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ABSTRACT. The matching polytope of a graph G, denoted by M (G), is the convex hull of the set of the
incidence vectors of the matchings of G. The graph G (M (G)), whose vertices and edges are the vertices
and edges of M (G), is the skeleton of the matching polytope of G. In this paper, for an arbitrary graph, we
prove that the minimum degree of G (M (G)) is equal to the number of edges of G, generalizing a known
result for trees. From this, we identify the vertices of the skeleton with the minimum degree and we prove
that the union of stars and triangles characterizes regular skeletons of the matching polytopes of graphs.

Keywords: regular graph, matching polytope, degree of matching.

1 INTRODUCTION

Let G = G(V,E) be a simple graph with vertex set V = {v1,v2, . . . , vn} and set of edges E =

{e1,e2, . . . ,em}. For each k, 1 ≤ k ≤ m, ek = viv j is an incident edge to the adjacent vertices vi

and v j, 1≤ i < j ≤ n. The set of adjacent vertices of vi is NG(vi), called the neighborhood of vi,

whose cardinality d(vi) is the degree of vi. A vertice vi ∈V is said to be pendant if d(vi) = 1. An
edge of G is said to be pendant if one of its vertices has only one neighbor. For a given edge ek,
the set of adjacent edges of ek is denoted I(ek).

Two non adjacent edges are disjoint and a set of pairwise disjoint edges M is a matching of G.
An unitary edge set is a one-edge matching and the empty set is the empty matching, ∅. A vertex
v ∈V is said to be M-saturated if there is an edge of M incident to v. Otherwise, v is said to be an
M-unsaturated vertex. A perfect matching M is one for which every vertex of G is M-saturated.

For a natural number k, a path with length k, Pk+1 (or simply P), is a sequence of distinct vertices
v1v2 . . .vkvk+1 such that, for 1≤ i≤ k, ei = vivi+1 is an edge of G. A cycle with length k, Ck (or
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190 MATCHING POLYTOPE OF A GRAPH

simply C), is obtained from Pk by adding the edge v1vk. If k is odd, Ck is said to be an odd cycle.
Otherwise, Ck is an even cycle. A path or a cycle can also be denoted by an ordered sequence
of their respective edges. The ordering of the edges is given by the sequence of the vertices of
the path or the cycle. Given a matching M in G, a path P is an M-alternating path in G iff it
contains, alternately, edges from E\M and M. A cycle C is M-alternating iff C is an even cycle
and it contains alternately edges from E\M and M. For more basic definitions and notations of
graphs, see [2], [5] and, for matchings, see [8].

A polytope of Rn is the convex hull P = convex{x1, . . . ,xr} of a finite set of vectors x1, . . . ,xr ∈
Rn. Given a polytope P , the skeleton of P is a graph G (P) whose vertices and edges are,
respectively, vertices (faces of dimension 0) and edges (faces of dimension 1) of P .

For the ordered set E of m edges of a graph, RE is the vector space of real-valued vectors indexed
by the elements of E whose dimension is dim(RE) = m. For F ⊂ E, the incidence vector of F is
defined as follows:

χF(e) =

{
1, if e ∈ F ;
0, otherwise.

In general, we identify each subset of edges with its respective incidence vector. The matching
polytope of G, M (G), is the convex hull of the incidence vectors of the matchings in G. For
more definitions and notations of polytopes, see [7].

Two matchings M and N are said adjacent, M ∼ N, if and only if their correspondent vertices
χM ≡ M and χN ≡ N are adjacent in the skeleton of the matching polytope. The degree of a
matching M, denoted d(M), is the degree of the correspondent vertex in G (M (G)).

Given two sets A and B, the symmetric difference A∆B is defined by (A∪ B)\(A∩ B). Next
theorems characterize the adjacency of two matchings M and N by their symmetric difference
M∆N.

Theorem 1. ([3]) Two distinct matchings M and N of a graph G are adjacent in the matching
polytope M (G) if and only if M∆N is a connected subgraph of G.

Theorem 2. ([9]) Two distinct matchings M and N of a graph G are adjacent in the matching
polytope M (G) if and only if M∆N is a path or a cycle (even cycle) in G.

Figure 1 displays the cycle C4 and the skeleton of its matching polytope, G (M (C4)). Since
M1∆M2 is a path and M5∆M6 is the cycle C4, M1 ∼M2 and M5 ∼M6 in G (M (C4)). However,
M1 6∼M3, once M1∆M3 is a disconnected subgraph of the cycle.

