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ABSTRACT. A lattice construction using Z-submodules of rings of integers of number fields is presented.
The construction yields rotated versions of the laminated lattices Λn for n = 2,3,4,5,6, which are the
densest lattices in their respective dimensions. The sphere packing density of a lattice is a function of its
packing radius, which in turn can be directly calculated from the minimum squared Euclidean norm of the
lattice. Norms in a lattice that is realized by a totally real number field can be calculated by the trace form
of the field restricted to its ring of integers. Thus, in the present work, we also present the trace form of the
maximal real subfield of a cyclotomic field. Our focus is on totally real number fields since their associated
lattices have full diversity. Along with high packing density, the full diversity feature is desirable in lattices
that are used for signal transmission over both Gaussian and Rayleigh fading channels.

Keywords: sphere packings, algebraic lattices, number fields, cyclotomic fields.

1 INTRODUCTION

Lattices are discrete subgroups of Euclidean n-space, Rn, and they have been considered in dif-
ferent applied areas, especially in coding/modulation theory and more recently in cryptography.
Algebraic lattices are those obtained via number fields and they have been studied in several pa-
pers and from different points of view, see [1,2,3,5,6,10]. These algebraic lattices are constructed
through the canonical homomorphism via Z-modules of the ring of algebraic integers of a num-
ber field. Having the construction of algebraic lattices as our goal, in this paper, we focus on the
construction of algebraic lattices with special features, known in the literature, via maximal real
subfieds of cyclotomic fields. In digital communications, the lattice parameters of interest are its
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300 CONSTRUCTIONS OF DENSE LATTICES OF FULL DIVERSITY

sphere packing density and minimum product distance. The performance in terms of minimum
product distance is given by number field discriminant, i.e., minimizing the discriminant. The
question of find totally real number fields with minimal discriminant is a hard problem. Those
parameters can be obtained in certain cases of lattices associated to number fields through al-
gebraic properties [6]. From [4, Thorem 4.1], we can to give a lower (and upper) bound on the
minimum product distance. The higher those two parameters are the more attractive the lattice
becomes to be used for data transmission over Gaussian and fading channels.

We can find, in literature, several constructions of full diversity rotated Zn-lattices [5, 6, 7, 8]. In
[6], it was shown that algebraic lattices obtained via totally real number fields have full diversity.
In [8] the authors presented constructions of algebraic lattices over totally real fields and in
[7] the authors presented constructions of lattices and the trace form for Q(ζpr + ζ

−1
pr ). In this

work, we focus our construction on totally real number fields and we present the trace form for
Q(ζn +ζ−1

n ), where n≥ 5, where we present constructions of algebraic lattices of full diversity
and optimal packing density. In full diversity algebraic lattices, the minimum product distance
depends on the minimum of the algebraic norm of nonzero elements in the lattice. This gives an
advantage provided by the algebraic tools, once to calcule the minimum product distance in a
general lattice is a hard problem.

In this paper, we present constructions of algebraic lattices of optimal center density and full
diversity, that is, we present constructions of algebraic lattices on totally real number fields. In the
first construction, the fields are the maximal real subfields of cyclotomic fields, and in the second
construction, the fields K are extensions of Q of degree p where p is an odd ramified prime in
OK, the ring of integers of K. In Section 2, we review necessary concepts from number fields
and lattices. In Section 3, we present explicit trace forms over the maximal totally real subfield
of cyclotomic fields. In Section 4, we present constructions of laminated algebraic lattices in
dimensions 2 up to 6 with optimal center density. In Section 5 we give our conclusions.

2 BASIC RESULTS OVER ALGEBRAIC LATTICES AND NUMBER FIELDS

In this section, we briefly review the definitions and results that will be needed subsequently.
Many of them will be assumed known to the reader; those interested in further details are referred
to [10, 14].

Let Λ be a full lattice in Rn, that is, Λ is the set of all integral linear combinations of some basis
of the vector space Rn. Let r denote half the minimal distance between (distinct) lattice points.
We can then immediately construct a sphere packing from Λ by centering an n-dimensional
sphere with radius r at each lattice point. The obtained arrangement is called the sphere packing
associated to Λ. The proportion of the space that is occupied by the spheres is called the sphere
packing density of Λ, denoted by ∆(Λ). For comparison purposes, a more used parameter is the
center density of the packing, denoted by δ (Λ), which in turn equals ∆(Λ) divided by Vn, the
volume of an n-dimensional sphere of radius 1.

