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1. Introduction

Riparian vegetation is a transition zone between 
aquatic and terrestrial ecosystems (Richardson et al., 
2007) and has an important role in the functioning 
of ecosystem processes and maintenance of the 
characteristics of water bodies (i.e, hydraulic channel 
morphology, water quality, speed and residence time 
of water, stream bed and limnological variables) 

(Naiman and Décamps, 1997, Tabacchi et al., 2000; 
Francis, 2006; Richardson et al., 2007). One of the 
most important functions is the supply of organic 
matter in the form of plant detritus to the water 
body. In low-order streams, the plant remains are 
the main source of energy in the aquatic system 
(Trevisan and Hepp, 2007) since the primary 
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maior velocidade de decaimento da matéria orgânica refratária nos detritos de T. ovata. 
Os dois substratos não apresentaram diferenças na estrutura taxonômica da comunidade, 
mas apresentaram agrupamentos funcionais distintos no pico de colonização, com maior 
número de fragmentadores em T. ovata. Os diferentes estados de decomposição dos dois 
tipos de detritos vegetais apresentaram densidades faunísticas distintas; Conclusões: A 
quantidade e estado da biomassa vegetal são fatores importantes que influenciam 
a densidade e diversidade da fauna de macroinvertebrados durante o processo de 
decomposição orgânica.
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of allochthonous matter and, consequently, the 
communities and functional processes in lotic 
systems (Graça, 2001; Corbi and Trivinho-Strixino, 
2008; Beltrão  et  al. 2009; Casatti  et  al. 2009; 
Pramual and Kuvangkadilok, 2009, Zhang et al., 
2010).

The cultivation of sugarcane has expanded in 
Brazil in recent years, mainly in the Southeast and 
Northeast regions, as a result of the use of alcohol 
as an automotive fuel, with a view to diversifying 
sources of energy and consequently reducing 
dependence on fossil fuels (ANEEL, 2008). The 
consequences of replacing the native vegetation with 
this type of monoculture are not entirely known, 
but it is known that the fauna composition tends to 
change when changes occur in the type of vegetation 
(Ormerod et al., 1993).

In view of this problem, a study was 
conducted with the aim to compare the kinetics of 
decomposition and the colonization of leaf litter of 
two plant species, the native Talauma ovata (pinha-
do-brejo) and the exotic Saccharum officinarum 
(sugarcane), by aquatic macroinvertebrates. 
Talauma ovata (Magnoliaceae) is a perennial 
representative species of the riparian forest in the 
southeast region of Brazil (Antunes and Ribeiro, 
1999) with leaves devoid of pile, veins reticulate, 
simple blade with margins entire, apex and base 
acute. The leaf-detritus of this plant have been 
used previously in colonization and decomposition 
experiments (Janke and Trivinho-Strixino, 2007; 
Gimenes  et  al., 2012). The monocotyledon 
Saccharum officinarum (Poaceae) has hairy leaves 
(silica spicules) with parallel veins, simple blade, 
ciliated margin, invaginate base and acute apex.

Differences in nutritional content, structural 
features and palatability of plant detritus can 
result in different rates of leaf breakdown and 
macroinvertebrate colonization. Being an exotic 
plant with high silica content in its leaves, it 
is expected that leaf-detritus from sugarcane 
presents lower decomposition rate than the native 
plant. Similarly it should be less attractive to 
macroinvertebrate shredders. Thus, in this study 
were tested the following hypothesis: 1) the rate 
of mass loss during decomposition is lower in 
S.officinarum leaf-detritus than in native plant 
leaf-detritus; 2) the leaf-detritus of T. ovata shelters 
more shredders than S. officinarum leaf-detritus; 3) 
the numerical macroinvertebrate density is greater 
when the leaf-detritus structural features is more 
heterogeneous.

production is limited by the shading vegetation itself 
(Abelho, 2001, Gonçalves Junior et al. 2006; Graça 
and Canhoto, 2006). In many cases, the leaf-detritus 
are the most abundant fraction of allochthonous 
particulate organic matter (Gonçalves Junior et al., 
2006) in these systems and its decomposition is an 
important process to input organic carbon on the 
stream.

