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ABSTRACT. This paper presents a mathematical model to simulate the trajectory of a meteor as seen by a
single observer located anywhere on Earth. Our strategy is to define a new coordinate system, called Radiant
Coordinate System, which is centered on the observer and has its z-axis aligned with the radiant. This new
coordinate system allows us to describe the meteors’ path by applying a reduced number of equations in
a simple solution. We also present a computational implementation of this model, which is developed as
a new plug-in of Stellarium, a free and open-source planetarium software. Moreover, we show that our
model can be used to simulate both meteor showers and sporadic meteors. In particular, meteor showers are
simulated using data provided by real catalogs.

Keywords: Computational Modeling, Meteors, Meteor Showers, Stellarium.

1 INTRODUCTION

When looking at the sky for a few minutes, it is often possible to observe some streaks of light
which are popularly known as “shooting stars” or “falling stars”. Contrary to what these names
suggest, such streak of light is a meteor and not a star. Occasionally, we can observe a meteor
shower, which is a phenomenon where a greater number of meteors seem to originate from the
same point in the sky at a specific period. This point is known as radiant and is usually labeled
according to the nearest bright star or constellation [8]. Meteor showers attract people’s attention
mainly because of its periodicity and for being one of the few celestial events which can be seen
with the naked eye, i.e., without the need of optical instruments such as binoculars, telescopes
and spotting scopes.

This paper proposes a mathematical model that allows a better understanding of how a sporadic
meteor or a meteor shower may be seen by a single observer on Earth. Although this problem has
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2 A MATHEMATICAL MODEL FOR SIMULATING METEOR SHOWERS

a simple formulation, it refers to a three-dimensional scenario (i.e., the displacement of a meteor
can occur in all directions in the sky), which might be difficult to be modeled. Furthermore, this
work aims to implement the proposed model in a free and open-source planetarium software
called Stellarium to enable users to find and track radiants in a virtual three-dimensional sky.

There are certainly many ways to tackle the problem of formulating a mathematical model to
understand the meteor dynamics in the Earth’s atmosphere. However, as we are interested in
implementing this solution in a computer software, it must be as simple and functional as pos-
sible. Taking advantage of the Earth’s rotation and considering that the position of a radiant in
the celestial sphere is known, our strategy is to define a new coordinate system, called Radiant
Coordinate System (RCS), which is centered on the observer and has its z-axis aligned with the
radiant.

In this work, we show that the Radiant Coordinate System allows us to develop a computational
model performing a small number of calculations, which in turn, is able to handle very high
zenithal hourly rates (ZHR) for any meteor shower at a very low computational cost. Moreover,
the model considers that meteor showers can be active at different locations on Earth and at the
same time.

The paper outline is as follows: Section 2 presents an overview of the background information
necessary to understand some of the characteristics and behavior of meteors, which in turn, pro-
vide the basis for the development of the mathematical model presented in sections 4 and 5. In
Section 3, we describe the RCS, which simplifies the model and the development process. Sec-
tion 4 presents the equations used to describe the meteor path. Section 5 presents the modeling
of the Zenithal Hourly Rate. In Section 6, we discuss the results from the computational imple-
mentation of the model in a free and open-source software. Finally, in Section 7, we present our
conclusions and outline future work.

2 BACKGROUND

The modern relationship between comets and meteors and their composition has been studied
and refined for a long time [11], and it was first referred as a “dirty snowball” by Whipple in his
seminal work [19]. Considering that a comet consists of an icy nucleus made up of dust grains in
various sizes. As a comet approaches the Sun, it gradually sublimates releasing the dust grains
which can form a tail of tiny grains and gases, and a meteoroid stream. The meteoroid stream
will move on a similar orbit to the comet. When the Earth passes through such a stream, some of
these meteoroids penetrate the Earth’s atmosphere with a velocity that ranges from 11 to 72 km/s
[17, 8, 12].

Meteors are produced when a meteoroid, i.e., a piece of stony or metallic body in outer space,
interacts with the Earth’s atmosphere. In this process, air molecules collide with the meteoroid,
in which the transfer of momentum and energy heats up the meteoroid. As it heats up, material
ablates away and further collides with air molecules, which creates a column of ions, electrons,
and photons, known as a meteor gas trail.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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CARDINOT and NAMEN 3

2.1 Meteor’s altitude

In general, meteors will be visible in the region called thermosphere, ranging from 80 to 120 km
in altitude [8]. However, it is noteworthy that the initial and final height also depends on the
meteor speed, i.e., the faster the impact on the Earth’s atmosphere, the higher the altitude; on the
other hand, slower meteors will appear in a lower altitude. Moreover, other aspects and physical
properties may also affect the meteor altitude, such as the meteoroid mass, its entry angle and
the atmospheric density.