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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The minimum product distance of Λ is defined as

dp,min(Λ) = min

{
n

∏
i=1
|xi| : 0 6= (x1, . . . ,xn) ∈ Λ

}
.

Lattice Λ is said to be of full diversity if dp,min(Λ) 6= 0. In the present work, we will only be
concerned with constructing lattices with a high sphere packing density and full diversity.

A number field K is said to be Abelian (cyclic) if the extension K/Q is Galois and its Galois
group, Gal(K/Q), is Abelian (cyclic). Let K be a number field of degree n and signature [r1,r2].
The Q-monomorphisms of K into C whose images are contained in R are denoted by σ1, · · · ,σr1 ,
and those whose images are not contained in R are denoted by σr1+1,σr1+1, · · · ,σr1+r2 ,σr1+r2 .

The set OK = {α ∈ K : there is a monic polynomial f (x) ∈ Z[x] such that f (α) = 0} is called
the ring of algebraic integers of K. If {α1,α2, · · · ,αn} is a Z-basis of OK, the integer dK =

(det(σ j(αi))
n
i, j=1)

2 is an invariant over change of basis and is called the discriminant of K. The
trace of any element x ∈ OK is defined by TrK/Q(x) = ∑

n
i=1 σi(x).

If R(x) and I(x) denote, respectively, the real and imaginary parts of x ∈ K, then the canonical
homomorphism σ : K→ Rn is defined by

σ(x) = (σ1(x), · · · ,σr1(x),R(σr1+1(x)),I(σr1+1(x)), · · · ,R(σr1+r2(x)),I(σr1+r2(x))) ,

for every x ∈ K. If M is a Z-module of K of rank n, the set Λ = σ(M ) is an n-dimensional
lattice in Rn. If either r1 = 0 or r2 = 0, then the center density of Λ is given by

δ (Λ) =
tn/2

2n
√
|dK|[OK : M ]

=
(
√

t)n

2n
√
|dK|[OK : M ]

,

where [OK : M ] denotes the index of M in OK, and

t = ck min
{

TrK/Q(xx) : x ∈M ,x 6= 0
}

with ck = 1 or 2−1 according to whether r2 = 0 or r1 = 0, respectively. The quantity 2n[OK :
M ]
√
|dK| is equal to the volume of σ(M ). Lattices constructed from totally real number fields,

i.e., those with r2 = 0, always have full diversity, a desirable property for practical applications
as already observed.

3 TRACE FORMS OVER SUBFIELDS OF CYCLOTOMIC FIELDS

In this section, we present an explicit trace form over maximal real subfield of Q(ζn) that allow
us to find the packing radius of algebraic lattices. In Subsection 3.1, we present explicit trace
forms over the maximal totally real subfield of cyclotomic field Q(ζn). Thus, in Theorem 2, we
present the trace form for any n, in the Corollaries 1, 2 and 3, for n = pr, n = 2pr and n = pq,
respectively, where p and q are prime numbers and r an integer such that r ≥ 1. We present
it again in the Subsection 3.2, since it will be used in the next section for the constructions of
laminated lattices.

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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3.1 Trace form over maximal real subfield of Q(ζn)

A number field L is said to be cyclotomic if L=Q(ζn), where ζn is a primitive n-th root of unity.
Furthermore, [L :Q] =ϕ(n), where ϕ is Euler’s phi function, the ring of algebraic integers of L is
given by OL =Z[ζn] and {1,ζn,ζ

2
n , · · · ,ζ

ϕ(n)−1
n } is an integral basis for L. If K=Q(ζn+ζ−1

n ) is
the maximal real subfield of the cyclotomic field Q(ζn), then [K :Q] =ϕ(n)/2, OK =Z[ζn+ζ−1

n ]

and {ζn +ζ−1
n ,ζ 2

n +ζ−2
n , · · · ,ζ

ϕ(n)
2

n +ζ
− ϕ(n)

2
n } is an integral basis of OK [14].