The decomposition of this leaf litter in streams 
is a process that depends on the attributes of the 
plant material and the intrinsic characteristics of 
the stream, each of which affects the formation 
of biofilm on detritus, microbial decomposition 
and macroinvertebrate colonization (Wright and 
Covich, 2005; Leroy and Marks, 2006; Trevisan 
and Hepp, 2007).

The stages of the decomposition of leaf-
detritus, the analysis of conditioning factors and 
participation of aquatic biota in this process have 
been analysed and discussed by several authors 
(Mason, 1980; Gessner et al., 1999; Cunha-Santino 
and Bianchini Junior, 2000, 2006; Abelho, 2001; 
Graça, 2001).

The role of aquatic macroinvertebrates is 
recognized for its possible association with the 
mechanical process of fragmentation (Wright 
and Covich, 2005; Gonçalves Junior et al., 2006; 
Wantzen and Wagner, 2006, Tanaka et al., 2006), 
which tends to increase the contact surface available 
for the action of microorganisms. However, the 
contribution of macroinvertebrates in tropical 
streams to this process is not yet fully elucidated 
because according to Moulton  et  al. (2010) the 
shredders are in low abundance and proportion in 
these systems. It is known that plant remains are 
potential sources of food and can serve as shelter 
for these fauna or there may be an interaction 
between these factors (Dudgeon and Wu, 1999; 
Graça, 2001). Therefore the presence of riparian 
vegetation is a very important resource for the 
macroinvertebrate fauna.

Freshwater systems and riparian forest are 
subject to degradation in different places (Tockner 
and Stanford, 2002). It is increasingly recognized 
that the rehabilitation and recovery of these systems 
are essential for the conservation of biodiversity 
and maintenance of their proper role in the 
ecosystem (Kyle and Leishman, 2009). However, 
inappropriate agricultural practices have led to 
the loss of native vegetation, including riparian 
forest, and its replacement by monocultures of 
economic interest (Corbi and Trivinho-Strixino, 
2006) altering markedly the quality and quantity 
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10% formaldehyde solution. The organisms were 
identified ​​with the aid of identification keys and 
specialists (Trivinho-Strixino, 2011; Nieser and 
Melo, 1997; Domínguez et al., 2006, Domínguez 
and Fernández, 2004; Brinkhurst and Marchese, 
1989; Lecci and Froehlich, 2007; Costa et al. 2004; 
Pes et al., 2005; Passos et al. 2007).

The trophic structure of the settler community 
was assessed by referring to the classification of 
feeding guilds Merritt and Cummins (1996) 
and Cummins  et  al. (2005), complemented by 
microscopic examination of digestive tracts of 
the larvae of Chironomidae. In this study were 
considered the following feeding groups: Collectors, 
Shredders, Scrapers and Predators.

The remaining plant detritus was dried at 60 °C 
for 48 hours and its mass determined on analytical 
balance, in order to determine the organic matter 
mass decay. To determine the inorganic matter 
aggregated in plant detritus during the experiment, 
an aliquot of each sample was calcined for 2 hours 
at 550 °C (Wetzel and Likens, 1991). The cell wall 
fractions (CWF) of the remaining detritus were 
determined by a modified analytical method of 
Van Soest and Wine (1967) for all sampling periods.

2.3. Data treatment

To analyze the decay of organic matter, a first 
order kinetic model (Equation 1) was adjusted by 
the Levenberg-Marquardt algorithm (Press  et  al., 
1993; Bianchini Junior., 2003), where the inorganic 
fractions obtained from calcination were subtracted 
from the total remaining mass. To determine 
the CWF, another kinetic model was fitted 
(Equation 2):
POM = POM

L
.℮ –k

1
t + POM

R
.℮ –k

2
t 	 (1)

POM = POM
R
.℮ –k
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where, POM  =  particulate organic matter; 
POML  =  labile particulate organic matter; 
POMR  =  refractory particulate organic matter; 
k1  =  POML mineralization coefficient (day–1), 
k2 = k3 = POMR mineralization coefficient (day–1); 
℮ = vase of natural logarithms and t = time (days). 
The data were subject to the generalized linear 
model (GLM) to check for possible differences 
in weight loss and CWF (response variables) 
in terms of type of leaf-detritus (T. ovata and 
S. officinarum  -  categorical variable), sampling 
periods (time (days) – continuous variable) and an 
interaction between these two factors.

