0 s\
o ernr TBIe), ’

t b
= / Ry f(a,s) dws—|—/ Ry (b,s)dps.
a t

Proof. We will perform the proof by means of induction on n. Then for n = —1

[ (T Do,
.o e, o )%

1 b
= /R,Lf(a,s)dws—l—/ R_i7(b,s)dgs
a t

_ ./:f(s)dwsf/tbf(s)dws.

Assuming that it is true forn =k — 1,

VIR0 (T ) 6) e s\
. K rBp), o )

t b
= /Rk,l’f(a,s)dws—i—/ Ri—1,5(b,s)dgs.
a Jt

“4.2)
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Thus, taking n = k and using integration by parts for the ¥ -fractional integral, we have
S.p,q:k+1 k+1
/-b Db 16 (Tr+B)(8), -\
a  (k+1)! rp)p), « ¢

_ DO (p @), e\
(k+1)! L(B)p), o

/hfv/;};fj:*f<s><k+1> C(y+B)(8), 1% — s "ds
a k(k+1)! L'(B)(p), o ©

PAELE s 0) (F(y+ﬁ><a>,, o b)

a

kDL \ TB)p), o
s @ (r(7+5)(5)pt“ )“‘

(k+1)! rp)p), o

LIS (T @), s\
Jo TR B, o )

Using the induction assumption, we conclude that

/b PP (s) (F(V+ﬁ)(5),, ta_sa>k+1d )
a ! @

(k+1) rB)(p), o
L[ (e
. A rB)p), o
I DI F (5) <r<y+ﬁ><6>,, ta_sa>" .
c Al r@)e, o )
PV r () (rmﬁ) (8), 1 _ba>"“
(k+1)! rB)p), o
_?qi/yis[fg;kf(a) (F(y+ﬁ)(5)p t“aoc)k*‘
(k+1)! rB)p), o

t b
= / Rk*l,f (a,s) dws+/ Rk*l,f (b,S) dps
a t

DI s () (F(Y+B)(5)p t“—b"‘)kH

krDr \ T()p), «a
PR @) (T4 B)(8), e —a |
k+Dr \ T(B)p), «a
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ot P"//a’p’q;k a_ o k
/ Rie1 g (a,s) — 12 s (F(}/+ﬁ)(5)ps 4 > dos

K rB)p), o
b PIILEEL(B) (T(y+B)(8), 5o — b
—I—/t Ri—1,£(b,s) — y,ﬁ,k! ( F(ﬁ)(p)qp ~ > dos

't b
= /Rk,f(a,s)dws—i—/ Ry r (b,s)dys.
Jt

a

Remark 2.

1. Taking p=y=PB =0 =p=q=1 and applying the limit i — 0 at Eq.(4.2), then the
Lemma 1 becomes Lemma 3.1 [1].

2. Taking p =y= B =0 = p=q =1 and applying the limit i — « at Eq.(4.2), then the
Lemma 1 becomes Lemma 2 [2].

Corollary 3. Let 0 < a < 1 and y,3,6,p € R and p,q > 0 such that y+ p > q. Then, forn > —1,
we have

/.b (P 1) (T4 B) (5

o n+1 b
pa as ) dos = / Rus(b.s)dps — (43)
Ja

and

[ () 1) (rm B)(8), bt — 5@

n+1 b
(n+1)! T(B)(p), « > d“’SZ/aR"af(wdws- (44)

5 APPLICATIONS

Using the truncated ¥ -fractional Taylor’s formula and truncated ¥ -fractional Taylor’s remainder
theorem we realize applications. Besides that, we introduce the Holder’s inequality by means of
¥ -fractional integral, that generalizes the Cauchy-Schwartz inequality [13].

