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Abstract: Aim: Ecological niche models (ENMs) are based mainly on environmental (mostly climatic) 
and occurrence data to predict the potential distribution of species. In freshwater habitats, species dispersal 
is not restricted only by physical barriers but also by the directional movement of the hydrographic 
network, which can be considered through spatial predictors. Here, we aim to evaluate the effect of 
including asymmetrical and symmetrical spatial predictors in the potential geographic distribution of a 
freshwater fish in the Tocantins-Araguaia River basin, Brazil.  Methods: For this, we built models with 
seven variable sets representing the climatic and spatial models, as well as their interactions.  Results: We 
found that the overall best models (higher evaluation and lower variation among modeling methods) are 
those built using AEM (asymmetrical dispersal [i.e., dispersal along the river flow path]), either alone or 
in combination with environmental variables (ENV). Moreover, the inclusion of asymmetrical dispersal 
variables, taking into account dispersal limitations of species, decreased the overprediction to climatically 
suitable but disconnected areas through rivers.  Conclusions: Therefore, future ENM studies, especially 
those using species groups with directional dispersal, should consider the inclusion of asymmetrical 
spatial predictors to increase the model’s accuracy and ecological reality. 

Keywords: Asymmetric Eigenvector Maps; Ecological Niche Models; directional dispersal; 
Principal Coordinates of Neighbour Matrices; spatial modeling.

Resumo: Objetivo: Os modelos de nicho ecológico (ENMs) são baseados principalmente em 
dados ambientais (principalmente climáticos) e de ocorrência para prever a distribuição potencial das 
espécies. Em habitats de água doce, a dispersão das espécies não é restrita apenas por barreiras físicas, 
mas também pelo movimento direcional da rede hidrográfica, o qual pode ser considerado por meio de 
preditores espaciais. Neste estudo, nosso objetivo é avaliar o efeito da inclusão de preditores espaciais 
assimétricos e simétricos na distribuição geográfica potencial de um peixe de água doce na bacia do rio 
Tocantins-Araguaia, Brasil.  Métodos: Para isso, construímos modelos com sete conjuntos de variáveis 
representando os modelos climáticos e espaciais, bem como suas interações.  Resultados: Descobrimos 
que os melhores modelos em geral (maior avaliação e menor variação entre os métodos de modelagem) 
são aqueles construídos usando AEM (dispersão assimétrica [ou seja, dispersão ao longo do fluxo do rio]), 
seja sozinho ou em combinação com variáveis ambientais (ENV). Além disso, a inclusão de variáveis 
de dispersão assimétrica, levando em consideração as limitações de dispersão das espécies, diminuiu a 
superpredição de áreas climaticamente adequadas, mas desconectadas por rios.  Conclusões: Portanto, 
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suitable areas) (Mendes  et  al., 2020). Although 
such approaches can be suitable to describe the 
movement of many terrestrial species, they cannot 
account for the whole complexity of asymmetrical 
movements.

Asymmetrical movement is the occurrence 
of a preferential direction of migration, i.e., the 
probability of moving in one direction is not 
the same as moving in the opposite direction 
(Pringle et al., 2011; Acevedo & Fletcher Junior, 
2017). Asymmetrical dispersal has been reported 
in various ecological systems and for a variety 
of groups. For example, asymmetrical dispersal 
due to oceanic and stream currents for many 
species (Riginos  et  al., 2019), and wind patterns 
generating directional dispersal in fungal, orchid, 
and zooplankton species (Rieux  et  al., 2014; 
Acevedo et al., 2015). Also, asymmetric dispersal 
can arise or intensify due to landscape fragmentation 
and climate change (Pavlacky Junior et al., 2012; 
Acevedo et al., 2020; Dalui et al., 2020). Specifically 
in freshwater environments, species dispersal is 
constrained not only by geographical distance but 
also by the hierarchical structure and flow direction 
of rivers (Domisch et al., 2015). Consequently, in 
these systems, there is a predominant downstream 
direction of migration (Asymmetrical dispersal: 
Pringle et al., 2011; Altermatt et al., 2013). Thus, 
dispersal proxies that account for asymmetrical 
(directional) movements are more appropriate 
to characterize species movement in freshwater 
systems (Altermatt, 2013; Mozzaquattro  et  al., 
2020). Although some recent studies have addressed 
the impacts of dispersal limitation in ENMs 
in freshwater environments (Bush & Hoskins, 
2017; Perrin  et  al., 2020), few studies explicitly 
have included flow direction in their dispersal 
metrics [e.g., Ver Hoef et al. (2006)].