2.2 Meteor’s distance from an observer

According to Richardson [16], considering that meteors occur in an altitude ranging from 80
to 120 km (see Subsection 2.1) and that Earth’s equatorial radius is approximately 6378 km,
ignoring topographic irregularities, it is possible to construct a cross-sectional view of the area
in which meteors occur for a single observer on the Earth’s surface. Fig. 1 shows that the meteor
distance from the observer can be obtained by applying the law of cosines to the triangle formed
by the meteor, the observer and the center of the Earth, obtaining:

(r+h)2 = r2 +d2− (2rd cos(π−ζ ))

which can be solved to find the meteor distance from observer (d),

d(h,ζ ) =
√

r2 cos2 ζ +2rh+h2− r cosζ (2.1)

where r = 6378 km corresponds to the Earth’s equatorial radius, h = [80,120] km is the meteor
altitude and ζ is the meteor zenith angle. Note that when ζ is less than 65°, it might be more
convenient to use the following equation:

d(h,ζ ) =
h

cosζ
(2.2)

which is a first order approximation of 2.1. Fig. 2 shows meteor distances (d) for a meteor with
an altitude of 120 km as a function of meteor zenith angle (ζ ) for Equations 2.1 and 2.2. In fact,
both equations agree well for angles below 65°.

ζ

Figure 1: A cross-sectional view of the area in which meteors occur. In this view, ζ cor-
responds to the meteor zenith angle; d is the meteor distance from the observer; h is the
meteor altitude and r corresponds to the Earth’s equatorial radius. Extracted from [3].

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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4 A MATHEMATICAL MODEL FOR SIMULATING METEOR SHOWERS
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Figure 2: Comparison between Equations 2.1 and 2.2 for a meteor at an
altitude of 120 km (h = 120 km).

Note that as h= [80,120], from Equations 2.1 and 2.2, it is possible to find a maximum-minimum
distance between the meteor and the observer by only knowing the meteor zenith angle ζ .

2.3 Zenithal Hourly Rate

In a meteor shower, the Zenithal Hourly Rate (ZHR) refers to the number of meteors which
would be seen per hour by an observer on the peak day, under perfect sky conditions, i.e., to a
limiting magnitude of 6.5, and with the radiant in the zenith [1].

Hence, as the radiant is rarely at the zenith and the sky conditions are usually non-perfect, the
effective ZHR is lower than the rate that we find in the catalogs. In reality, the closer the radiant is
to the horizon, and as we move away from the peak day, lower is the effective ZHR. Note that for
an observer, knowing the Zenithal Hourly Rate of a meteor shower is as important as knowing
the coordinates of its radiant.

3 RADIANT COORDINATE SYSTEM

The choice of the coordinate system is undoubtedly a crucial task in the description of a phys-
ical problem. A convenient and well thought-out choice may facilitate the understanding of
the problem as it can reduce the number of equations involved and, consequently, simplify the
solution.

As previously discussed, we know that the position of the radiant in the sky is one of the most
important information about a meteor shower, because it allows the observer to know from which
region of the sky the meteors will originate. Obviously, viewing a meteor shower also depends
on the date and location of the observer on the Earth’s surface. Thus, as we take the observer into
account, the use of the Horizontal Coordinate System (HCS) seems to be convenient or necessary
at some point. Also, although the majority of the meteor shower calendars inform the position of
the radiant in the Equatorial Coordinate System (ECS), the conversion between the ECS and the

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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CARDINOT and NAMEN 5

HCS is widely known [5, 14, 13]. Therefore, as the starting point for this model, we assume that
the position of the radiant in the HCS is known.

Thus, as illustrated in Fig. 3, the position of any radiant in the HCS is given by the altitude λ and
the azimuth φ angles. Here we also introduce the components x, y and z in the HCS such that:
it is centered on the observer, z-axis is aligned with zenith, x-axis is aligned with the south pole,
and xy plane is perpendicular to z. Notice that the y-axis will consequently be aligned with East.
Thus, the azimuthal angle will be measured from the South increasing towards the East, which
corresponds to the convention adopted in the software Stellarium.