We can give the Holder’s inequality in ¥ -fractional integral as follows:

1 1
Lemma 1. Let f,g € Cla,b), r,s > 1 with — + — =1, then
ros

1
s

[ 1reeelanc< ([ f(x)vda,x)l ([ leranr) 1)
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Remark 2. For r = s =2 in Lemma 1, we have the Cauchy-Schwartz inequality for ¥ -fractional

[ ireeldos ([ f<x>|2dwx)é (/ h|g<x>|2da,x)5. 52)

Theorem 3. Ler 0 < a < 1, f: [a,b] = R be an n+ 1 times o-fractional differentiable function,

integral, i.e.,

1 1

rs>1, —+-=1,andt > xy, t,x0 € [a,b] and v,3,8,p € R and p,q > 0 such that y+ p > q.
ros

Then, the inequality holds

/ |Ry,f (x0, 7

(+B)(8),\" (1% —x@)" 3" ,
: ( T'(B)(p), ) Oc”*z/’Z%n![(nr+1)(nr+2)]% (/xo

p d, +1
P70t 1 ()] do

s

8,p,gin+1 s
Py (o) dwr>

(5.3)
Proof. Note that, by ¥ -fractional Taylor’s remainder Eq.(4.1), we have
1 (T(y+B)(8), ™ —1% 8,p.qint1
R x,t:—/ P p”f/”‘””’ 7)dpT,
n,f(o ) }’l' xo( F(B)(P)q a yﬁa f() (0]
with xo,7 € [a,b].
Using the Holder’s inequality for ¥ -fractional integral Eq.(5.1), it follows that
F(}/+ﬁ)(6)p ! o p S,p,qin+1 §
|Rug (x0,0)] < (F(ﬁ)(p)a n,/ (=) pa (D) dot
T(y+B)(8),\" 1 1
(ﬁ)(P)qa n! ?(nr+])7
here A Pv‘”’q”“ “doT, %0 <1 < b, Alxp) =0
where A (1) = [ |PVAPE (1) dyt, xo <1 < b, Alxg) =0,
Thus, applying the a-differentiable operator ? ”f/aﬁp 41 () on both sides of A(r), we have
5 1 8.p.qin+1 5 1 §
Pyyﬁ/’o?”Jr A([) = (f’“j/yﬁ{’aqu ) < Pnﬁﬁj”* f(’c)‘ dmf)
8,p.q; $
= [Pro)
and |
p 5pqn+l P 8.0
P o] = (riaw) -3
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Using Eq.(5.4) and Eq.(5.5), we get

p 8,p,q;n+1
Py Epap (g

C(y+6)(8),\" (1 —xg)"" S s
< ( T(B)(p), ) e 1) (A(r)s l Vba f(t)‘

~ (T(r+B)(8), " (t"‘—xg‘)”*% o Sma 1
- ( rB)p), > ™t (nr 1) [ OF 7/77[305‘4()} (5.6)

Ry, (x0,1)

1
m

Integrating the inequality in Eq.(5.6) and using the Holder’s inequality for 7 -fractional integral,
we have

/ |Rnf X0, T |’p7/},[§paq"+l (T)‘d(of

C(y+B)(8), 1
I'(B) (p)q nlo (nr+1)

N I—=

f P 1
< xo nr+1d 1') </A( P%/EBPO?A( )dwr>
xo
_ ( 1B ) WIS
e a3 [(nr-+ 1) (nr-+ )]
0., 8,p,qin+1 §
(/}CO ‘/XO idyy,ﬁ,a f(T)‘ da)Td@T)

_ ( rh)19), ) (=) AW
F(B)(P)q n'a"+% [(nr+l)(nr+2)]]7 2%

~I=

S,p.q;n §
P ) £ (7)

which completes the proof.

Remark 4. Taking p = Y= B = 6 = p = g = 1 and applying the limit i — 0 at Eq.(5.3), then
Theorem 3 becomes Theorem 8 [12].