Let n = p1 p2 · · · pk+1, where the pi are distinct prime numbers, a = p1 p2 · · · pk and b = pk+1.
Observe that ζa = ζ b

n and ζb = ζ a
n , whence Q(ζa,ζb) ⊆ Q(ζn). On the other hand, since

gcd(a,b) = 1, one has au+bv = 1 for some u,v ∈ Z. Thus,

ζn = ζ
au+bv
n = ζ

au
n ζ

bv
n = ζ

u
b ζ

v
a

and Q(ζn) ⊆ Q(ζa,ζb), that is, Q(ζn) = Q(ζa,ζb). Furthermore, Q(ζa)∩Q(ζb) = Q because
gcd(a,b) = 1. Since Q(ζn)/Q is an Abelian extension, it follows that Q(ζn)/F and F/Q, for any
F⊆Q(ζn), are Abelian extensions. Finally, the mapping

ϕ : Gal(Q(ζn)/Q(ζa)) −→ Gal(Q(ζb)/Q)

σ 7−→ σ |Q(ζb)

is an isomorphism. Furthermore, if α ∈Q(ζb), then

TrQ(ζn)/Q(ζa)(α) = TrQ(ζb)/Q(α).

Lemma 1. [11] Let j and n be integers. If gcd( j,n) = d, then

TrQ(ζn)/Q(ζ
j
n) =

ϕ(n)
ϕ(n/d)

TrQ(ζn/d)/Q(ζ
j/d
n/d).

Lemma 2. [11] If i, j and p are integers with i≥ 1, p prime and gcd( j, p) = 1, then

TrQ(ζpi )/Q(ζ
j
pi) =

{
−1 if i = 1,

0 if i > 1.

Lemma 3. [11] Let n = pa1
1 pa2

2 · · · pas
s with ak ≥ 1 for k = 1,2, . . . ,s. If j is prime and gcd( j,n) =

d, then

TrQ(ζn)/Q(ζ
j
n) =

ϕ(n)
ϕ(n/d)

µ(n/d),

where µ is the Möbius function.

Lemma 4. [11] Let n = pa1
1 · · · pas

s , where ak ≥ 1 for k = 1,2, . . . ,s. If i is an integer such that
i < ϕ(n) and d = gcd(i,n), then

TrQ(ζn)/Q(ζ
i
n) 6= 0⇔ d = (n/P)t j and i = (n/P) j,

Tend. Mat. Apl. Comput., 21, N. 2 (2020)



i
i

“A7-1381-7490-1-CE” — 2020/6/15 — 12:21 — page 303 — #5 i
i

i
i

i
i

ANDRADE, FERRARI, INTERLANDO and ARAUJO 303

where P = p1 · · · ps, t j = gcd( j,P) and j = 1,2, . . . ,ϕ(P)−1.

Theorem 5. [11] Let n = pa1
1 · · · pas

s , with ak ≥ 1, for k = 1,2, . . . ,s, m = ϕ(n). If x = a0+a1ζn+

· · ·+am−1ζ m−1
n is an element of Z[ζn], then

TrQ(ζn)/Q(xx) =
n
P

{
ϕ(P)

m−1

∑
i=0

a2
i +2

ϕ(P)−1

∑
j=1

µ

(
P
t j

)
ϕ(t j)A n

P j

}
,

where P = p1 · · · ps, t j = gcd( j,P) for j = 1,2, . . . ,ϕ(P)− 1, and Ai = a0ai + a1ai+1 + · · ·+
am−1−iam−1 for i = 1,2, . . . ,m−1. In the next result, we present an explicit trace form over the
ring of algebraic integers of Q(ζn +ζ−1

n ).

Theorem 6. Let K = Q(ζn + ζ−1
n ), where n = pa1

1 . . . pas
s , with a j ≥ 1 for j = 1,2, . . . ,s and

m = ϕ(n). If x = a1(ζn + ζ−1
n ) + a2(ζ

2
n + ζ−2

n ) + · · ·+ a ϕ(n)
2
(ζ

ϕ(n)
2

n + ζ
− ϕ(n)

2
n ) is an element of

Z[ζn +ζ−1
n ], then

TrK/Q(x
2) = m

m/2

∑
i=1

a2
i +

n
P

ϕ(P)