Spatial eigenfunction analysis has been 
extensively employed in metacommunity studies 
as a proxy for spatial dispersal [e.g., Griffith & 
Peres-Neto (2006); Heino et al. (2015)]. Among 
those, we can highlight asymmetrical (AEM - 
Asymmetric eigenvector maps) (Blanchet  et  al., 
2008) and symmetrical (e.g., PCNM - Principal 
coordinates of neighbor matrices) spatial predictors 
(Borcard & Legendre, 2002). These predictors can 

1. Introduction

Ecological Niche Models (ENMs) use 
environmental (mostly climatic – abiotic) and 
species distribution (mostly occurrences) data to 
predict climatically suitable areas for species survival 
(Peterson et al., 2011; Araújo & Peterson, 2012; 
Peterson & Soberón, 2012). ENMs have been widely 
used for predicting the species’ potential distribution 
as a species conservation tool in poorly known areas 
(Guisan  et  al., 2013). Moreover, they have been 
used in different research areas, such as climate 
change (Nabout  et  al., 2011; Anderson, 2013; 
Ruaro et al., 2019; Ferreira et al., 2021), invasive 
species (Jiménez-Valverde  et  al., 2011), disease 
transmission (Peterson et al., 2005), delimitation 
of conservation areas (Carvalho et al., 2017), the 
effect of habitat loss (Peterson et al., 2006), among 
others [see Peterson (2006) for more applications].

The factors determining species distribution 
regarding their niche are represented in the BAM 
diagram (Biotic, Abiotic, and “Movement”) 
(Soberón, 2007). However, correlative ENMs often 
use only species occurrence data and environmental 
factors (abiotic) (Peterson et al., 2011). Therefore, 
including Biotic and Movement factors in ENMs 
are current knowledge frontiers to improve the 
predictions of species distributions, and some recent 
papers have used these new predictors in ENMs [see, 
for example, Barve et  al. (2011); Cardador et  al. 
(2014); Cunha et al. (2018); Gherghel et al. (2018)].

Movement constraints can be inserted as 
a component of the ENMs by including areas 
environmentally accessible or inaccessible to species, 
functioning as a proxy of dispersal limitation or 
migration rate (Miller & Holloway, 2015). In this 
sense, identifying relevant movement constraints 
and successfully incorporating them into ENMs 
are crucial to understanding landscape-habitat 
connectivity and species dispersal (Vasudev et al., 
2015; Perrin  et  al., 2020). Some studies have 
successfully included dispersal proxies as predictors 
in ENMs, generally through distance functions 
(e.g., Euclidean and Kernel distances) and fixed 
dispersal rate (Barbet-Massin  et  al., 2012b; 
Holloway  et  al., 2016; Monsimet  et  al., 2020), 
either a priori (i.e., as explanatory variables) or 
a posteriori (i.e., by overlapping accessible and 

futuros estudos de ENM, especialmente aqueles que envolvem grupos de espécies com dispersão 
direcional, devem considerar a inclusão de preditores espaciais assimétricos para aumentar a precisão 
do modelo e sua aplicabilidade ecológica. 