The half-life (t ½) was determined from the 
coefficient k, according to the following Equation 3:

2. Material and Methods

2.1. Experimental procedures

The leaves of T. ovata were collected on the 
banks of the stream Córrego do Espraiado, São 
Carlos, upstate São Paulo, Brazil at the beginning 
of flowering, ie, in the dry season. The leaves 
undergoing senescence were taken directly from 
the adult plant. The leaves of S. officinarum were 
collected within 30 km of the T. ovata site, in 
a monoculture located between the towns of 
Araraquara and Ibaté (21 ° 52 ‘S by 48 ° 0.5’ W), 
also in the dry season, when the plant was in the 
ripening period (just before harvest). The leaves 
of both species were washed in running water to 
remove any material that could interfere with the 
gravimetric method (inorganic material, small 
animals, animal feces) and were subsequently dried 
at 60 °C to constant weight and cut in fragments 
(average size = 8.02 ± 3.62 cm). This procedure is 
recommended for better assessment of the rates of 
colonization and to make the samples more uniform 
(Bärlocher, 1997).

The leaf fragments were placed in polyethylene 
bottles (volume  =  500 mL) with approximately 
220 to 250 holes (0.5 cm average diameter) and 
screw caps. These bottles minimize the drift of 
leaf particles fragmented during the experiment. 
Forty-two of these bottles, half containing 12 g 
of T. ovata leaf-detritus and half with the same 
weight of S. officinarum leaf-detritus, were deposited 
on the Córrego do Espraiado stream bed stretch 
(depth < 1m), spaced by about 0.5 m. This is a 
first order stream located on coordinates 21° 53‘ S 
and 47° 52’ W in a Cerrado area with slightly acid 
pH (average = 5.49 ± 0.33), oxygen concentration 
around 6.91 ± 0.56 mg.L–1 and, in the period of 
the experiment, showed a minimum temperature 
of 14 °C and maximum of 20 °C. It is preserved, 
heterogeneous riparian vegetation, with sandy 
bottom substrate and low water velocity (Corbi and 
Trivinho-Strixino, 2008).

2.2. Data collection

The samples (3 bottles of each detritus) were 
removed after 7, 15, 34, 44, 61 and 75 days of 
incubation, isolated in plastic carboys containing 
water from the site and transported to the 
laboratory for screening procedures. The fauna 
was sorted on illuminated trays and naked eye, 
still alive, after washing through a sieve (mesh 
0.25 mm) and fixed in 70% ethanol, except 
Oligochaeta and Turbellaria previously fixed in 
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more slowly than the labile fraction. The rate 
of decomposition of this portion was higher in 
T. ovata (k2 = 0.006 day–1, t ½ = 119.0 days) than in 
S. officinarum (K2 = 0.005 day–1, t ½ = 133.3 days) 
(Table 1).

At the end of the experiment, there remained 
55.8% ± 4.8 and 34.9 ± 3.2% of the detritus of 
S. officinarum and T. ovata respectively. The statistical 
analysis showed significance differences between the 
two types of leaf-detritus (F1,8 = 197.24; p < 0.001) 
and sampling periods (F1,8 = 410.25; p < 0.001). 
However, no significance difference was founded 
when considered the interaction between these two 
factors on the biomass loss (F1,8 = 0.32; p = 0.580).