∑
i=u

2 | nP i

ρ(ti)a2
n

2P i +2
s

∑
i=1

ρ(ti)A n
P i +2

ϕ(P)−1

∑
i=v

ρ(ti)B n
P i

 ,

where P = p1 · · · ps, ti = gcd(i,P), byc is the greatest integer less than or equal to y, dye is

the smallest integer greater than or equal to y, u =
⌈ 2P

n

⌉
, s =

⌊
ϕ(P)

2 −1
⌋

, v =
⌈ 3P

n

⌉
, ρ(ti) =

µ

(
P
ti

)
ϕ(ti), A j = a1a j+1 +a2a j+2 + · · ·+a m

2 − ja m
2

and B j = ∑
k≥1

k< j−k≤m
2

aka j−k. Proof. If x ∈OK,

then
x = a1(ζn +ζ

−1
n )+a2(ζ

2
n +ζ

−2
n )+ · · ·+a m

2
(ζ

m
2

n +ζ
−m

2
n )

where ai ∈ Z, for i = 1,2, . . . , ϕ(n)
2 . Therefore,

x2 = (a1ζn +a1ζ−1
n + · · ·+a m

2
ζ
−m

2
n )(a1ζn +a1ζ−1

n + · · ·+a m
2

ζ
−m

2
n )

= [(a1ζn +a2ζ 2
n + · · ·a m

2
ζ

m
2

n )+(a1ζ−1
n +a2ζ−2

n + · · ·+a m
2

ζ
−m

2
n )]2

= A2 +A2
+2AA,

where A = a1ζn +a2ζ 2
n + · · ·+a m

2
ζ

m
2

n . So,

x2 =
m/2

∑
j=1

a2
j(ζ

2 j
n +ζ

−2 j
n )+2

(
m−1

∑
j=3

B jβ j

)
+2

(
m/2

∑
j=1

a2
j +

m/2−1

∑
j=1

A jβ j

)
,

where A j = a1a j+1 +a2a j+2 + · · ·+a m
2 − ja m

2
, B j = ∑

k≥1
k< j−k≤m

2

aka j−k, and β j = ζ
j
n +ζ

− j
n . Since

TrQ(ζn)/Q(x
2) = [Q(ζn) : K] TrK/Q(x

2),

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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it follows that
t = TrK/Q(x

2) =
1
2

TrQ(ζn)/Q(x
2).

Thus,

t =
1
2

[
TrQ(ζn)/Q

(
2

m/2

∑
j=1

a2
j +2

m/2−1

∑
j=1

A jβ j +
m/2

∑
j=1

a2
j(ζ

2 j
n +ζ

−2 j
n )+2

m−1

∑
j=3

B jβ j

)]

= m
m/2

∑
j=1

a2
j +

m/2

∑
j=1

a2
jTrQ(ζn)/Q(ζ

2 j
n )

+2

(
m/2−1

∑
j=1

A jTrQ(ζn)/Q(ζ
j
n)+

m−1

∑
j=3

B jTrQ(ζn)/Q(ζ
j
n)

)
.

From Lemmas 3 and 4, it follows that

m/2

∑
j=1

a2
jTrQ(ζn)/Q(ζ

2 j
n ) =

n
P

ϕ(P)

∑
i=u
2| nP i

µ

(
P
ti

)
ϕ(ti)a2

n
2P i,

m/2−1

∑
j=1

A jTrQ(ζn)/Q(ζ
j
n) =

n
P

s

∑
i=1

µ

(
P
ti

)
ϕ(ti)A n

P i,

m−1

∑
j=3

B jTrQ(ζn)/Q(ζ
j
n) =

ϕ(P)−1

∑
i=v

µ(
P
ti
)ϕ(ti)B n

P i,

where u,s, and v are as in the theorem statement. Therefore,

TrK/Q(x
2) = m

m/2

∑
i=1

a2
i +

n
P

ϕ(P)

∑
i=u
2| nP i

ρ(ti)a2
n

2P i +2
s

∑
i=1

ρ(ti)A n
P i +2

ϕ(P)−1

∑
i=v

ρ(ti)B n
P i

 ,

as desired. �

Corollary 7. Let n = pr, with p an odd prime number and r a positive integer. If x = a1(ζn +

ζ−1
n )+a2(ζ

2
n +ζ−2

n )+ · · ·+a ϕ(pr)
2

(ζ
ϕ(pr)