Corollary 5. Assuming the conditions of Theorem 3 with r = s = 2, we get
/ Ry g (x0,7

_ (LO+B)(G) (1% —x
- L(B)(p), 2a"+1n'\/m %0

8, 1
py/yﬁpaqrw f(T)’dwT

59, y 2
Ylipo?n+ f(7)| dot.
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Theorem 6. Let 0 < a < 1, f : [a,b] — R be an n+ 1 times a-fractional differentiable function,
1 1

rns>1, —+—=1,andt <xp, t,x9 € [a,b] and ¥,B,6,p € Rand p,q >0 y+ p > q. Then, the
ros

following inequality holds

X0
/ ’RnAf (x0,7)
t

L(y+B)(5),\" (e — 002 -
= ( F(ﬁ)(P)q ) 21/San+2/rn![(nr+1)(,,”_,_2)}1/' </,

é, 1
pA//yﬁpO?rH_ (T)‘d(of

P~ 6,p,q;n+1
Py f (1)

s 2/s
dwr> .

(5.7)

Proof. Using the truncated ¥ -fractional Taylor remainder Eq.(4.1) and Holder’s inequality for
¥ -fractional integral, we have

Cr+8)0),)" 1
'R”’f'(x"’t)'S( F(ﬁ)(P)qP> @l

(F(ry(;f();)()i)p>n a,:n! (/txo (r“—ta)nrdm)‘/’ </tx0 der>l/s

(T ©),\ -
N ( F(ﬁ)(p)qp> an+l(;rn!(nr+1)l/r [A(t)]l ) (58)

13
[ A f () dot

8,p.q:n
Al ()

where A (1) = /t

Therefore, we can write

S
fV%bI’g n+1f(T)‘ dpt,a <t <xpand A(xp) =0.

5, 5, 8,p.qin+1 s 8.p.qn+1 $
prian) = P (= [ s du) = [P )
and y
0 .8, p.qin+1 _ P oy8, $
Prpa o = (=0 raam) (5.9)

Using Eq.(5.8) and Eq.(5.9), it follows that

’Rn (XO, ) 7.8,0

F n YO g0 n+1/r
( ’Y"i_ﬁ > ( 0 t ) 7 [A(I)}l/s l

pai/ﬁpqn—&-lf(t)’

pﬂj/é,p,q;nﬂf . ‘
a1/l (nr+1) ©

VB,
_ (F }/+ﬁ )” (xg_ta)nJrl/r |: ( )P7/5quA( )}1/3.

an+1/rn!(nr+l)1/" v.B.a

(5.10)
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Integrating the inequality in Eq.(5.10) and using Holder’s inequality for ¥ -fractional integral,
we have
X0
/t |R.f (x0,7)
r —+ 6 " 1 X0 l/r
S (y ﬁ)( )p 1 (/ (xg_fa)nr+ldwr>
r(B)p), o rnl (ne DY\
0 )P 8.p.q Vs
X /t A(D) PHPIA (D) dot

B F(’)/Jrﬁ)(S)p ! (xg_ta>n+2/r XO p . s

(F(7+ﬁ)(5)p)" (g — o)™ 2" A ()P

8,p,qin l
Prgd ()] dot

FB) (), ) o2t [(nr+ 1) (nr42)]7 20

which, completes the proof.

Remark 7. Taking p = y= B = 0 = p = g = 1 and applying the limit i — 0 at Eq.(5.7), then
Theorem 6 becomes Theorem 9 [12].

Corollary 8. Assuming the conditions of Theorem 6 with r = s = 2, we get

X
/ ‘Rn,f (x0,7)
t

pAI/(SquH-lf(T)

v.B,a doT

(r+B)(3), (xg —r)"" p 8. pgin+1 2
= < r(B)p), ) 2a"+1n'\/m/ y,ﬁpo? f(7)] dot.

Theorem 9.Let0< o<1, f:]a,b] = R be an n+ 1 times a-fractional differentiable function,

1
rs > 1, +f—1 and t,x € [a,b] and v,B,0,p € R and p,q > 0 such that y+ p > q. Then,
the followmg lnequallty holds

’/ |Rn (x0,7

_ (T+B)3),)" jr—xg "
- LB)p), | 2Vsom2/rnt[(nr+1) (nr+2)]V"

p é, +1
[P s @) dor

2/s

’.’”I/‘S’p’q;”Hf(r) ‘Sda,r

°t
/XO i 7y.pa

Proof. Using Theorem 3 and Theorem 6, the result follows.
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Corollary 10. Assuming the conditions of Theorem 9 with r = s = 2, we get

’/ |Rnf X0, T

_ (Er+B)(d) | — g™t
B L)), ) 20mtinl\/(n+1)(2n+1)

it ofaws

" Py S pgint 2
P @ dog).

