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www.scielo.br/tema
doi: 10.5540/tema.2019.020.03.0561

A Construction of Rotated Lattices via Totally Real Subfields
of the Cyclotomic Field Q(ζp)

A. A. ANDRADE1*, E. L. OLIVEIRA2 and J. C. INTERLANDO3

Received on March 14, 2019 / Accepted on August 6, 2019

ABSTRACT. The theory of lattices have shown to be useful in information theory and rotated lattices
with high modulation diversity have been extensively studied as an alternative approach for transmission
over a Rayleigh-fading channel, where the performance of this modulation schemes essentially depends
on the modulation diversity and on the minimum product distance to achieve substantial coding gains.
The maximum diversity of a rotated lattice is guaranteed when we use totally real number fields and the
minimum product distance is optimized by considering fields with minimum discriminant. In this paper, we
present construction of a full diversity rotated lattice for the Rayleigh fading channel in Euclidean space
with full diversity, where this construction is through a totally real subfield K of the cyclotomic field Q(ζp),
where p is an odd prime, obtained by endowing their ring of integers.

Keywords: lattices, cyclotomic fields, algebraic number field, rotated lattice.

1 INTRODUCTION

Algebraic number theory has recently raised a great interest for their new role in algebraic lattice
theory and for application in coding and modulation. The problem of finding algebraic lattices
with maximal minimum product distance has been studied in last years and this has motivated
special attention of many researchs in considering ideals of certain rings [5], [2] and [1]. Eva
Bayer et al. [8] and Andrade et al. [1] have presented families of rotated Zn-lattices based on
algebraic number theory. We know that totally real algebraic number fields result in the maximum
diversity, equal to the dimension of the lattice [3]. This motivates the investigation on lattices over
totally real number fields.
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A lattice Λ is a discrete additive subgroup of Rn, equivalently, Λ ⊆ Rn is a lattice iff there are
linearly independent vectors v1,v2, · · · ,vm ∈ Rn such that

Λ = {
m

∑
i=1

aivi : ai ∈ Z, for i = 1,2, · · · ,m}.

The set {v1,v2, · · · ,vn} is a Z-basis and a matrix M whose rows are these vectors is said to be a
generator matrix for Λ and the associated Gram matrix is given by G = MMt = (< vi,v j >)n

i, j=1.
Lattices have been considered in different areas, especially in coding theory and more recently in
cryptography. In this paper, we attempt to construct lattices with full rank, i.e., m = n, which may
be suitable for signal transmission over both Gaussian and Rayleigh fading channels [3]. For this
purpose the tattice parameters we consider here are diversity and minimum product distance.

In [1], for any integer r ≥ 4, rotated Zn-lattices, n = 2r−2 and n = 2r−3, were constructed from
Q(ζ2r +ζ

−1
2r ), the maximal real subfield of Q(ζ2r), and over Q(ζ 2

2r +ζ
−2
2r ), where ζ2r is a prim-

itive 2r-th root of unity. In this work, having the construction procedure of a rotated lattice over
the maximal real subfield of a cyclotomic field as the main motivation, we make use of algebraic
number theory for constructing rotated lattices via totally real subfields of the cyclotomic field
Q(ζp), where p is an odd prime number.

This paper is organized as follows. In Section 2, notions and results from algebraic number theory
that are used in the work are reviewed. In Section 3, rotated lattices are constructed from totally
real subfields of the cyclotomic field Q(ζp), where p is an odd prime number. In Section 4, an
algorithm to the construction of rotated lattices is presented and we present examples in terms of
center density and minimum product distance.