2
n +ζ

− ϕ(pr)
2

n ) is an element of Z[ζn +ζ−1
n ], then

TrK/Q(x
2) = ϕ(pr)

ϕ(pr)
2

∑
i=1

a2
i − pr−1

 p−1

∑
i=u
2 | nP

i

a2
i pr−1

2

+2

p−3
2

∑
i=1

Aipr−1 +2
p−2

∑
i=v

Bipr−1

 ,

where u =
⌈

2
pr−1

⌉
, v =

⌈
3

pr−1

⌉
, A j = a1a j+1 + a2a j+2 + · · · + a ϕ(pr)

2 − j
a ϕ(pr)

2
and B j =

∑
k≥1

k< j−k≤ ϕ(pr)
2

aka j−k. Proof. Since P = p, it follows that
n
P
= pr−1 and ϕ(P) = p−1. Thus, from

Theorem 6, it follows that u=
⌈

2
pr−1

⌉
, s= p−3

2 , and v=
⌈

3
pr−1

⌉
. Now, ti = gcd(i,P) = gcd(i, p) =

1, because 1 ≤ i ≤ p− 1, hence ρ(ti) = µ(P
ti
)ϕ(ti) = µ(p)ϕ(1) = −1. The result now follows

from Theorem 6. �

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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Corollary 8. Let n = 2pr, where p is an odd prime number and r is a positive integer. If x =

a1(ζn + ζ−1
n ) + a2(ζ

2
n + ζ−2

n ) + · · ·+ a ϕ(2pr)
2

(ζ
ϕ(2pr)

2
n + ζ

− ϕ(2pr)
2

n ) is an element of Z[ζn + ζ−1
n ],

then

TrK/Q(x
2) = ϕ(2pr)

ϕ(2pr)
2

∑
i=1

a2
i − pr−1

p−1

∑
i=u
2|i

a2
i pr−1

2

−2U +2V

 ,

where U =

p−3
2

∑
i=1
2-i

Aipr−1 +
p−2

∑
i=v
2-i

Bipr−1 , V =

p−3
2

∑
i=1
2|i

Aipr−1 +
p−2

∑
i=v
2|i

Bipr−1 , u =
⌈

2
pr−1

⌉
, v =

⌈
3

pr−1

⌉
, A j =

a1a j+1 + a2a j+2 + · · ·+ a ϕ(2pr)
2 − j

a ϕ(2pr)
2

, and B j = ∑
k≥1

k< j−k≤ ϕ(2pr)
2

aka j−k. Proof. Since P = 2p, it

follows that
n
P
= pr−1, and ϕ(P) = p−1. From Theorem 6, it follows that u =

⌈
2

pr−1

⌉
, s = p−3

2

and v =
⌈

3
pr−1

⌉
. Also,

ti = gcd(i,P) = gcd(i,2p) =

{
1 if i is odd ,

2 if i is even.

Therefore,

ρ(ti) =

{
1 if i is odd,
−1 if i is even.

Since p is odd, it follows that
n
P
= pr−1 is odd. So,

n
P

i is even if and only if i is even. The result
now follows from Theorem 6. �

Corollary 9. Let n= pq, where p and q are distinct primes. If x= a1(ζn+ζ−1
n )+a2(ζ

2
n+ζ−2

n )+

· · ·+a ϕ(pq)
2

(ζ
ϕ(pq)

2
n +ζ

− ϕ(pq)
2

n ) is an element of Z[ζn +ζ−1
n ], then

TrK/Q(x
2) = ϕ(pq)

ϕ(pq)
2

∑
i=1

a2
i +U +2V +2W,

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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where
s =

⌊
ϕ(pq)

2 −1
⌋
, A j = a1a j+1 +a2a j+2 + · · ·+a ϕ(pq)

2 − j
a ϕ(pq)

2
,

B j = ∑
k≥1

k< j−k≤ ϕ(pq)
2

aka j−k,

U =−(p−1)
ϕ(pq)

∑
i=2
2p | i

a2
i
2
− (q−1)

ϕ(pq)

∑
i=2
2q | i

a2
i
2
+

ϕ(pq)

∑
i=2

2 | i,gcd(i,pq)=1

a2
i
2
,

V =−(p−1)
s

∑
i=1
p|i

Ai− (q−1)
s

∑
i=1
q|i

Ai +
s

∑
i=1

gcd(i,pq)=1

Ai,

W =−(p−1)
ϕ(pq)−1

∑
i=3
p|i

Bi− (q−1)
ϕ(pq)−1

∑
i=3
q|i

Bi +
ϕ(pq)−1

∑
i=3

gcd(i,pq)=1

Bi.