Theorem 11. Let 0 < @ < 1, f: [a,b] = R be an n+ 1 times a-fractional differentiable function,
with r =1, s = oo, t € [x9,b] and v,B,8,p € R and p,q > 0 such that Y+ p > q. Then, the

/ |Rnf X0, T

inequality holds

p o,p.qin+1
50 16

< C(y+B)(o )p n (t“,xg)nﬂ Py 8. pgin+1 H .11
- rp)p), o2 (n+2) IIF " rha o, [x0,6] '
where
5, n 57 n
g s o)

teab]

Proof. Using the truncated ¥ -fractional Taylor remainder Eq.(4.1), we have

re+B©),\" 1 o,
( B, ) o [, ==
Pa// S,p,qin+1

F(7+ﬁ)(6)p 7.B.o fH“’v[xOJ’] ! o La\n
- ( T ) (p), ) e K

P7/5,P7q§"+1 H
no("
7.8, oo, [x0,b]

(T (r+B)(5), Fobl o ot
- (F(ﬁ)(p)q> o (n+1)! (% —xg)"" (5.12)

IN

Poy B paintl (r)‘dwr

R, (x0,1)] .80

Moreover, as

P 0.p.qin+1 p S,p,qin+1
e o) < [Pt
for all 7 € [xg, D] p”i/yaﬁp(;’ mHl (t)} on both sides of Eq.(5.12), it follows that
n qu/ﬁ,p,q;nJrl H
. p 5pqu+1 YJFB ) (8 ) 1B w.[x0.b] o _ayn+l
‘Rn,f (XOa ) Af/yﬁa )— ( )q o1 (n+l)' (t _'XO) .

(5.13)
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Integrating the inequality Eq.(5.13), we have

/ |Ry.z (x0,7
pai/ﬁpqn—&-l

I(y+B)(6), 1B Hoo,[xo,b]
L'(B)(p), ot (n+1)!

1
/ (7% —xH)" M dyt

X0

_ <Fw+ﬁﬂ5n>"0“—%ﬂ”2

L)), ) a*(n+2)!

which, completes the proof.

v.B.a

7/5pqn+l (T)’dw’lf

P oy 8,p.qin+1
b Hoo,[x b’

Remark 12. Taking p =y = = 8 = p = q = | and applying the limit i — 0 at Eq.(5.11), then
Theorem 11 becomes Theorem 11 [12].

Theorem 13. Let 0 < a < 1, f: [a,b] — R be an n+ 1 times o.-fractional differentiable function,
withr =1, s =00, t € [a,x9] and v,B,8,p € R and p,q > 0 such that Y+ p > q. Then, the
inequality holds

/ |Rnf X0, T

é, 1
pnj/yﬁ[’(;lrﬂr (T)’dw’[

n n+2
< (7+B)( )p (x(()x_ta) o 8,p,q;:n+1 H (5.14)
B L)), a2 (n4-2)! I Trha o [a.xo]
where
p 8,p,qin+1 _ p 8,p,qin+1
VR || = sup P o)

t€la,b]

Proof. Using the ¥ -fractional Taylor remainder Eq.(4.1), we have

Cy+p)©),\ 1 o,
[Ru (00| = ( rw>mup> ol A

Py dpantl ¢ (1)l 4,1

.80
,.I/Spanr]fH
_ (Ta+B) ), I v el [ o g
- '(B)(p), o'n! ©
p 5pqn+1
%Ba Hoo[axo]

N XEION ol e
- (F(ﬁ)(P)q ) T 0 (.15)

Moreover, as
’P 8.0, Ly

P 8,p,qin+1
v.B.a £

v.B.a Hoo,[a,xo] ’