2 BASIC RESULTS FROM NUMBER THEORY

A number field is a field L that is a finite degree extension n of Q. An element α ∈ L is called an
algebraic integer if there is a monic polynomial f (x) with integer coefficients such that f (α) = 0.
The set

OL = {α ∈ L : α is an algebraic integer}

is a ring called ring of algebraic integers of L. The ring OL is a Z-module of rank n and a Z-basis
{α1, · · · ,αn} of OL is called an integral basis of L (or of OL). Furthermore, L = Q(α), where
α ∈C is a root of a monic irreducible polynomial p(x)∈Q[x]. The n distinct roots α1,α2, · · · ,αn

of p(x) are the conjugates of α . If σi : L → C is a Q-homomorphism, then σi(α) = αi for
some i = 1,2, · · · ,n, and there are exactly n Q-homomorphism σi : L→ C, for i = 1,2, · · · ,n. A
homomorphism σi is said to be real if σi(L)⊆ R and imaginary otherwise. A number field L is
said to be totally real if σi is real for all i = 1,2, · · · ,n and totally imaginary if σi is imaginary for
all i = 1,2, · · · ,n. The trace of any element α ∈ L is defined as the rational number

TL:Q(α) =
n

∑
i=1

σi(α),

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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and if α ∈ OL, then TL:Q(α) ∈ Z. The discriminant of L, denoted by ∆L, is the rational integer
given by det(TrL:Q(αiα j)).

A cyclotomic field is a number field L such that L=Q(ζn), where ζn is a primitive n-th root of
unity. Also, [L : Q] = ϕ(n), where ϕ is the Euler function, OL = Z[ζn] is the ring of algebraic
integers of Z[ζn], and the field K = Q(ζn + ζ−1

n ) is the maximal real subfield of L, where [L :
K] = 2 and OK = Z[ζn +ζ−1

n ] [6], [9].

3 CONSTRUCTION OF A ROTATED LATTICE

If ζp is a primitive p-th root of unity, where p is an odd prime number, then
L = Q(ζp) is a cyclic extension of degree p − 1 over Q that contains the real subfield
Q(ζp + ζ−1

p ), which is cyclic of degree l = (p− 1)/2 over Q. If G = Gal(L : Q) is the Ga-
lois group (cyclic) of L over Q with generator σr (or σ ), then σr(ζp) = ζ r

p, where r is a generator
of Z∗p, and rl ≡−1(mod p), that is, r is a primitive element modulo p.

Theorem 1. [11] (Dirichlet’s theorem) If a,n are integers such that 1≤ a≤ n and gcd(a,n) = 1,
then the arithmetic progression {a,a+n,a+2n, · · · ,a+kn, · · ·} contains infinitely many primes.

If n is a positive integer, from Theorem 1, it follows that there exists a prime p such that p ≡
1(mod n). Since n divides p− 1, from Galois Correspondence Theorem, it follows that there
exists a unique field K contained in Q(ζp) which is cyclic of degree n over Q. If n is an even
number that divides (p−1)/2 or if n is an odd number, then K is contained in the real subfield
Q(ζp +ζ−1

p ). In this case, K=Q(θ), where θ = TrL:K(ζp),

Gal(Q(ζp) : K) = 〈σn〉= {σn,σ2n, · · · ,σnm}= {σrn ,σr2n , · · · ,σrmn},

where m = (p−1)/n, Gal(K : Q) = {σ0,σ , · · · ,σn−1} and

{σr(θ),σr2(θ), · · · ,σrn(θ)}= {θ ,σ(θ), · · · ,σn−1(θ)}

is an integral basis of K, where σ s = σrs , for all s ∈ Z+ [6].

If σK is the canonical embedding given by

σK : K −→ Rn

x 7−→ σK(x) = (x,σ(x), · · · ,σn−1(x)),

then σK(OK) is an algebraic lattice in Rn with maximum diversity. Since the set
{θ ,σ(θ), · · · ,σn−1(θ)} is a Z-basis of OK, it follows that

{σK(θ),σK(σ(θ)), · · · ,σK(σ
n−1(θ))} ⊂ Rn

is a basis of the lattice σK(OK), whose generator matrix is given by

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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M =


θ σ(θ) · · · σn−1(θ)

σ(θ) σ2(θ) · · · θ

...
...