Figure 3: The Radiant Coordinate System, which is obtained from
two successive rotations of the Horizontal Coordinate System.

We aim to develop a model which describes the displacement of a meteor in the celestial sphere
with respect to an observer located anywhere on Earth’s surface. In order to facilitate this mod-
eling, we propose the creation of a new coordinate system i.e., the Radiant Coordinate System
(RCS), which has the following characteristics: it is centered on the observer, z′-axis aligned with
the radiant, and x′y′ plane is perpendicular to z′-axis. In fact, the RCS resembles the HCS, where
the main difference is that the RCS is configured to have the z′-axis aligned with the radiant
rather than the zenith.

It is important to note that due to the Earth’s rotation, when comparing both RCS and HCS, the
RCS will constantly change its position (i.e., rotate) to keep pace with the radiant in the sky. It
is precisely why the RCS is advantageous for modeling the meteor’s path as, for this system,
the meteor will not change the initial values of its x and y components over the entire burning
duration (since its lifetime is usually less than one second). It means that for the RCS, the only

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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6 A MATHEMATICAL MODEL FOR SIMULATING METEOR SHOWERS

thing that changes over time is the value of the z component. Thus, the use of the RCS enables
us to reduce abruptly the number of equations involved in the solution of this problem.

Moreover, notice that the conversion between the coordinates from the Horizontal System to
the Radiant System is very straightforward. As this transformation only moves points without
changing the distance between them, this conversion can be written by a rotation matrix Rzy in
the form,

Rzy = Rz(φ)Ry(90°−λ ), (3.1)

where, as proposed by Goldstein et al. [6],

Rz(γ) =

 cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1

 (3.2)

and

Ry(β ) =

cos(β ) 0 −sin(β )
0 1 0

sin(β ) 0 cos(β )

 (3.3)

which represents a counterclockwise rotation around the z-axis and the y axis respectively.

To summarize, the Radiant Coordinate System is constructed using the Horizontal Coordinate
System (which is a well-known celestial coordinate system) as reference. This is important be-
cause it allows us to identify which movements are necessary to convert the coordinates of a point
in the Radiant System to the Horizontal System and vise versa. Hence, given the coordinates of
any radiant in the Horizontal System, such that φ is the azimuthal angle and λ is the altitude
angle, initially the x-axis is rotated by φ degrees with respect to the z-axis. After that, the z-axis
is rotated by 90−λ degrees with respect to the y-axis, obtaining the Radiant System (see Fig. 3).

4 MODELING THE METEOR’S PATH

In this section, we aim to describe the meteor path. In this manner, we need to define which
are the points where the meteor will appear and disappear in the sky. Considering a radiant of
azimuth φ and altitude λ visible to an observer on Earth (i.e., the radiant is above the horizon
line) in a clear night sky. Given a meteor ~m which belongs to this radiant; if ~m is visible, then
it is likely to be in the range of 80 to 120 km from the Earth’s surface, thus, its initial height is
hi = [80,120].

4.1 Starting time

Let ~u be the position in which the meteor arises, i.e., the initial position in which the meteor is
visible to an observer. Initially, let us consider that the meteor is along the z-axis of the Radiant
Coordinate System. In this way, from 2.1 we obtain the z component of~u for a given initial height
hi with respect to the Earth’s surface, that is,

uz =
√

r2 cos2(π

2 −λ )+2rhi +h2
i − r cos(π

2 −λ ) (4.1)

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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CARDINOT and NAMEN 7

where r is the Earth’s radius and λ is the altitude angle of the radiant. As discussed in Subsec-
tion 2.2, if the angle between the meteor and the zenith is less than 65°, it is more straightforward
and convenient to use 2.2, which provides a good approximation if 90°−λ < 65°. Thus,

uz =
hi

cos(π

2 −λ )
, i f λ > 25°. (4.2)

Although the extension of the meteor tail always leads the observer to conclude that the meteor
originated from a single point (the radiant), it is noteworthy that it does not mean that all meteors
will always become visible from the same point. In fact, in a meteor shower, meteors usually
arise at random positions around the radiant. Thus, our next step is to define values for the x and
y components of the vector~u. For this purpose, considering that (x,y) is a point radially displaced
from the radiant, we use polar coordinates in the radiant plane, where we randomly select a value
for the radius p and another value to the angle θ .