Palavras-chave: Mapas Assimétricos de Autovalores; Modelos de Nicho Ecológico; dispersão 
direcional; Coordenadas Principais de Matrizes de Vizinhos; modelagem espacial.
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be used by inserting the directional effect of species 
dispersal in many macroecological approaches and 
at many scales (Blanchet et al., 2011). Moreover, 
recent studies have shown the importance of AEM 
filters as a surrogate for dispersal in freshwater 
metacommunity structuring, which, sometimes, 
contributes more than environmental processes 
[e.g., Dong  et  al. (2016); Mozzaquattro  et  al. 
(2020); Rocha et al. (2020)]. Besides the potential 
of such spatial predictors to account for the dispersal 
structure of species, for our knowledge, there is no 
study using them to evaluate dispersal constraints 
(either asymmetrical or symmetrical) in ENMs.

Therefore, in this study, we aim to evaluate the 
effect of including asymmetrical and symmetrical 
dispersal predictors in the potential geographic 
distribution of Aspidoras eurycephalus, a Neotropical 
fish endemic to the studied area. Considering the 
study objective, we selected one Neotropical basin 
(Tocantins-Araguaia River basin) and one fish 
species occurring in this basin. This basin is located 
in the central portion of Brazil and has a bioclimatic 
variability mainly along the latitudinal gradient. 
Moreover, the basin is divided into two major 
sub-basins (Tocantins and Araguaia) connected in 
the northernmost part of the basin, where some 
species have been recorded only in one sub-basin 
(e.g., our model species). Therefore, the latitudinal 
gradient of climatic variables and the longitudinal 
dispersal limitation (except for one connection in 
the north region) support this basin as a suitable 
model region to evaluate the influence of directional 
spatial predictors on ENMs. We hypothesize that 

models built with variables including the directional 
dispersal effect (AEM) through the rivers will 
produce more realistic and accurate models since 
freshwater fish species have directional dispersal 
routes through the hydrographic network.

2. Methods

2.1. Study area

The study area of the ENMs is the Tocantins-
Araguaia River basin, covering the entire 
hydrographic network. This basin has two major 
rivers (Tocantins and Araguaia), forming two sub-
basins that merge in the north region, close to the 
mouth (Figure  1). Therefore, a species occurring 
exclusively in one sub-basin needs to disperse a long 
way through the main river course in that sub-basin 
to occupy the other sub-basin. Thus, this basin is an 
interesting area for studies on dispersal limitation 
because it shows the species effort to disperse 
between the two basins (Tocantins and Araguaia). 
The entire hydrographic network was rasterized 
into grid-cells with 0.5º resolution (latitude and 
longitude), totaling 282 cells for the Tocantins-
Araguaia basin (Figure 2A).

2.2. Species occurrence data

We obtained the fish occurrence data from 
specific online databases: Species Link, Global 
Biodiversity Information Facility (Gbif ), and 
FishBase (Froese & Pauly, 2019). All records are 
from fish collections and museums, such as the 
UNT (Fish collection of the Federal University 

Figure 1. Study area of the Tocantins-Araguaia River basin together with Aspidoras eurycephalus occurrences (black dots).
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of Tocantins) and the collection time frame varies 
from 2002 to 2012. We used Aspidoras eurycephalus 
Nijssen & Isbrücker, 1976 as our model species to 
evaluate the contribution of spatial predictors in 
the potential distribution. This small catfish of the 
order Siluriformes is endemic to the upper Tocantins 
River sub-basins, with a maximum size of 3 cm and 
wide distribution in this river (Reis et al., 2003). 
We removed the duplicated occurrence points 
(more than 1 point in the same grid-cell), resulting 
in 23 unique occurrence points of this species 
(Figure  1). Moreover, because presence-absence 
methods (e.g., GLM) require absence records, we 
generated 56 pseudo-absences (~20% of study area 
cells) randomly distributed in all extent area (1 per 
grid-cell), avoiding grid-cells containing occurrence 
records (Barbet-Massin et al., 2012a).