. . .
...

σn−1(θ) θ · · · σn−2(θ)

 .

Since M = Mt , it follows that the i-th row is given by

σK(σ
i(θ)) = (σ i(θ),σ i+1(θ), · · · ,σ i+n−1(θ)),

for i = 0,1, · · · ,n−1. The Gram matrix G = (gi j)
n−1
i, j=0 of σK(OK) is given by G = MMt , where

gi j = 〈σK(σ
i(θ)),σK(σ

j(θ))〉
= σ i(θ)σ j(θ)+σ i+1(θ)σ j+1(θ)+ · · ·+σ i+n−1(θ)σ j+n−1(θ)

=
n−1

∑
a=0

σ
i+a(θ)σ j+a(θ)

Since σn|K = σ0
K and σn−s|K = σ−s|K, for all s ∈ Z+, it follows that

gi j =
n−1

∑
a=0

σ
i+a(θ)σ j+a(θ) =

n−1

∑
a=0

σ
a(θ)σ j+a−i(θ)

=
n−1

∑
a=0

σ
a(θ σ

j−i(θ)) = TrK:Q(θ σ
j−i(θ)),

for i, j = 0,1, · · · ,n−1. Thus,

G =
(
TrK:Q(θ σ

j−i(θ))
)n−1

i, j=0 .

Since TrK:Q(σ
i(θ)σ j(θ)) = TrK:Q(θ σ j−i(θ)), for i, j = 0,1, · · · ,n− 1, it is sufficient to

calculate TrK:Q(θ σ t(θ)), for t = 0,1, · · · ,n−1. Finally,

TrK/:mathbbQ(θ) = TrK:Q(TrQ(ζp):K(ζp)) = TrQ(ζp):Q(ζp) =−1

and

TrK:Q(σ
t(θ)) =

n−1

∑
a=0

σ
a(σ t(θ)) =

n−1

∑
a=0

σ
t(σa(θ)) = σ

t(
n−1

∑
a=0

σ
a(θ))

= = σ t(TrK:Q(θ)) = σ t(−1) =−1,

for t = 0,1, · · · ,n−1.

The following theorem, which is the main result of this work, gives us the key to constructing
full diversity rotated lattice bssed on real subfields of the cyclotomic field Q(ζp).

Theorem 2. If θ = TrQ(ζp):K(ζp), then

TrK:Q(θσ
t(θ)) =

{
p− ( p−1

n ) if t = 0;
−( p−1

n ) if t = 1,2, · · · ,n−1.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Proof. Since θ ∈K, it follows that

TrK:Q(θσ
t(θ)) =

n−1

∑
a=0

σ
a(θσ

t(θ)),

for all t = 0,1, · · · ,n−1., and

θσ
t(θ) =

p−1
n

∑
c=1

σ
cn(ζp)

p−1
n

∑
j=1

σ
t+ jn(ζp) =

p−1
n

∑
c, j=1

σ
cn(ζp)σ

t+ jn(ζp),

because Gal(Q(ζp) : K) = 〈σn〉, whose order is m = (p−1)/n. Thus,

TrK:Q(θσ t(θ)) =
n−1

∑
a=0

p−1
n

∑
c, j=1

σ
a+cn(ζp)σ

a+t+ jn(ζp)

=
n−1

∑
a=0

p−1
n

∑
c, j=1

ζ
ra+cn

p ζ
ra+t+ jn

p =
n−1

∑
a=0

p−1
n

∑
c, j=1

ζ
ra+cn+ra+t+ jn

p .

Since r is a generator of Z∗p, it follows that rp−1 ≡ 1(mod p), and thus, r(p−1)q = (rp−1)q ≡ 1q =

1(mod p), for all q ∈ Z. So,

ra+(mq+c)n = ra+( p−1
n q+c)n = ra+(p−1)q+cn = ra+cnr(p−1)q ≡ ra+cn(mod p).