Let T be a tree with n vertices. The acyclic Birkhoff polytope Ωn(T ) is the set of n× n doubly
stochastic matrices A= [ai j] such that the diagonal entries of A correspond to the vertices of T and
each positive entry of A is either on the diagonal or on a position corresponding to an edge of T .
The matching polytope M (T ) and the acyclic Birkhoff polytope Ωn(T ) are affinely isomorphic

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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Figure 1: C4 and G (M (C4))

[4]. The skeleton of Ωn(T ) was studied in [1] and [6] and, in the sequence, we highlight the
following contribution given by them.

Theorem 3. ([1]) If T is a tree with n vertices, the minimum degree of G (M (T )) is n− 1.
Moreover, for a matching M of T , d(M) = n− 1 if and only if M = ∅ or every edge of M is a
pendant edge of T .

In this paper, we generalize the above result for G, where G is an arbitrary graph. Based on
it, we prove two theorems of characterization: the first identifies the matchings of G with the
minimum degree and the second gives a necessary and sufficient condition about G in order to
have G (M (G)) as a regular graph.

2 THE DEGREE OF A MATCHING

In the present section we generalize the results from Abreu et al. [1]. From Theorem 2, d(∅) = m
in G (M (G)). In fact, there are m one-edge matchings, thus ∅ as exactly m neighbors. On the
other hand, let M 6=∅ be a matching of G and e be an edge of G. If e is an edge of M then M is
adjacent to the matching N = M\{e}. If e is not an edge of M then M is adjacent to the matching
K = (M\{ f : f is an edge in M adjacent to e})∪{e}. Therefore, the degree of M is greater than
or equal to the number of edges.

Let G be a graph with a matching M and P be an M-alternating path with at least two vertices.
We say that:
(i) P is an oo-M-path if its pendant edges belong to M;
(ii) P is a cc-M-path if its pendant vertices are both M-unsaturated;
(iii) P is an oc-M-path if one of its pendant edges belongs to M and one of its pendant vertex is
M-unsaturated.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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192 MATCHING POLYTOPE OF A GRAPH

An M-alternating path P is called an M-good path when P is one of the paths defined above.
Moreover, if C is a cycle of G, then C is said to be an M-good cycle when C is an M-alternating
cycle. In this case, M∩E(C) is a perfect matching of C.

In Figure 2, M = {e1,e3,e6} is a perfect matching of the graph. Because M is a perfect matching,
there is no unsaturated vertex. Therefore, there is no cc-M-good path nor oc-M-good path in G.
However, e1e2e3 is an oo-M-good path of G but e1e2 is not an M-good path. Moreover, e1e2e3e4

is an M-good cycle.

Figure 2: The matching M = {e1,e3,e6} and the M-good cycle C = e1e2e3e4.

If the symmetric difference M∆N is a path, where M and N are any two matchings, necessarily
it is an M-good path. Note also that when M∆N is a cycle then it is M-good and for N1 6= N2 we
have M∆N1 6= M∆N2. Based on this, the next theorem is a direct consequence from Theorems 1
and 2.

Theorem 4. Let M be a matching of a graph G. The degree of M in the skeleton G (M (G)) is
given by the sum of the number of paths and cycles M-good.

A matching M is said to be a strict matching when two edges of M have no a common incident
edge, i.e.,

∀e, f ∈M : e 6= f =⇒ I(e)∩ I( f ) =∅.

In the next theorem, we give a formulae to compute the degree of a strict matching M that depends
only on degree and neighbors of the vertices M-saturated. Before, we observe that if M is a strict
matching and C is a cycle of G then C is a not M-alternating cycle. Also note that if P is an
M-good path then P has at most one edge in M and its length is at most 3.

Proposition 5. Let M = {e1, . . . ,es} be a strict matching of a graph G = (V,E) and let ei = uivi

where ui,vi ∈V for each 1≤ i≤ s. The degree of M is

d(M) = k+
s

∑
i=1

(d(ui)d(vi)−|N(ui)∩N(vi)|) ,

where k ≥ 0 is the number of edges that have no vertex in common with any edge of M.