S. officinarum showed sligth differences in 
their leaf-detritus appearance and the proportion 
CWF:OC was always high (beginning  =  88:11; 
middle  =  98:2; end  =  85:14 ) during all 
decomposition process. In contrast, the leaf-detritus 
of T. ovata changed continuously its appearance 
and proportion CWF:OC (beginning  =  64:36; 

t ½ = ln (0.5) /-k 	 (3)

To evaluate the physical feature of leaf-detritus 
(heterogeneity) during sampling periods were 
considered: 1) the change of the leaf appearance, 
through observation in stereoscopic microscopy 
and, 2) the change in proportion of CWF in relation 
to other components (CWF:OC) (intrinsic or 
non-intrinsic).

The fauna data were analyzed in number of 
individuals per gram of dry weight (n. indiv. g dry w–1), 
relative participation, richness, diversity and 
functional feeding groups. The sampling periods 
(time) and the type of leaf-detritus always were 
considered continuous and categorical variables 
respectively and the remaining variables as response. 
To evaluate the influence of the sampling periods, 
type of leaf-detritus and the interaction between 
these two factors on macroinvertebrate numerical 
densities, were used GLM and ANOSIM analysis. 
To diversity was performed a GLM and evaluated the 
Brillouin diversity indices, which is indicate when 
the random of samples is not secure (Magurran, 
2004). The density of each functional feeding 
group was evaluated using 4 GLMs (one for each 
functional group), considering sampling periods, 
type of detritus and interaction between these 
two factors. Furthermore, a GLM was performed 
in the period of the peak colonization, to each 
functional feeding group, to compare the two types 
of leaf-detritus. To evaluate the effects of the plant 
detritus, sampling periods and interaction between 
these two factors on the functional structure of the 
community, was used a MANOVA/Pillai Trace test 
(Scheiner, 2001; Gonçalves et al., 2012).

3. Results

3.1. Kinetics of leaf-detritus decomposition

According to the kinetic model adopted above, 
the loss of labile fraction (POML) during the 
decomposition was 12.33 ± 6.15% in S. officinarum 
and 37.20 ± 9.68% in T. ovata and loss of refractory 
fraction (POMR) was 87.7 ± 4.9% in S. officinarum 
and 62.8  ±  8.0% in T. ovata (Figure  1). The 
coefficient k1 (0.5  ±  2.0 day–1) of the adjusted 
model for S. officinarum was clearly greater than 
for T.  ovata (0.3  ±  0.3 day–1). However, the 
amount of POML released by T. ovata was three 
times higher than that observed in S. officinarum 
decomposition. Consequently, the half-lives of 
these remaining materials were 1.4 and 2.2 days 
respectively in S. officinarum and T. ovata (Table 1). 
For both species, the refractory portion was released 

Table 1. Parameters of the decay kinetic models used for 
T. ovata and S. officinarum. Where, POML = labile/soluble 
particulate organic matter; POMR = refractory particulate 
organic matter; k1 = mineralization coefficient for POML; 
k2 = POMR mineralization coefficient; t1/2(k1-k2) = half-life 
related to k1 and k2.

Parameter T. ovata S. officinarum
POML (%) 37.2 ± 9.7 12.3 ± 6.2
POMR (%) 62.8 ± 8.0 87.7 ± 4.9
k1 (day-1) 0.3 ± 0.3 0.5 ± 2.0
k2 (day -1) 0.006 ± 0.002 0.005 ± 0.001
r2 0.98 0.98
t1/2 (k1) (day) 2.2 1.4
t1/2 (k2) (day) 119.0 133.3

Figure 1. Decay of organic matter (%) in S. officinarum 
and T. ovata leaf-detritus during the colonization 
experiment.
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of 14.3 indiv. g dry w–1 (Figure  4b). For the 
taxonomic structure of community, the statistical 
analysis indicated significance difference only to 
the time of colonization (F1,8 = 178.31; p = 0.005). 
The similarity this analysis showed no significance 
difference (R = 0.009; p = 0.360) between the two 
types of leaf-detritus. The community diversity 
ranged with the types of detritus (F1,8  =  6.53; 
p = 0.003) and with the interaction between the 
time of colonization and the type of leaf-detritus 
(F1,8 = 45.116; p < 0.001), being the macrofauna 
more diverse in S. officinarum then T. ovata.