Therefore, ζ ra+cn
p = ζ ra+(mq+c)n

p , for all q ∈ Z+. Now, if s≡ c(mod m), then s = mq+ c, for some
q ∈ Z. Thus, ζ ra+sn

p = ζ ra+cn
p . So,

TrK:Q(θσ
t(θ)) =

n−1

∑
a=0

∑
c, j∈Zm

ζ
ra+cn+ra+t+ jn

p = ∑
c∈Zm

n−1

∑
a=0

∑
j∈Zm

ζ
ra+cn+ra+t+ jn

p .

Furthermore, if d ≡ c− j(mod m), i.e., c ≡ d + j(mod m), then ζ ra+cn
p = ζ ra+(d+ j)n

p , and since c
ranges in Zm, it follows that d also ranges in Zm. Thus,

TrK:Q(θσ t(θ)) = ∑
d∈Zm

n−1

∑
a=0

∑
j∈Zm

ζ
ra+(d+ j)n+ra+t+ jn

p

= ∑
d∈Zm

n−1

∑
a=0

∑
j∈Zm

ζ
(rdn+rt )ra+ jn

p =

p−1
n

∑
d=1

n−1

∑
a=0

p−1
n

∑
j=1

ζ
(rdn+rt )ra+ jn

p .

Since a ∈ {0,1, · · · ,n− 1} and j ∈ {1, · · · , p−1
n }, it follows that ra+ jn ≡ s(mod p), where s =

1, · · · , p− 1, because 〈r〉 = Z∗p = {1, · · · , p−1}, and thus ra+ jn = s for some s = 1, · · · , p− 1.

So, ζ ra+ jn
p = ζ s

p, for some s = 1, · · · , p−1. Now, since n( p−1
n ) = p−1, it follows that

n−1

∑
a=0

p−1
n

∑
j=1

ζ
(rdn+rt )ra+ jn

p =
n−1

∑
a=0

p−1
n

∑
j=1

(ζ ra+ jn

p )rdn+rt
=

p−1

∑
s=1

(ζ s
p)

rdn+rt
=

p−1

∑
s=1

(ζ rdn+rt

p )s.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Thus, if ωd,t = ζ rdn+rt
p , then

TrK:Q(θσ
t(θ)) =

p−1
n

∑
d=1

p−1

∑
s=1

(ωd,t)
s,

where
p−1

∑
s=1

(ωd,t)
s =

{
p−1 if ωd,t = 1
−1 if ωd,t 6= 1,

for t = 0,1, · · · ,n−1. The first case is trivial. Now, for ωd,t 6= 1, is sufficient observe that ωd,t =

ζ rdn+rt
p is a root of the polynomial

xp−1
x−1

= xp−1 + · · ·+ x+1,

and therefore,
p−1

∑
s=1

(ωd,t)
s = (ωd,t)

p−1 + · · ·+(ωd,t)
2 +ωd,t =−1.

Now, to calcule TrK:Q(θσ t(θ)), we consider the cases t = 0 and t 6= 0. But,

ωd,t = 1 ⇐⇒ t = 0 and d =
p−1
2n

. (3.1)

In fact, if t = 0 and d = (p− 1)/2n, then rp−1 ≡ 1(mod p). Since p− 1 is even, it follows
that there exists l ∈ Z such that p− 1 = 2l. So, (rl)2 = r2l ≡ 1(mod p), i.e., p | (rl)2− 1 =

(rl +1)(rl−1). Thus, rl ≡ 1(mod p) or rl ≡−1(mod p). But, since the first case is not possible
because p−1 is the smallet positive integer with this property, it follows that rl ≡ −1(mod p).
Thus, r

p−1
2 +1≡ 0(mod p), and therefore,

ωd,t = ζ
rdn+1
p = ζ

r(
p−1
2n )n

+1
p = ζ

r
p−1

2 +1
p = 1.