2.3. Environmental data

The environmental variables (ENV) used 
were the 19 bioclimatic variables from the online 
database Worldclim (Hijmans  et  al., 2005). 
We rescaled the variables to a resolution of 0.5º 
(~ 55 km) using the function aggregate from the 
raster package (Hijmans, 2019), and then used 
a factorial analysis (FA) using varimax rotation 
to remove collinearity among variables. For this, 
we used the functions fa and fa.parallel of psych 
package (Revelle, 2019) of the R software (R Core 

Team, 2019) to determine the adequate number 
of non-orthogonal axes. We determined four axes 
(i.e., the number of factors with eigenvalues higher 
than simulated eigenvalues) through a screen plot 
of actual data and simulated data eigenvalues, and 
then selected the variables with the highest loading 
(- or +) in each axis. The environmental variables 
selected were: BIO1 = Annual Mean Temperature, 
BIO2 = Mean Diurnal Temperature Range, 
BIO13 = Precipitation of Wettest Month, and 
BIO15 = Precipitation Seasonality. It is important 
to note that, whenever possible, predictors should 
be chosen considering the species biology, however 
in the absence of such information, statistical 
selection (as used here) have been widely used. 
In this sense, the choice of environmental variables 
based on species biology can lead to an increase in 
the importance of environmental variables.

2.4. Dispersal-related predictors

2.4.1. Asymmetrical binary matrix

The binary matrix was created through the 
grid-cells of the Tocantins-Araguaia basin with a 
resolution of 0.5º (latitude e longitude) (Figure 2A). 
This matrix consists of river connections (edges) in 
the columns and numbers of each cell (nodes) in the 
rows (Figure 2B and 2C). We started counting the 
grid-cells containing rivers upstream, with the first 

Figure 2. Conceptual diagram of calculation of asymmetrical binary matrix and asymmetrical and symmetrical spatial 
filters. A) Gridded Tocantins-Araguaia map subdivided into sub-basins; B) Determination of nodes and edges in a 
stretch of the gridded basin; C) Directionality matrix using the nodes and edges in a stretch of the gridded basin; 
D) Calculation of AEM using SVD or PCA, generating the spatial eigenvectors (AEM variables) used for modeling; 
E) Selection method (Broken stick) to determine the AEM variables to be used for modeling; F) Selection method 
(Moran’s I) to determine the PCNM variables to be used for modeling; G) Conceptual model (Response [Presences 
and Pseudo-absences] ~ Predictors [ENV+PCNM+AEM]) used to generate the ENMs.
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grid-cell corresponding to the mouth of the basin. 
The first connection (E1) received value 1 for all 
nodes of the basin. The subsequent connections (E2, 
E3, ...) also received value 1 for all nodes, except for 
the first node with 1 in this connection. We repeated 
this step until we reached a tributary (lower order) 
river. In this case, we started a new edge (e.g., E7 in 
our study), assigning value 1 for all nodes in this 
connection and subtracting the first node in the 
following edges of this tributary river. Once we 
finished the last edge in the tributary, we returned to 
the main connection (the entire basin), attributing 
value 1 to the remaining nodes until we reached 
another tributary. We repeated this process until 
we reached the last edge, which usually contains 
the source furthest from the mouth of the basin 
(Figure 2C). We ended up with an asymmetrical 
(directional) matrix with 282 grid-cells (nodes) and 
420 connections (edges). This methodology is based 
on Blanchet et al. (2008).

2.4.2. AEM and PCNM calculation and axes 
selection

We used asymmetrical and symmetrical spatial 
filters as dispersal predictors in the construction 
of ENMs. The spatial filters used were PCNM 
(Principal coordinates of neighbor matrices; Borcard 
& Legendre, 2002) and AEM (Asymmetric 
eigenvector maps; Blanchet  et  al., 2008). Each 
filter (orthogonal axes) is a representation of the 
geographic space, where the first axes represent a 
large-scale variation, and the last axes represent a 
fine-scale variation (Borcard & Legendre, 2002). 
Specifically, in our study, AEM filters represent the 
flow path of rivers throughout the basin, where the 
river connections and directionality are translated 
from a binary matrix of connectivity. PCNM filters, 
on the other hand, represent the non-directional 
(symmetrical) effect of dispersal into the species 
distribution, such as a distribution by air. The spatial 
filters can be incorporated into approaches of 
multiple regressions (e.g., niche models), inserting 
spatial autocorrelation into the models (Diniz-Filho 
& Bini, 2005). We removed the spatial filters (AEM 
and PCNM) with low importance considering the 
comparison with null models (broken-stick), their 
low spatial structure, and high correlation with 
bioclimatic variables (redundant spatial filter).