Proof. Let M be as in the statement of Proposition 5. In this case, G does not have M-good cycles
and, if P is an M-good path, P has at most length 3 with at most one edge of M. Hence, if P is an
M-good path of G, P has to satisfy one of the cases below.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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(1) P is an oo-M-path. Then, P = e such that e ∈M. There are s of these paths in G;

(2) P is an oc-M-path. So, P = e f such that e ∈M and f /∈M. Of course, for some i, 1≤ i≤ s,
we have e = uivi and f is incident to ui or to vi. There are (d(ui)−1)+(d(vi)−1) of these
paths;

(3) If P is a cc-M-path, we have to consider two possibilities for P. Firstly, P = f eg with e ∈M
and f ,g /∈M. So, for some i, 1≤ i≤ s, e= uivi such that f is incident to ui and g is incident
to vi. In this case, there are (d(ui)−1) · (d(vi)−1)− |N(ui)∩N(vi)| of such paths. The
second possibility is P = f with f /∈ M. Since P is a cc-M-path, for each e ∈ E that is
incident to f , e /∈ M. The number of such edges is equal to the number k defined in the
statement of Proposition 5.

From the itens (1), (2) and (3), we obtain

d(M) = s+ k+
s

∑
i=1

((d(ui)−1)+(d(vi)−1)+(d(ui)−1)(d(vi)−1)−|N(ui)∩N(vi)|) =

= k+
s

∑
i=1

(d(ui)d(vi)−|N(ui)∩N(vi)|).

�

Theorem 6. Let M and N be matchings of a graph G. If M ⊂ N, then d(M)≤ d(N).

Proof. Let M and N be matchings of a graph G such that N = M∪{e}, where e ∈ E. Consider
BM the sets of M-good paths and M-good cycles of G. Similarly, define BN . From Theorem 4,
d(M) = |BM| and d(N) = |BM|. Build the function ϕe : BM → BN such that, for every cycle
C ∈ BM , ϕe(C) =C and, for every path P ∈ BM,

ϕe(P) =

{
P, if V (e)∩V (P) =∅;
P∪{e}, if V (e)∩V (P) = u, where u is one of the endpoints of P.

In fact, since P is an M-good path, M ∪{e} is a matching and e 6∈ M, then there are only two
possible cases: either V (e)∩V (P) =∅ or V (e)∩V (P) = u (and therefore is M unsaturated). By
construction, for distinct paths or cycles belonging to BM , we have distinct images in BN . Then,
ϕe is an injective function and so, d(M)≤ d(N).

In the general case, let N\M = {e1,e2, . . . ,ek}, N1 =M∪{e1},N2 =M∪{e1,e2}, . . . , and Nk =N.
By the same argument used before, we get d(M)≤ d(N1)≤ d(N2)≤ ·· · ≤ d(Nk−1)≤ d(N). �

From the previous theorem applied to M = ∅, we can also obtain that if G is a graph with m
edges then the minimum degree of G (M (G)) is equal to m.

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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3 REGULAR MATCHINGS POLYTOPES

In this section we characterize the graphs for which the skeletons are regular and all matchings
of a graph with minimum degree.

An edge e = uv of a graph G is called a bind if d(u) = d(v) = 2 and |N(u)∩N(v)|= 1. Note that
if e is a bind of G, e is an edge of a triangle of graph. However, the reciprocal is not necessarily
true.

Proposition 7. Let G be a graph with m edges and M = {e} be a one-edge matching of G. The
degree of M is d(M) = m if and only if e is either a bind or a pendent edge of G.

Proof. Let G be a graph with m edges and e= uv an edge of G. We know that m−d(u)−d(v)+1
is the number of edges that neither is incident to u nor to v. From Proposition 5, d({e}) =
m−d(u)−d(v)+1+d(u)d(v)− t, where t = |N(u)∩N(v)|. Therefore, d({e}) = m if and only
if d(u)d(v)− t = d(u)+ d(v)− 1, i.e., (d(u)− 1)(d(v)− 1) = t. Since d(u) > t and d(v) > t,
(d(u)−1)(d(v)−1) ≥ t2. So, (d(u)−1)(d(v)−1) = t if and only if t = 0 or t = 1. In the first
case, e is a pendant edge and, otherwise, d(u) = d(v) = 2 and so, e is a bind. �

Note that, if G is a graph without binds and pendant edges, the unique vertex of G (M (G)) with
the minimum degree is M = ∅. It is not difficult to see that, except K3, all 2-connected graphs
satisfy this property.