Reciprocally, if ωd,t = 1, i.e., ζ rdn+rt
p = 1, then

rdn + rt ≡ 0(mod p)⇔ rdn ≡−rt(mod p).

Since rl+t ≡−rt(mod p), it follows that

−rt(mod p)≡ rdn ≡ rl+t(mod p).

From [10, Theorem 6.2], it follows that

rl+t(mod p)l + t ≡ dn(mod p−1).

Thus p− 1 divides l + t − dn, i.e., there exists k1 ∈ Z such that t = dn− l + k1(p− 1). Now,
n | dn, n | k1(p− 1) (because n | p− 1) and n | l (because n( p−1

2n ) = l), and thus, n | t. Since
t = 0,1, · · · ,n−1, it follows that t = 0. Thus, dn = l− k1(p−1), and therefore,

d =
p−1
2n
− k1(

p−1
n

) =
p−1
2n

(1−2k1) = k2(
p−1
2n

), with k2 = 1−2k1 odd.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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Since k2 is positive, because if k2 < 0, then d ≤ 0. Thus, k2 = 1 or 2, because if k2 ≥ 3, then
d > (p− 1)/n. But, since k2 is odd, it follows that k2 = 1. Therefore, d = (p− 1)/2n, which
concludes the proof of the equivalency of the Equation (3.1). Observe that the number p−1

2n is
integer because n | (p−1)/2. Now, for t 6= 0, from equivalency of the Equation (3.1), it follows

that ωd,t 6= 1, and therefore,
p−1

∑
s=1

(ωd,t)
s =−1. Thus,

TrK:Q(θσ
t(θ)) =

p−1
n

∑
d=1

p−1

∑
s=1

(ωd,t)
s =

p−1
n

∑
d=1
−1 =−

(
p−1

n

)
.

Now, suppose t = 0. From equivalency of the Equation (3.1), if d = (p− 1)/2n, then ωd,t = 1,
and if d 6= (p−1)/2n, then ωd,t 6= 1. Therefore,

TrK:Q(θσ t(θ)) =

p−1
n

∑
d=1

p−1

∑
s=1

(ωd,t)
s = (p−1)+

p−1
n

∑
d=1,d 6= p−1

2n

−1

= (p−1)−
(

p−1
n −1

)
= p−

(
p−1

n

)
.

Since σ j−i ranges in σ t , with t = 0,1, · · · ,n−1, it follows that

TrK:Q(θ σ
t(θ)) =

{
p− ( p−1

n ) if t = 0
−( p−1

n ) if t = 1,2, · · · ,n−1,

which concludes the proof. �

4 AN ALGORITHM OF CONSTRUCTION OF A ROTATED LATTICE

In this section, we present an algorithm to construct of a rotated lattice and we analyze if these
lattices have good performance in terms of center density and minimum product distance. For
this, we consider K a field such that K⊆Q(ζp +ζ−1

p ), where p is a prime, [Q(ζp) : K] = m and
[K : Q] = n.

4.1 Algorithm

An algorithm to construct of a rotated lattice is given by:

1. Choose a dimension n.

2. Compute a prime p such that p ≡ 1(mod n), where n is an even number that divides
(p−1)/2 or if n is an odd number.

3. Compute r such that r is a primitive element modulo p, i.e., r is a generator of Z∗p.

4. Compute θ = TrQ(ζp):K(ζp) and σ i(θ), for i = 1, · · · ,n−1, with 〈σ〉= Gal(Q(ζp) : Q).

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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5. Compute the Gram matrix G = (gi j)
n
i, j=1, where

gi, j = TrK:Q(θσ
j−i(θ)) =

{
p− ( p−1

n ) if i = j
−( p−1

n ) if i 6= j,

for i, j = 1, · · · ,n.