Proof. From Theorem 5, m = ϕ(pq) = ϕ(P), µ(P) = µ(pq) = 1, and t j = gcd( j,P) with j =
1,2, . . . ,ϕ(pq)−1. Thus,

t j = gcd( j, pq) =


p if j is a multiple of p
q if j is a multiple of q
1 otherwise,

and

ρ(ti) =


−(p−1) if j is a multiple of p
−(q−1) if j is a multiple of q

1 otherwise.

Furthermore, n
P j = j. Thus, if n = pq and x = a1(ζn+ζ−1

n )+a2(ζ
2
n +ζ−2

n )+ · · ·+a m
2

ζ
m
2

n +ζ
−m

2
n

is an element of Z[ζn]. The result now follows from Theorem 6. �

3.2 Trace form over cyclic number fields of degree p

In [13], a lattice construction using cyclic number fields of degree p, where p is unramified, was
presented. Lattices whose center densities are arbitrarily close to optimal values were obtained.
Below we present a similar construction, in this case using cyclic number fields of degree p,
where p is ramified. Let K be a cyclic number field of prime degree p > 2. From Kronecker-
Weber Theorem [14], it follows that there exists n > 0 such that K⊆Q(ζn). The least integer n
with the property K ⊆ Q(ζn) is called the conductor of K. In this case, the discriminant of K is
given by dK = np−1 [9, p. 186]. If n is the conductor of a cyclic number field K of odd prime
degree p, then

1. p is ramified in K if and only if n = p2 or n = p2 p1 p2 · · · pr;

2. p is unramified in K if and only if n = p1 p2 · · · pr,

Tend. Mat. Apl. Comput., 21, N. 2 (2020)
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where r ≥ 1 and the pi are distinct prime numbers such that pi ≡ 1 (mod p).

Let K be a cyclic number field of degree p and conductor n = p2 or n = p2 p1 p2 · · · pr, where the
pi are distinct prime numbers such that pi ≡ 1 (mod p). From [12], if t = TrQ(ζn)/K(ζn), then

1. K=Q(t).

2. B = {1,σ(t), · · · ,σ p−1(t)} is a Z-basis for OK.

Theorem 10. [3] Let K be a cyclic number field of prime degree p > 2, K ⊆ Q(ζn), where
n = p2 p1 p2 · · · pr with r ≥ 1 and the pi distinct prime numbers such that pi ≡ 1 (mod p). If
x = a0 +∑

p−1
i=1 aiσ

i(t) ∈ OK, where ai ∈ Z, for i = 1,2, · · · , p−1, then

TrK/Q(x2) = pa2
0 + pp1 · · · pr

(
−2 ∑

1≤i< j≤p−1
aia j +(p−1)

p−1

∑
i=1

a2
i

)

= pa2
0 + pp1 · · · pr

(
p−1

∑
i=1

a2
i + ∑

1≤i< j≤p−1
(ai−a j)

2

)
.

4 CONSTRUCTIONS OF LAMINATED ALGEBRAIC LATTICES OVER NUMBER
FIELDS

In this section, we explicit constructions of algebraic densest lattices in dimensions 2 up to 6.
The strategy used is to search for submodules contained in the ring of algebraic integers that
perform the laminated lattices via canonical homomorphism. In this sense, we use center density
as a parameter, so the trace forms (Theorem 6 and Theorem 10) are important for calculating the
packing radius.

4.1 The Λ2-laminated lattice

If K = Q(ζ12 + ζ
−1
12 ), then [K : Q] = 2, {ζ12 + ζ

−1
12 ,ζ 2

12 + ζ
−2
12 } is an integral basis for K and

dK = 12. If

M = {a1(ζ12 +ζ
−1
12 )+a2(ζ

2
12 +ζ

−2
12 ) ∈ OK : a1 +a2 ≡ 0 (mod 2)},

then M is a Z-submodule of OK of rank 2 and index 2. From Theorem 6, the trace form of
α ∈M is given by

TrK/Q(α
2) = 8(a2

1−a1a2 +a2
2).