Tend. Mat. Apl. Comput., 19, N. 3 (2018)



SOUSA and OLIVEIRA 543

for all 7 € [a,xo]

qu/ﬁ,p q"Hf(t)’ on both sides of Eq.(5.15), it follows that

v.B.a
n ()4//5,p,q;n+l H
P 5pqn+1 ’y+ﬁ ( ) 7.8, oo [a,xq] a_ .« n+1
[Rus Gios) 775" )—( ), ey )
(5.16)
Integrating the inequality in Eq.(5.16), we have
ro+ o)) e
n Y vp.a oo, [a,xp)
Rn p \D,q;:n+1 < )4 »14:X0
/’ fx(), Vyﬁa (T)‘dwf < < F(B)(p)q ) a1 (n+1)!
t
/(xg‘—r"‘)"ﬂdwr
J X0
n n+2
_ (OB 8), N (=) o s puns H
TB)(p), ) art2(n+2)lll "vho e faxo]

which, completes the proof.

Remark 14. For p =y= 8 =8 = p = g = 1 and applying the limit i — 0 at Eq.(5.14), then
Theorem 13 becomes Theorem 12 [12].

Finally,the next result, is an association of Theorem 11 and Theorem 13.

Corollary 15. Let 0 < a < 1, f : [a,b] — R be an n+ 1 times o-fractional differentiable function,

withr=1,s=vco,t € [a,b] and V,3,0,p € Rand p,q > 0 such that Y+ p > q. Then, the following
inequality holds:

s (o, D[P H5 87 ()| doe
n+2
< F(Y"‘B)(é)p |ta*xg| " p 5,pqn+1fH
= T, ) @=uronl b
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Proof. Using Theorem 11 and Theorem 13, we have

/t R, s (%0, 7)]

41/5pqn+1f(r)‘dw1

7.B.0
n n+2
< 7+ﬁ (I“*xg) P oy 8.pogint1 H +
= a2 (n+2) |l B e0,[x0.]
n n+2
1 7+ﬁ)(6 (x(ox*ta) " P“//‘s”’”?”“ H
2 )(P), o"t2 (n+2)! 1B o, [a.x]
n+2
< r Y+ﬁ 5 p pq// ,pqn+1f 2 +
- p)q a"+2 n+2) oo,[a,b]
n+2
Y"‘B 7/5,pqn+1f 2
OC"+2 n+2) w,[a,b]
n+2
Y+ﬁ ’ta a‘ * p,,f/épqnﬂf B
OC"+2 n+2) v.B.a o

which completes the proof.

6 CONCLUDING REMARKS

We introduced a new Taylor formula and the Taylor remainder via integral, through the trun-
cated ¥ -fractional derivative and the ¥ '-fractional integral. Besides that, we discussed the ¥'-
fractional Holder’s inequality and Cauchy-Schwartz inequality [13], fundamental for the appli-
cations performed in section 5. The applications were restricted to inequalities from the truncated
¥ -fractional Taylor’s remainder. Applications, such as approximations of functions by polyno-
mials and an introduction to the ¥ -fractional Taylor’s remainder by means of Lagrange’s form,
will be presented in future works. In this context, one might think of extend the Taylor’s formula,
to the truncated ¥ -fractional in R” [17].

RESUMO. Neste artigo, apresentamos e provamos uma nova férmula de Taylor truncada
por meio da férmula #'-fraciondria truncada das constantes. Neste sentido, apresentamos
a formula de Taylor restante truncado por meio de integral ¥ -fraciondria, essencial para
analisar e comparar o erro, ao abordar funcdes por polindmios. A partir desses novos resul-
tados, algumas aplica¢des foram feitas envolvendo algumas desigualdades, especificamente,
generalizamos a desigualdade de Cauchy-Schwartz.

Palavras-chave: Derivada ¥ -fraciondria truncada, Derivada multivariada ¥ -fracionaria
truncada, Derivada parcial #-fraciondria truncada, Matriz Jacobiana 7 -fracionaria
truncada, Teorema de Green ¥ -fraciondrio truncado.
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