The AEM calculation [function aem of adespatial 
package (Dray et al., 2019)] is based on the SVD 
(Singular Value Decomposition) analysis using the 
asymmetrical binary matrix as the input matrix. 
Similar results can be obtained through a PCA 

(Principal Component Analysis) using the same 
binary matrix or a PCoA (Principal Coordinates 
Analysis) using a Euclidean distance matrix from 
this binary matrix (Figure  2D) (Blanchet  et  al., 
2008). The AEM calculation generated eigenvalues 
and eigenvectors (axes) that correspond to the 
dispersal predictors. Since here we are using 
standardized river connections (edges), which are 
grid-cells with the same size throughout the basin, 
it was not necessary to include weights in into AEM 
calculation, different from using river segments as 
edges that may have different lengths. We selected 
the axes sufficient to explain the total variance 
(i.e., the sum of the eigenvalues) using the broken 
stick method for AEM based on SVD. We found 
no correlation between axes with any bioclimatic 
variable. Therefore, we retained the first seven 
axes through the broken stick, which were used 
posteriorly as predictors to construct the niche 
models (Jackson, 1993) (Figure 2E).

The construction of PCNMs [function pcnm 
of package vegan (Oksanen  et  al., 2017)] was 
performed using the centroid coordinates (latitude 
and longitude) of the 282 grid cells. The analysis 
resulted in 281 eigenvectors (axes) corresponding to 
the dispersal predictors. We used the Moran’s I test 
(Cliff & Ord, 1981) to select the axes sufficient to 
explain the total variation. To calculate the Moran’s 
I, we used the function moran.randtest of package 
adespatial (Dray et al., 2019), using the eigenvectors 
(axes) generated by the PCNM analysis as input. 
This function computes the Moran’s I for each 
axis generating significant (p<0.05) correlation 
values ranging from 0 to 1 for each axis, where 
the axes selected had values above 0.7. Finally, 
through the Moran’s I approach, we retained the 
first 20 axes. However, we removed the first axis 
(PCNM1) due to its collinearity with the climatic 
variables. Therefore, 19 axes were posteriorly used 
as symmetrical dispersal predictors (PCNM) in the 
niche model construction (Figure 2F).

2.5. Ecological Niche Models

We generated 50 models for each modeling 
method using species occurrences and pseudo-
absence data, non-collinear environmental variables 
(ENV), and symmetrical and asymmetrical dispersal 
predictors (AEM and PCNM) (Figure 2G). Thus, 
a total of seven sets of ENMs were built: a) only 
ENV; b) only AEM; c) only PCNM; d) ENV + 
AEM; e) ENV + PCNM; f ) PCNM + AEM; g) 
All predictors (FULL). Moreover, we used a total of 
six methods (algorithms) for each set of variables to 
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assess the variability of methods in the predictions. 
Therefore, we generated in total 2100 models (50 x 
7 x 6). The algorithms used were Bioclim (Nix, 
1986), Domain (Carpenter et al., 1993), Support 
Vector Machines (SVM; Schölkopf et al., 2001), 
Generalized Linear Models (GLM; Nelder & 
Wedderburn, 1972), Maximum Entropy (MaxEnt; 
Phillips et al., 2006), and Random Forest (Breiman, 
2001). The algorithms were chosen because they 
consider different statistical methods (climatic 
envelopes, environmental distances, machine-
learning, regressions) (Rangel & Loyola, 2012).