Proposition 8. Let G be a graph with m edges and M 6=∅ be a matching of G. Then, d(M) = m
if and only if M has only pendant edges or binds.

Proof. Suppose there is e ∈ M such that e is neither a bind nor a pendant edge of G. So,
from Proposition 7 and Theorem 6, m < d({e}) ≤ d(M). Consequently, m 6= d(M). By the
contrapositive, if d(M) = m, every edge of M is a pendant edge or a bind of the graph.

Suppose now that M is a matching of G with s edges such that if e ∈ M, e is a bind or e is
a pendant edge of G. Let N be a matching such that N ∼ M in G (M (G)). From here and by
Theorem 2, M∆N is an M-good path P or an M-good cycle C of G. Since C is an even cycle,
C 6= K3. So, C does not have binds. Consequently, M∆N is a path. Concerning the path P, only
its pendant edges can belong to M. Moreover, once P is an alternated path, it has length at most
length 3. Hence, there are only the following possibilities to P:

1. If P is an oo-M-path, then P = e, where e∈M, or P = e1 f e2, where f /∈M and I( f )∩M =

{e1,e2}. In the first case, there are s possibilities to P and, in the second, there are t1
possibilities to P, where t1 is the number of edges of E\M such that both terminal vertices
are incident to an edge of M;

2. If P is a cc-M-path, P = f , where f /∈M and I( f )∩M =∅. Here, there are t2 possibilities
to P, where t2 is the number of edges of E\M for which any edge of M does not incident
to the end vertices of those edges;

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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3. Finally, if P is an oc-M-path, then P = e f , where f /∈M and I( f )∩M = {e}. In this last
case, there are t3 possibilities to P, where t3 is the number of edges of E\M which only
one end vertex of edge is incident to some edge of M.

From (1), (2) and (3) possibilities above, s +
3
∑

i=1
ti = s + |E\M| = m is the number of the

possibilities to have P as an M-good path of G. From Theorem 4 it follows that d(M) = m.

�

Finally, next theorem proves that the union of stars and triangles characterizes regular skeletons
of the matching polytopes of graphs.

Theorem 9. Let G be a graph with m edges. The skeleton G (M (G)) is an m-regular graph if
and only if G is a disjoint union of stars and triangles.

Proof. Suppose that G (M (G)) is an m-regular graph. Then, for every e ∈ E, we have d({e}) =
d(∅) = m. Besides, by Proposition 7, this occurs only if e is a bind or a pendant edge of G. So,
G be a graph that is a disjoint union of stars and triangles.

Suppose now that G is a disjoint union of stars and triangles. Therefore, any matching of G has
only pendant edges or binds. From Proposition 8, G (M (G)) is an m-regular graph.

�

Figure 3 displays the graph G = K3∪S1,1 and its skeleton, G (M (K3∪S1,1)).

Figure 3: G = K3∪S1,1 and G (M (G))

4 FINAL CONSIDERATIONS

In this paper we give a closed formula to compute the degree of a strict matching, i.e., a matching
M = {e1, . . . ,ek} such that ∀i, j ∈ {1, . . . ,k}, ei, e j ∈M, ei 6= e j ⇒ I(ei)∩ I(e j) = ∅. Abreu

Tend. Mat. Apl. Comput., 20, N. 1 (2019)
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et al. [1] give the minimum degree of the matching polytope for a tree. We generalize this result
for any graph. We characterize all the graphs G for which G (M (G)) is regular. Besides, in the
last graph, we find all vertices with minimum degree. Finally, we emphasize that the problem of
determination of the maximum degree of G (M (G)) is still unresolved.
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RESUMO. O politopo de emparelhamentos de um grafo G, denotado por M (G), é o
fecho convexo do conjunto dos vetores de incidência dos emparelhamentos de G. O grafo
G (M (G)), cujos vértices e arestas são os vértices e arestas de M (G), é o esqueleto do
politopo de emparelhamentos de G. Neste artigo, para um grafo arbitrário, nós provamos
que o grau mı́nimo de G (M (G)) é igual ao número de arestas de G, generalizando um co-
nhecido resultado para árvores. Além disso, nós identificamos os vértices do esqueleto que
possuem grau mı́nimo e provamos que a união de estrelas e triângulos caracteriza esqueletos
regulares de politopos de emparelhamentos de grafos.

Palavras-chave: grafo regular, politopo de emparelhamentos, grau de um emparelhamento.
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