Overall, T.  ovata was colonized by: 48.6% 
collectors; 30.8% shredders, 19.1% predators and 
0.2% scrapers (Figure 5a). S. officinarum detritus 
were colonized by 61.1% collectors, 10.3% 
shredders, 26.8% predators and 1.81% scrapers 
(Figure 5b). The numerical density of functional 
feeding groups was not different (F4,5  =  0.51; 
p = 0.720) when analyzed the effect of the types of 
leaf-detritus on all macroinvertebrate community, 
but there was significance difference when considered 
the time of decomposition (F4,5 =33.46; p < 0.001). 
This was mainly by differential participation of 
the collector (F1,8 = 7.72; p = 0.02) and predator 
groups (F1,8 = 26.89; p < 0.001). In contrast the 
analysis considering only the functional feeding 

middle  =  79:21; end  =  84:16) until the end of 
the process (Figure  2). A significance difference 
between the two types of detritus was showed by 
the statistical test (F1,10 = 17.10; p = 0.002).

3.2. Fauna associated with detritus

Overall, 3,395 specimens of macroinvertebrates 
from 66 taxa were analysed (Table  2). The most 
prevalent were the chironomids Endotribelos, 
Caladomyia, Tanytarsus, Ablabesmyia (Figure  3) 
and the mayfly Miroculis, each contributing more 
than 5% of the total. All the other taxa were in low 
abundance. Particularly, notable  was the massive 
contribution of Endotribelos larvae on T.  ovata 
detritus, with 22% of the total fauna, while on 
S.  officinarum these contributed only 4%; thus, 
the relative abundance of the Endotribelos on 
T. ovata detritus was almost six times higher than 
on S. officinarum.

During experiment it was observed that the 
maximum numerical density of macroinvertebrates 
occurred on the native plant detritus in the 
intermediate period (34 and 44 days of 
colonization  –  Figure  4a), showing densities 
2.3 and 2.7 times higher than in leaf-detritus 
of S.  officinarum. In this period, the detritus of 
S. officinarum showed average numerical densities 

a b

Figure 2. Density of the macroinvertebrates (columns) and hypothetical curve of heterogeneity of leaf-detritus (dotted 
line) in T. ovata (a) and S. officinarum (b) during the experiment, demonstrating the cyclic model of invasion and 
exclusion of Armesto et al. (1991).
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velocity decay (k coefficients) and half-life times of 
the labile and refractory portion of the leaf-detritus 
(Bianchini Junior, 1999). The differences in decay 
rates of plant mass, whether POML or POMR, 
observed in the experiment with two types of plant 
detritus can be attributed to factors, like chemical 
composition of structural parts (e.g. cellulose and 
lignin) differences between the two species and their 
nutrient content (see in Mun et al., 2001). The mass 
loss in the first days of decomposition (POML) is, 
according to Davis III  et  al. (2003), due to the 

groups on the peak of colonization (34-45 days) 
showed significance difference between the two 
types of plants detritus in three groups: collectors 
(F1,3 = 51.92; p = 0.001), shredders (F1,3 = 473.38; 
p = 0.002) and predators (F1,3 = 95.68; p = 0.001), 
with higher densities in T. ovata than S. officinarum.

4. Discussion

In general, the kinetic of decomposition is 
discussed in terms of the amount of biomass lost, 

Table 2. List of taxa and numbers of individuals observed in detritus of T. ovata and S. officinarum. The bold numbers 
represents the taxa representing > 10% of total fauna.