Models were built using 75% of presence and 
absence points for training (model’s construction) 
and 25% for testing the models’ performance 
(Guisan & Zimmermann, 2000), randomly chosen. 
Thus, we have the same set of pseudo-absences for 
all models, but with random subsets for each run. 
In this sense, we can compare the different sets of 
variables among models that have the same initial 
datasets. All models generated were evaluated 
using the Area Under the ‘receiver operating 
characteristic’ Curve (AUC; Swets, 1988), which 
is an evaluation metric threshold-independent (the 
limit for determination of presences/absences) that 
compare predict with observed values. The final 
map of potential distribution is a consensus map 
(ensemble) built using the mean suitability values 
of all models with AUC > 0.7 weighted by the AUC 
values. The models were generated and evaluated 
using the dismo package (Hijmans  et  al., 2016) 
available in the R software (R Core Team, 2019).

2.6. Data analysis

The eigenvectors (axes) generated by the 
asymmetrical (AEM) and symmetrical (PCNM) 
spatial filters, as well as the environmental variables, 
were used as predictors in the ENMs. These 
models were evaluated and compared using 
different statistics for models’ performance (AUC, 
TSS [Sensitivity + Specificity – 1], Sensitivity [True Positive Rate], 
and Specificity [True Negative Rate]) to assess the 
effect of including spatial predictors in the niche 
models. For this, we compared the mean values of 
the evaluation metrics between the models. For this, 
we used the mean metric values of the 50 models, 
built using the six modeling methods for each of the 
seven sets of variables. Therefore, we ended up with 
a mean value for the 300 (50 models x 6 algorithms) 
models for each variable set, representing the set 
of models with the highest performance among 
the different sets of variables. Metric values were 
compared using Venn diagrams, where it is possible 

to visualize the values in the individual (ENV, AEM, 
and PCNM) and interacting sets (ENV+AEM, 
ENV+PCNM, AEM+PCNM, and FULL), through 
connected circles.

Besides comparing the evaluation metrics for 
each set of variables, we tested the variation of 
ENM evaluation metrics (AUC, TSS, Sensitivity, 
and Specificity) among the variables and methods 
through an interaction plot between the set of 
variables and modeling methods used. Since each 
model built used one set of variables and one 
modeling method, we arranged the output metric 
values corresponding to each method and variable. 
For this, we obtained the mean metric values of all 
50 models for each interaction between the set of 
variables and modeling methods (6 x 7 = 42 points 
plotted). In this sense, we generated two interaction 
plots between variable types and modeling methods, 
using the ENM evaluation metrics of these 
interactions.

All analyses in this study were performed in 
the R software version 3.5.1 (R Core Team, 2019).

3. Results

The consensus maps (ensembles) generated 
using the sets of variables individually (ENV, AEM, 
and PCNM), and in addition to other variables 
(ENV+AEM, ENV+PCNM, AEM+PCNM, and 
FULL), showed similar predicted distribution 
outputs. The models predicted suitable areas close 
to the known species core region. However, it is 
possible to notice that AEM-based maps limited 
the species` potential distribution for the Tocantins 
River sub-basin where the species currently occurs 
(Figure 3).

The models generated using the combination 
of climate and asymmetrical dispersal variables 
(AEM+ENV) had the best performance for all 
evaluation metrics, except for sensitivity. Besides, 
models using only asymmetrical spatial predictors 
(AEM) also had a high performance in their 
evaluations, showing the highest sensitivity of 
all models. On the other hand, models using 
only PCNM and together with other variables 
(ENV+PCNM and AEM+PCNM) generated 
the models with the lowest performance for both 
metrics (Figure 4).