Thus, t = min{TrK/Q(α
2) : α ∈M ,α 6= 0} = 8, which is attained at a1 = 1 and a2 = 0. Since

the volume of lattice σ(M ) equals 22
√
|dK|[M : OK] = 24

√
3, it follows that

δ (σ(M )) =
(
√

23)2

24
√

3
=

1
2
√

3
,

i.e., the center density of σ(M ) is the same as that of lattice Λ2.
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4.2 The Λ3-laminated lattice

If K=Q(ζ9 +ζ
−1
9 ), then [K : Q] = 3, {ζ9 +ζ

−1
9 ,ζ 2

9 +ζ
−2
9 ,ζ 3

9 +ζ
−3
9 } is an integral basis for K

and dK = 34. If

M = {a1(ζ9 +ζ
−1
9 )+a2(ζ

2
9 +ζ

−2
9 )+a3(ζ

3
9 +ζ

−3
9 ) ∈ OK : 4a1 +4a2 +a3 ≡ 0(mod 6)

and a3 ≡ 0(mod 2)},

then M is a Z-submodule of OK of rank 3 and index 6. From Theorem 6, the trace form of
α ∈M is given by

TrK/Q(α
2) = 18(a2

1 +a1a2 +4a1a3 +a2
2 +4a2a3 +2a2

3).

Thus, t = min{TrK/Q(α
2) : α ∈M ,α 6= 0} = 18, which is attained at a1 = 1 and a2 = a3 = 0.

Since the volume of lattice σ(M ) equals 23
√
|dK|[M : OK] = 24 ·33, it follows that

δ (σ(M )) =
(
√

2 ·32)3

24 ·33 =
1

4
√

2
,

i.e., the center density of σ(M ) is the same as that of lattice Λ3.

4.3 The Λ4-laminated lattice

If K=Q(ζ24+ζ
−1
24 ), then [K :Q] = 4, {ζ24+ζ

−1
24 ,ζ 2

24+ζ
−2
24 ,ζ 3

24+ζ
−3
24 ,ζ 4

24+ζ
−4
24 } is an integral

basis for K and dK = 28 ·32. If

M = {a1(ζ24 +ζ
−1
24 )+a2(ζ

2
24 +ζ

−2
24 )+a3(ζ

3
24 +ζ

−3
24 )+a4(ζ

4
24 +ζ

−4
24 ) ∈ OK :

4a1 +3a2 +2a3 +a4 ≡ 0(mod 6)},

then M is a submodule of OK of rank 4 and index 6. From Theorem 6, the trace form of α ∈M

is given by

TrK/Q(α
2) = 24(a2

1 +2a1a2 +3a1a3 +4a1a4 +2a2
2 +4a2a3 +6a2a4 +3a2

3 +8a3a4 +6a2
4).

Thus, t = min{TrK/Q(α
2) : α ∈M ,α 6= 0} = 24, which is attained at a0 = 1 and a1 = a2 =

a3 = 0. Since the volume of lattice σ(M ) equals 24
√
|dK|[M : OK] = 29 ·32, it follows that

δ (σ(M )) =
(
√

23 ·3)4

29 ·32 =
1
8
,

i.e., the center density of σ(M ) is the same as that of the lattice Λ4.

4.4 The Λ5-laminated lattice

Let K be a number field of degree p = 5 and conductor n = 52. In this case, the Galois group
Gal(K/Q) = 〈σ〉 is cyclic of order 5, t = TrQ(ζ52 )/K(ζ52), and dK = 58. Let M be the submodule
of OK of rank 5 and index 10 given by

M =
{

a0 +a1σ(t)+a2σ2(t)+a3σ3(t)+a4σ4(t) ∈ OK :
a0 ≡ 0(mod 2),−a0 +a1 +a2 +a3 +a4 ≡ 0(mod 5)} .
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From Theorem 10, it follows the trace form of K restricted to M is given by

TrK/Q(x2) = 50(2x2
0 +6x0x1 +6x0x2 +6x0x3 +8x0x4 +6x2

1 +11x1x2 +11x1x3

+15x1x4 +6x2
2 +11x2x3 +15x2x4 +6x2

3 +15x3x4 +10x2
4),

where x0, . . . ,x4 are any integers. It follows that t = min{TrK/Q(x2) : x ∈M }= 50 is attained at
a0 = a1 = a2 = 0 and a3 = −a4 = 1. Since the volume of lattice σ(M ) equals 25

√
|dK| · [M :

OK] = 26 ·55, one has

δ (σ(M )) =
(
√

2 ·52)5

26 ·55 =
1

8
√

2
,

i.e., the center density of σ(M ) equals that of lattice Λ5.