It is easy to notice that θ can assume any value from 0 to 2π; however, the definition of a range
for p may not be trivial. As shown in 4, when a meteor moves around the z′-axis, it also changes
the initial height hi which was used to calculate the uz. Actually, this is an important mechanism
to guarantee that the greater p, the lower the chances of this meteor lying in the range of 80 to
120 km in height. Therefore, as it occurs in a real situation, the chances of an observer seeing a
meteor far from the radiant (z′-axis) are much lower than when it is close to the radiant.

Moreover, as previously discussed, we know that the farther the radiant (z′ axis) is from the
horizon, the lower the chances of the observer seeing the meteor with the naked eye. In this way,
we assume that p must not be greater than uz. Thus, as the radiant approaches the horizon, the
greater the range for uz and, consequently, the lower the chance of seeing the meteor. Therefore,
we obtain p = [0,uz], which introduces another mechanism to regulate the effective ZHR.

It is noteworthy that this random selection of two uniformly distributed variables for p and θ

does not generate a uniform distribution in the disk. Actually, in this case, a greater number of
points are concentrated in the center, which is exactly what we would expect from our model.
Hence, we have that,

ux =pcosθ (4.3)

uy =psinθ (4.4)

where p = [0,uz] and θ = [0,2π). Finally,

~u =

pcosθ

psinθ

uz

 . (4.5)

Note that as max(uz) = 120 km, in our model, the maximum distance between the observer and
the meteor is about 170 km. This is a reasonable constraint for the model, since any meteor more
than 170 km away would not be visible with the naked eye. It is important to emphasize that in

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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8 A MATHEMATICAL MODEL FOR SIMULATING METEOR SHOWERS

this model, the extremely bright meteors (fireballs) are not taken into account. In fact, fireballs
can be seen at much higher distances, but they are rarely witnessed.

Regarding a computational implementation, after finding the vector ~u, it may be useful not to
compute the path of meteors which are above 120 km in height or which arise below the horizon,
because in both cases the chances of seeing them are negligible. Using the rotation matrix Rzy

(3.1), it is possible to obtain~u in the Horizontal Coordinate System (~u′), where,

~u′ = Rzy~u. (4.6)

Considering that α is the angle formed by the meteor and the horizon, then

α = arcsin
(

u′z
‖~u′‖

)
. (4.7)

Thus, it may be convenient to compute only the meteors in which u′z < 120 km and α > 0°.

4.2 Ending time

Let~v be the position in which the meteor disappear in the sky. As we already know the meteor’s
coordinates in the xy plane in the radiant system, which is the same throughout the meteor’s path,
vx and vy will assume the same values of ux and uy respectively. In this way, to obtain~v we just
need to find the value of vz.

Analogous to the procedures used to obtain uz, in this case, we can also use 2.1, but with h equals
to 80 km, which is, in general, the lowest height that a meteor occurs. Thus,

vz =
√

r2 cos2(π

2 −α)+160r+802− r cos(π

2 −α) (4.8)

where r is the Earth’s radius and α is the angle formed by the meteor and the horizon (see Fig.
4). Also, it may be interesting to use the first order approximation form when the angle between
the meteor and the zenith is less than 65°, then,

vz =
80

cos(π

2 −α)
, i f α > 25°. (4.9)

There are some meteors which are extremely bright and can be in activity for more time than
usual. These meteors are rare and, in general, are noticed when the radiant seems to be very
close to the horizon (Fig. 5). They can trace almost horizontal paths, which sometimes unable
the observer to see the end of their burning. Thus, in order to include these objects in our model
(for the sake of a computational implementation), we assume that when the radiant is between 0°
and 1.5°, this kind of meteor may occur. In this way, to assure the observer will see this meteor
crossing the sky, we just need to make vz be equal to −uz.

Note that in both cases, it is important to make sure this object is really a meteor (and not a
meteorite), that is, it never hits the observer nor the Earth’s surface. Hence, we need to calculate

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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CARDINOT and NAMEN 9

Figure 4: Modeling the meteor path. Finding the coordinates of the
starting (~u) and ending (~v) time of the meteor trajectory in the Radi-
ant Coordinate System, where p is the projection of the meteor co-
ordinates in the plane x′y′; and b is the minimum distance between
the observer and the meteor.

the minimum distance between the observer and the meteor (b) for each one of these cases and
check if the final height is greater than 80 km. In the general case, we see from Fig. 4 that,

b =
√

p2 + v2
z . (4.10)

However, in the particular case where the radiant is close to the horizon, as illustrated in Fig. 5,
we have b = p.