The evaluation metrics of models’ performance 
(AUC, TSS, Sensitivity, and Specificity) showed 
high variability among modeling methods and 
variable types (environmental, asymmetrical, and 
symmetrical spatial variables). In general, AEM-
based models had the highest evaluation metrics 
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and the lowest performance variation, especially for 
models with AEM only and AEM+ENV. On the 
contrary, models built using ENV and PCNM 
(alone or together with other variables) generated 

high variability among methods, especially for 
PCNM-based models, which had the worst 
performances. This reduction in performance is 
accentuated when combined with Bioclim and 

Figure 3. Consensus maps (ensembles) generated for each set of variables (A=ENV, B=AEM, C=ENV+AEM, 
D=PCNM, E=ENV+PCNM, F=AEM+PCNM, and G=FULL).

Figure 4. Venn diagram of evaluation metrics (AUC, TSS, Sensitivity, and Specificity) results for all sets of niche 
models generated. Higher values (highest in bold) indicate the best-adjusted models.
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GLM. The remaining model combinations had 
consistent performances (Figure 5).

4. Discussion

Our results showed a significant influence 
of asymmetrical spatial predictors in freshwater 
ENM performance. Moreover, the inclusion of 
asymmetrical predictors (AEM) accounted for 
dispersal limitations, informing the models about 
areas with difficult access to the species, unlike 
models based only on climatic aspects. In this sense, 
AEM-based models limited overprediction in areas 
climatically similar but disconnected through rivers, 
such as in the upper Tocantins-Araguaia River basin.

The predictors considered here generated 
models with similar spatial distribution. However, 
models based on AEM (alone or together with 
other predictors) showed the highest restriction 
to the Tocantins River basin, the known species 
distribution area. This restriction demonstrates the 
effect of the dispersal path the species has to travel 
to reach other regions. Therefore, the representation 

of directional dispersal along the river course 
through asymmetrical spatial predictors (AEM) is 
more suitable to include dispersal routes of rivers in 
niche models. Besides, different methods have been 
used to incorporate the dispersal effect in ENMs 
(Engler et al., 2012). However, dispersal limitation 
in those studies is often based on symmetrical 
dispersal or migration rates for areas surrounding 
the current species distribution (Miller & Holloway, 
2015).

The AEM predictors utilized in the study 
presented are widely employed in aquatic 
metacommunity research as a proxy for species 
dispersion [e.g., Rocha et al. (2020)]. The AEM has 
shown particular promise for aquatic environments 
due to its consideration of connectivity and direction 
within the hydrographic network, which are crucial 
for dispersal processes in such environments [see, 
for instance, Heino et al. (2015)]. In this paper, we 
applied the AEM on a broader spatial scale. Despite 
this expansion, the effectiveness of the AEM as a 
statistical model was confirmed, thereby establishing 

Figure 5. Interaction plot between methods and variables used in the ENMs, considering the evaluation metrics of 
the each one model’s performance: A) AUC (Area Under the Curve); B) True Skill Statistic (TSS); C) Sensitivity; 
D) Specificity.
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its potential for niche modeling research involving 
species from aquatic environments.

The models built using the set of climatic and 
asymmetrical spatial predictors (ENV+AEM) 
had the best evaluations, similar to models built 
with AEM only, which had the highest sensitivity 
of all models (i.e., more accurately predicted 
occurrences). The evaluation is directly linked to the 
model’s performance; therefore, the best-evaluated 
models represent more reliable predictions of the 
species` potential distribution (Allouche  et  al., 
2006). Conversely, models using PCNMs showed 
the worst evaluations, either alone or together 
with other predictors, for all tested combinations 
of variables. Therefore, models built using only 
the symmetrical space (PCNM) are not reliable to 
predict the potential distribution of this freshwater 
fish species. However, hitting or missing presence 
and absence areas of species may not be enough 
to assess the quality of the models, as they can be 
inflated by the lack of extrinsic characteristics of the 
species (e.g., dispersal), generating overpredicted 
and unrealistic models (Uribe-Rivera  et  al., 
2017). Therefore, besides increasing the model’s 
performance, asymmetrical spatial predictors 
in ENMs insert dispersal routes (i.e., rivers and 
streams) that species must travel to be present in 
other locations, increasing the ecological reality 
of ENMs.