Taxa T. ovata S. officinarum Taxa T. ovata S. officinarum
Plecoptera   Chironomidae

Tupiperla 3 2 Ablabesmyia 125 141
Anacroneuria 3 3 Beardius 2 -
Kempnyia 8 4 Caladomyia 118 145

Ephemeroptera   Chironomus 22 18
Guajirolus 6 13 Constempellina - 1
Massartela 1 - Corynoneura 21 34
Askola 25 56 Endotribelos 408 52
Hagenulopsis 39 31 Fissimentum 1 -
Miroculis 94 104 Fittkauimyia 2 2
Leptophlebiidae 3 1 Labrundinia 12 9

Hemiptera   Larsia - 1
Neoplea 75 56 Lopescladius 8 6
Paraplea 46 33 Nanocladius 11 5

Odonata   Oukuriella 3 -
Limnocoris 1 4 Parametriocnemus 7 -
Argia 3 1 Pentaneura 37 58

Trichoptera   Phaenopsectra 31 14
Atanatolia - 2 Polypedilum 93 23
Cyrnellus 1 - Rheotanytarsus 6 7
Macronema 5 10 Stempellina - 2
Marilia 14 25 Stempellinella 51 36
Neotrichia 1 1 Stenochironomus 1 4
Oecetis - 3 Tanytarsini no det. 117 95
Phylloicus 4 3 Tanytarsus 307 139
Smicridea 10 5
Triplectides egleri 14 9 Hydracarina 2 4

Coleoptera  
Elmidae 1 - Annelida
Heterelmis(larvae) 1 1 Helobdella 1 13
Heterelmis(adults) - 17 Brinkhustia americanus 4 6
Hexacylloepus (larvae) - 1 Allonais paraguayensis 49 56
Hexacylloepus (adults) 3 4 Slavina - 1
Xenelmis (larvae) - 1 Bothrioneurum americanus 2 2
Gyretes 2 6 Nais comunis - 1

Diptera   imature Tubificidae 1 2
Ceratopogonidae 12 10
Empididae 1 - Turbellaria
Tabanidae 1 - Girardia tigrina 38 51
Tipulidae 2 -

Total 379 406 Total 1480 928
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leaf-detritus of T. ovata releases a major portion of 
this labile material, the velocity of degradation was 
slower than S. officinarum, probably because of the 
larger amounts of energy compounds (mono and 
polysaccharides) on sugarcane, which are essential 
for microbial metabolism (Gimenes et al., 2012).

The fraction POMR has a higher proportion 
of poorly degradable material, such as lignin, 
cellulose and hemicellulose, explaining its slow 
decomposition. This trend towards a lower rate of 
decomposition after the first days was observed in 
various studies (Bianchini Junior, 1999). The larger 
proportion of macroinvertebrates shredders in the 
peak of colonization in the leaf-detritus of T. ovata 
and its apparent tearability of the detritus must have 
tended to accelerate the mechanical fragmentation 
(Clapcott and Bunn, 2003, Gessner et al., 1999). 
These two factors possibly influenced in the 

leaching process and corresponds to organic and 
inorganic compounds present in the protoplasm 
and soluble fractions of the detritus. Although the 

Figure 3. Relative participation of the most representative 
Chironomidae taxa on leaf-detritus of T. ovata and S. 
officinarum.

Figure 5. Relative participation (%) of macroinvertebrate functional feeding group during colonization.

a b

Figure 4. Mean macroinvertebrate density (ind.g dry weight–1) (columns) and % of remaining dry weight (solid 
lines) during the experiment.

a b
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sequence of changes in colonization by organisms, 
which modifies the properties of the surface and 
improves the habitat for subsequent colonists 
(Gonçalves et al., 2004; Ligeiro et al., 2010).

The results of this study indicate, in general, 
that the state of decomposition of plant detritus 
and the amount of biomass present at each moment 
(time of colonization) were more important to the 
macroinvertebrate density than the type of plant 
detritus. Collectors, like Caladomyia, Stempellina, 
Tanytarsus, Allonais and Triplectides, which high 
participation on the detritus native plant, may 
not have been active in the process of decay of the 
organic matter in the leaf-detritus, but possibly used 
fine particulate organic matter as food source or 
the detritus provides place of refuge or settlement 
(Capello  et  al. 2004; Mathuriau and Chauvet, 
2002). The colonization of the leaf-detritus of 
T. ovata by great numbers of larvae of Endotribelos, 
a chironomid larva with several shredder species 
(Roque et al., 2005) may have played an important 
part in the decomposition of the native plant. 
Similar results were observed by Clapcott and Bunn 
(2003) in Australia, in the colonization of plant 
detritus of Saccharum, Urochloa and Eucalyptus 
(native) where the action of shredders (in this 
case, the trichopteran Anisocentropus kirramus) was 
greater on native vegetation.