5 MODELING THE ZENITHAL HOURLY RATE

The activity period of a radiant may vary a lot. For example, it is expected that in 2018 the
radiant Draconids is active from 6th to 10th October (5 days), on the other hand, it is expected
that Southern Taurids is active from 10th September to 20th November (71 days). It means that
during these days it may be possible to see meteors arising from these radiants [7].

As the Zenithal Hourly Rate (ZHR) refers only to the peak day, the effective ZHR usually de-
creases as the time from the peak day increases. As previously discussed, our meteor’s path
model already introduces a few mechanisms to make the effective rate be lower than the peak
rate. However, we need to include a new mechanism to adjust the ZHR according to the time.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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10 A MATHEMATICAL MODEL FOR SIMULATING METEOR SHOWERS

Figure 5: Modeling the meteor path. Finding the coordinates of the
ending (~v) time for the particular case where the radiant is very close
to the horizon.

Although we know that there are exceptions, such as the radiant having more than a peak day
or the ZHR being almost constant during the whole activity period (when the ZHR is too low
or when the activity period is too short), they rarely occur. Thus, for the computational imple-
mentation, we can assume that all meteor showers have only one peak day (at which the ZHR is
maximal) and that the ZHR decreases exponentially as the time from the peak increases. In order
to model this ZHR decrease, we use a Gaussian function in the form,

ZHR(t) = κe−
(t−k)2

2a2 , i≤ t ≤ f , (5.1)

where κ is the estimated ZHR in the peak day k, t corresponds to the number of days in activity,
i and f are, respectively, the first and last days of activity, and a is defined as,

a =

{
k−i

2 i f i≤ t < k
f−k

2 otherwise
. (5.2)

For instance, Fig. 6 features the time-course of the ZHR for the radiant Perseids, which is active
in 2018 from 17th August to 24th August with a ZHR of 110 meteors on 12th August [7]. It is
important to mention that 5.1 may not produce a realistic estimation of the effective ZHR. Indeed,
since it is a stochastic phenomenon, it would be impossible to determine this rate precisely using
an analytical solution only with these basic data. Thus, Fig. 6 only illustrates what can be obtained
from 5.1, which in turn provide a good estimation for our model.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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Figure 6: Zenithal Hourly Rate as a function of the time, in days,
counted from 1st January 2018. The radiant Perseids, active from
17th July (199) to 24th August (237) with ZHR of 110 meteors in
12th August (225).

6 METEORS’ SIMULATION

The model proposed in this paper was implemented as a new tool in Stellarium, which is a free
and open-source planetarium software that aims to show a realistic three-dimensional sky for a
given location and date. Moreover, it is also possible to simulate what an observer see with the
naked eye or with some optical instrument.

Based on real catalogs, Stellarium is able to simulate and obtain real information about stars,
planets, deep-sky objects, etc. In this context, our aim is to make this software able to simulate
meteor showers and sporadic meteors. The model proposed in this paper was implemented and
made available in the version 0.14.0 (and newer) of Stellarium, which can be downloaded from
the official website of this software.

The data used to simulate meteor showers in Stellarium comes from the International Meteor
Organization (IMO) and the American Meteor Society (AMS) catalogs, where it is possible to
get information such as: activity, peak date, zenithal hourly rate (ZHR), radiant coordinates,
radiant drift, meteor speed and population index.

As the meteor showers are (usually) annual events which occur in a specific period of time, in
Stellarium, we define that each radiant can be in one of the three following states:

• Inactive, the radiant is inactive for the current sky date;

• Confirmed, the radiant is active, and its data was confirmed. Thus, this is a historical
(really occurred in the past) or predicted meteor shower;

• Generic, the radiant is active, but its data was not confirmed. It means that this can occur
in real life, but we do not have proper data about its activity for the current year.

The details of the software architecture as well as the physical analysis of the results obtained
with our model are beyond the scope of this paper. However, we refer the interested reader to

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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12 A MATHEMATICAL MODEL FOR SIMULATING METEOR SHOWERS

the supplementary material in [4] and the source code available at the official website (http:
//stellarium.org). The supplementary material [4] provides a few screenshots of the results
that can be obtained in Stellarium. Namely, the figures illustrate how these three types of markers
are displayed in the software; how the information about a specific radiant is printed on the screen
and; how the user can search for active meteor showers in a given period of time. Also, we show
a simulation of the night sky for an observer in the city of Rio de Janeiro, Brazil, in the peak day
of the meteor storm of Leonids on 18th November 1833.