4.5 The Λ6-laminated lattice

If K = Q(ζ36 + ζ
−1
36 ), then [K : Q] = 6, {ζ36 + ζ

−1
36 ,ζ 2

36 + ζ
−2
36 ,ζ 3

36 + ζ
−3
36 ,ζ 4

36 + ζ
−4
36 ,ζ 5

36 +

ζ
−5
36 ,ζ 6

36 +ζ
−6
36 } is a basis of K and dK = 26 ·39. If M = (2+(ζ36 +ζ36)− (ζ36 +ζ

−4
36 )− (ζ 5

36 +

ζ
−5
36 ))OK. In this case, M is a submodule of OK of rank 6 and index 72. From Theorem6, the

trace form of α ∈M is given by

TrK/Q(α
2) = 72(a2

0 +2a0a1−2a0a3−2a0a4−a0a5 +2a2
1−2a1a3−3a1a4 +a2

2
+ a2a3 +2a2a4 +a2a5 +3a2

3 +5a3a4 +2a3a5 +3a2
4 +2a4a5 +a2

5.

Thus, t = min{TrK/Q(α
2) : α ∈M ,α 6= 0} = 72 which is attained at a0 = 1 and a1 = a2 =

a3 = a4 = a5 = 0. Since volume of the lattice σ(M ) equals 26
√
| dK | [M : OK] = 212 ·36

√
3, it

follows that

δ (M) =
(
√

23 ·32)6

212 ·36
√

3
=

1
8
√

3
,

i.e., the center density of σ(M ) is the same of the lattice Λ6.

5 CONCLUSION

A construction of algebraic lattices with special features, namely, high center density and full
diversity, was presented. Each lattice was obtained as the image of the canonical homomorphism
from a suitably chosen Z-submodule of the ring of integers of the maximal real subfield of a
cyclotomic field into Rn (n-dimensional Euclidean space). The trace form of the maximal real
subfield of the cyclotomic field Q(ζn) was derived explicitly so that the minimum of the associ-
ated lattice could be determined. As a result, rotated versions of full diversity of laminated lattices
in dimensions 2 to 6 have been obtained. Although the constructed lattices are well known, this
work helps answer the question of which lattices can be realized by a given number field, as
posed in [5]. Whether the presented technique can be used to yield higher dimensional lattices
with the desired features (full diversity and high packing density) is left as a research problem.
Calculating or providing a good lower bound for the minimum product distance [6] of the lattices
obtained by the construction technique of this work is also left as a research problem.
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RESUMO. Uma construção de reticulados usando Z- submódulos de anéis de inteiros de
corpos de números é apresentada. A construção produz versões rotacionadas dos reticulados
laminados Λn para n = 2,3,4,5,6, que são os reticulados mais densos nessas dimensões. A
densidade de empacotamento esférico de um reticulado é uma função do seu raio de empa-
cotamento, o qual por sua vez pode ser diretamente calculado a partir da norma quadrada
mı́nima do reticulado. Normas em um reticulado realizado por um corpo de números total-
mente real podem ser calculadas pela forma traço do corpo restrita ao seu anel de inteiros.
Portanto, no presente trabalho, apresentamos também a forma traço do subcorpo real maxi-
mal de um corpo ciclotômico. Nosso foco é em corpos de números totalmente reais pois os
reticulados associados a eles possuem diversidade máxima. Juntamente com a densidade de
empacotamento, a caracterı́stica de diversidade máxima é desejável em reticulados que são
usados para transmissão de sinais que percorrem os canais gaussiano e de desvanecimento
Rayleigh.

Palavras-chave: empacotamento de esferas, reticulados algébricos, corpos de números,
corpos ciclotômicos.
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