According to Ormerod et al. (1993), changes 
in the riparian vegetation appear to affect directly 
the composition of the benthic macroinvertebrate 
community. In the present study, what could be 
observed was the different proportion of functional 
groups in the two types of detritus in the peak 
of colonization, but not distinct taxonomic 
communities. Studies to be conducted in streams 
impacted by the monoculture of sugarcane may 
yet show whether there are major changes in these 
communities.

5. Conclusion

Regarding the hypotheses made at the outset, it 
can be concluded: (1) the rate of mass loss during 
decomposition was lower in S. officinarum detritus 
than in T.  ovata; (2) T.  ovata presented more 
shredder macroinvertebrates than S.  officinarum; 
(3) When the leaf-detritus were more heterogeneous 
there were greater macroinvertebrate densities. In 
addition, the amount and state of the biomass 
were important factors influencing the density and 
diversity of the macroinvertebrate fauna throughout 
the process of organic decomposition.

greater velocity of decay of the refractory material 
in T. ovata leaf-detritus, relative to S. officinarum. 
According to Petersen (1984), leaf-detritus that 
decompose faster support higher densities of 
settlers, as observed in T.  ovata. Gimenes  et  al. 
(2012) in a decomposition experiment in vitro (ie, 
without macroinvertebrates or stream action) with 
the same plant species observed that T. ovata leaf-
detritus had a concentration of CWF 20% higher 
than that found in the present study. In addition, 
in the same experiment, the portion of the POMR 
in T. ovata leaf-detritus decomposed more slowly 
than in S. officinarum (K2 = K4 = 0.005 day–1 and 
K2 = K4 = 0.007 day–1, respectively), contradicting 
the present result. These results seem to indicate the 
influence of the fauna accelerating the fragmentation 
of the leaf-detritus of T. ovata in the field experiment, 
fact not observed in S. officinarum.

The dynamics of macrofauna colonization on 
the plant detritus seems to follow the cyclic model 
of invasion and exclusion of Armesto et al. (1991), 
which shows alternating periods of high and low 
spatial heterogeneity during decomposition, the 
highest diversity and density occurring in periods of 
greater heterogeneity of the substrate. As the detritus 
of S. officinarum showed no obvious changes during 
the experiment, colonization remained almost 
constant, in contrast to T. ovata, on which the 
maximum density of macroinvertebrates occurred 
when there was greatest heterogeneity of the detritus. 
The schematic diagram in Figure 2 illustrates the steps 
in the process of colonization on the two detritus: at 
the beginning of experiment, both plant detritus had 
low densities of macroinvertebrates and there was a 
marked homogeneity of the leaf substrates, due to 
the still little action of decomposing mechanisms. 
Next, the density increased and the substrate had 
already become more heterogeneous (evident in 
Figure 2a), due to microbial and macroinvertebrate 
action. In the last days of the experiment, the 
substrate T. ovata returned to a more homogeneous 
appearance, reflecting the size and state of the 
particles at a late stage of decomposition. As seen 
in Figure 2b, the appearance of the leaf-detritus of 
S. officinarum did not seem to change much during 
the experiment, indicating low heterogeneity, and 
this was accompanied by a similar colonization 
throughout. Capello et al. (2004) reported similar 
observations in his study of the decomposition 
of leaf-detritus of Salix  humboldtiana. Similarly, 
Gonçalves et al. (2012) attributed the changes of 
the physical state of detritus and faunal composition 
to the natural degradative succession process: a 
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