7 DISCUSSION

One of the most significant contributions of this work was the construction of a computational
model capable of representing the meteor path for an observer located on Earth. In fact, the
dynamics of a meteor to determine its height and the trail length are dependent on several vari-
ables, such as the entry speed, entry angle, atmospheric density, meteoroid mass and several other
physical properties.

Although some work has considered such properties in the study of the dynamics of a meteor [2],
to our knowledge, the simulation of meteor showers on the celestial sphere has not been studied
to date. Moreover, in this paper, we propose a model that considers the case in which only basic
information is known, such as the days of incidence, the zenithal hourly rate (ZHR) and the
radiant position. Most papers about meteors aim to analyze and discuss observation techniques
[10, 18, 21] and the relation between meteor showers and comets or asteroids [15, 9, 20].

This paper highlights the importance of choosing good reference systems and the power of a
simple coordinate rotation. The Radiant Coordinate System (RCS) allows the conversion of a
three-dimensional problem into a “unidimensional” problem, where only one of the three spatial
coordinates needed to be updated over time. This approach led to a significant reduction in the
complexity of the equations, which in turn enabled us to develop a plug-in for simulating meteors
in Stellarium.

Regarding the implementation, the strategy of using an existing free and open-source software
was a crucial aspect of this project. It simplified the software modeling process and enabled us to
reach a large number of users quickly. A simple search on the Internet reveals that a wide range
of websites has been using our software to show information about meteor showers. In addition,
previous work [3] has discussed the use of the resources developed here (i.e., the meteor showers
plug-in available in Stellarium) for the teaching of different physics concepts for high school
students, including mechanics contents. Thus, we see that our work also has the potential to
impact the teaching and learning of science.

To conclude, with this work, Stellarium became the first free software featuring such functions
to date, enabling users to obtain real information on the incidence of meteor showers and its
visibility for a given location and date. Future work will involve modeling fireballs; improving
the meteor rendering; improving the data collection capabilities; and the exploration of realistic
ways to model the meteor magnitude.
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RESUMO. Neste trabalho, apresenta-se um modelo matemático que possibilita a
simulação da trajetória de um meteoro como visto por um observador localizado em qual-
quer região na Terra. A estratégia de solução consiste em definir um novo sistema de coorde-
nadas, denominado Sistema Radiante de Coordenadas, que é centrado no observador e tem
seu eixo z alinhado com o radiante. Este novo sistema de coordenadas permite descrever a
trajetória de um meteoro por meio de um número reduzido de equações, que por sua vez
simplifica a solução do problema em questão. Posteriormente, este trabalho apresenta uma
implementação computacional do modelo, que é incorporada como uma nova funcionali-
dade do Stellarium, um software livre e de código aberto. Ademais, discute-se que o modelo
proposto pode ser utilizado tanto na simulação de chuvas de meteoros, quanto na simulação
de meteoros esporádicos. Ressalta-se que as chuvas de meteoros são simuladas utilizando
dados de catálogos reais.

Palavras-chave: modelagem computacional, meteoros, chuva de meteoros, Stellarium.
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[18] S. Vı́tek, P. Koten, P. Páta & K. Fliegel. Double-station automatic video observation of the meteors.
Advances in Astronomy, 2010 (2010). doi:10.1155/2010/943145.

[19] F.L. Whipple. A comet model. I. The acceleration of Comet Encke. The Astrophysical Journal, 111
(1950), 375–394.

[20] I. Williams. The Dynamics of meteoroid streams. Celestial Mechanics and Dynamical Astronomy,
81(1-2) (2001), 103–113.

[21] P. Younger, I. Astin, D.J. Sandford & N.J. Mitchell. The sporadic radiant and distribution of meteors
in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes. In “Annales
Geophysicae”, volume 27. Copernicus GmbH (2009), pp. 2831–2841.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)


	Introduction
	Background
	Meteor's altitude
	Meteor's distance from an observer
	Zenithal Hourly Rate

	Radiant Coordinate System
	Modeling the meteor's path
	Starting time
	Ending time

	Modeling the Zenithal Hourly Rate
	Meteors' simulation
	Discussion