4.2 Center density and minimim distance product

If α ∈ OK, where α = a0σ0(θ)+a1σ(θ)+ · · ·+an−1σn−1(θ), then

TrK:Q(α
2) =

n−1

∑
i=0

a2
i +m ∑

0≤i< j≤n−1
(ai−a j)

2.

If M is a Z-submodule in K of rank n, then the set Λ = σK(M ) is a lattice in Rn called an
algebraic lattice. The center density of Λ is given by

δ (Λ) =
tn/2

2n[OK : M ]
√
| ∆K |

,

where t = min
{

TrK:Q(α
2) : α ∈M ,α 6= 0

}
, [OK : M ] denotes the index of the submodule M

and ∆K = pn−1 [7]. If x = (x1, . . . ,xn) ∈Rn is an element of Λ, the product distance of x from the
origin is defined as

dp(x) =
n

∏
i=1
| xi |,

and the minimum product distance of Λ is defined as

dp,min(Λ) = min
x∈Λ,x 6=0

dp(x).

If M is a principal ideal of OK, then the minimum product distance of Λ is given by

dp,min(Λ) =

√
det(Λ)

∆K
,

where det(Λ) = detG [8, Theorem 1]. The normalized minimum product distance of Λ,
dp,norm(Λ), is the minimum product distance of the rotated lattice 1

2n
√

det(G)
Λ. Thus, the

normalized minimum product distance of Λ is given by

dp,norm(Λ) =
1

(
√

k)n

1√
det(G)

dp,min(Λ) =
1

(
√

k)n

1√
Λ
,

where k = min{‖ x ‖2: 0 6= x ∈ Λ}. Thus,

n
√

dp,norm(Λ) =
1√
k

1
2n
√

Λ
.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
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4.3 Example

If L=Q(ζ5) and K=Q(θ), where θ = ζ5 +ζ
−1
5 , then n = 2, t = 2, ∆K = 5,

G =

(
3 −2
−2 3

)

is the Gram matrix of the algebraic lattice σ(OK), k = 2 and det(G) = 5. In this case, the center
density is given by δ (Λ) = 1/(2

√
5) and the normalized minimum product distance. Since k = 2,

it follows that
√

dp,norm(Λ) =
1√
2

1
4√5
' 0.47287. In the Table 1, we summarized a comparision

of the values of δ (M ), where M = OK, and n
√

dp,norm(Λ) for some known constructions of
algebraic lattices in some dimensions.

Table 1: Comparison of the values of δ (M ) [4] and n
√

dp,norm(Λ) [8].

p n δ (M ) known n
√

dp,norm(Λ) known
5 2 0.22360 0.28868 0.47287 0.66874030
7 3 0.09278 0.17678 0.30181 0.52275795

11 5 0.01443 0.08839 0.17137 0.38321537
13 6 0.00553 0.07217 0.14021 0.34344479
13 3 0.02400 0.17678 0.24554 0.28952001
13 2 0.13867 0.28868 0.372309 0.27018738
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RESUMO. A teoria de reticulados têm mostrado útil na teoria da informação e reticu-
lados ideais com alta diversidade de modulação têm sido extensamente estudados como
uma alternativa de transmissão via o canal de Rayleigh, onde o desempenho destes esque-
mas de modulação depende essencialmente da diversidade de modulação e da distância
produto mı́nima para obter ganhos substanciais de codificação. A diversidade máxima
de um reticulado rotacionado é garantida quando usamos corpos de números totalmente
reais e a distância produto mı́nima é otimizada considerando os corpos com discriminante
mı́nimo. Neste trabalho, apresentamos uma construção de reticulado rotacionado, onde esta
construção é através de um subcorpo totalmente real K do p-ésimo corpo ciclotômico, onde
p é um número primo ı́mpar, obtido via o seu anel de inteiros.

Palavras-chave: reticulados, corpos ciclotômicos, corpos de números algébricos,
reticulado rotacionado.
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