The models’ performance also varied depending 
on the combination of predictor variables (i.e., 
spatial and climatic) and modeling methods used 
to build the ENMs. Some modeling methods 
showed more variation in their evaluations than 
others, especially those combined with symmetrical 
predictors (PCNM). Those variations (uncertainties) 
in ensemble models among modeling methods are 
widely known and studied (Diniz-Filho  et  al., 
2009), and can also change depending on the 
combinations of variables used (Parreira  et  al., 
2019). Among all combinations, models built 
using only asymmetrical dispersal (AEM) or with 
other predictors (i.e., AEM-based models), had 
the lowest variation among methods, showing 
overall satisfactory performances. It is expected 
that models with spatial restrictions generate 
less variation among modeling methods as these 
“barriers” or dispersal paths may limit the species 
to occur in other climatically suitable locations, 
hindering access to inaccessible or less accessible 
areas (Uribe-Rivera  et  al., 2017). For example, 
the upper basin elevation between Araguaia and 
Tocantins tributaries limits the species dispersal 

between these two sub-basins, except for their only 
downstream connection. Therefore, this dispersal 
restriction in ENMs limits possible overpredictions 
to climatically similar but disconnected areas 
(Mendes et al., 2020).

Spatial predictors in freshwater environments 
can be a valuable tool to build models with lower 
overprediction of suitable areas for species. In these 
models, the dispersal routes along the river course, 
through spatial filters, are included to represent 
the species movement throughout the basin 
hydrographic network (Blanchet  et  al., 2008), 
improving the accuracy of ENMs predictions for 
these environments. Moreover, we emphasize that 
the models built using AEM (alone and together 
with other predictors) showed higher accuracy than 
the traditional climatic-only models. Nevertheless, 
new approaches to generate the asymmetrical 
binary matrix automatically for the AEM analysis 
are necessary since manually designing this matrix 
for large extensions, such as biogeographic regions 
(e.g., Neotropics) or the entire globe, is yet very 
demanding. Furthermore, we expect future ENM 
studies to assess the insertion of this spatial direction 
in other basins, at different spatial scales, and with 
a larger species pool, which could allow assessing 
the effect of different dispersal abilities.

In fact, the dispersal of the species can be 
strongly related to intrinsic morphological 
traits (e.g. body size) (Bie  et  al.,  2012), 
life-history [e.g. Tamme  et  al. (2014)] and 
fundamental niche breadth [e.g. Arribas et al. (2012)]. 
Therefore, the use of AEM to predict the potential 
species distribution is “context-dependent” and 
understanding dispersion dynamics is important 
for considering the use of AEM. For example, it 
is possible that asymmetrical predictors are less 
relevant for species with higher dispersal abilities 
and/or frequent upstream movement, as AEM could 
be less effective in capturing the dispersal behavior 
of such species. However, organisms can present 
different rates of dispersion throughout their life 
cycle. Therefore, introducing dispersion predictors 
together with the different factors that are associated 
with the ability of organisms to disperse is one of the 
frontiers of research on ecological niche modeling.

In conclusion, our results show an emerging 
potential for the use of asymmetrical dispersal filters 
(AEM) as variables for the construction of aquatic 
ENMs, either alone or together with climate-based 
variables. Besides, other approaches could be 
developed following this methodology of inserting 
asymmetrical (directional) dispersal in freshwater 
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ENMs. For example, 1) more accurately predicting 
the dispersal pathways of freshwater invasive species 
in new habitats, or 2) evaluating the effect of 
dispersal interruption, such as current or planned 
hydropower plants (HPP), on the dispersal of fish 
species by inserting the disconnection into ENMs 
built using AEM filters through disconnections in 
the directional matrix in the HPP areas. Therefore, 
this approach of using asymmetrical dispersal in 
freshwater ENMs may contribute to new insights 
regarding the potential distribution of freshwater 
species by considering their dispersal routes in the 
models.
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