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ABSTRACT

Gaucher disease (GD) is an autosomal recessive lysosomal disorder caused by a disturbance in the metabolism of 
glucocerebroside in the macrophages. Most of its manifestations – hepatosplenomegaly, anemia, thrombocytopenia, 
and bone pain – are amenable to a macrophage-target therapy such as enzyme replacement. However, there is 
increasing evidence that abnormalities of the liver persist despite the specific GD treatment. In this work, we adapted 
histomorphometry techniques to the study of hepatocytes in GD using liver tissue of treated patients, developing the 
first morphometrical method for canalicular quantification in immunohistochemistry-stained liver biopsies, and exploring 
histomorphometric characteristics of GD. This is the first histomorphometric technique developed for canalicular analysis 
on histological liver biopsy samples. 
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INTRODUCTION

Gaucher disease (GD) is one of the most common 
lysosomal disorders with an estimated prevalence of 
1:60,000 in the general population and 1:800 in the 
Ashkenazi Jewish population.1 The pathophysiology 
of GD is classically defined as a disturbance in the 
processing of sphingolipids inside the macrophages,1, 

2 the main manifestations of GD being a function of 

dysregulated macrophagic activation2, 3 and invasion of 
tissues by Gaucher cells.4, 5 Macrophage‑targeted therapy 
through infusions of recombinant glucocerebrosidase 
(GCase) which is uptaken via the mannose receptor 
pathway6 has been successful in alleviating the key 
clinical findings in GD – anemia, thrombocytopenia, 
hepatosplenomegaly – and improving quality of life 
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in these patients.7 However, there are still features of 
GD that are not fully explained by the involvement of 
macrophages. It is known that patients with GD, even 
after long-term treatment, tend to have a higher liver 
stiffness (which is a surrogate measurement for fibrosis) 
than controls.8-11 Moreover, the biliary phenotype of 
GD has been subject of increasing focus: patients with 
GD have an increased incidence of gallstones,12-15 and 
an abnormal bile composition with increased level of 
glucocerebroside (glucosylceramide; GlcCer) and other 
sphingolipids such as glucosylsphingosine (GlcSph, 
alias lyso-GL1).12, 16 Biliary excretion of GlcCer is being 
suggested as a protective factor against hepatocellular 
storage of this substance;16, 17 however, this export of 
lysosomal GlcCer into the bile canaliculi may be one of 
the possible mechanisms of injury to the biliary system 
in GD through interference with the composition of 
bile and the function of transporters in the hepatocytic 
apical membrane. This interaction between GlcCer and 
bile transporters has been demonstrated in studies of 
the same transporters in cancer multidrug resistance.18, 19

Histomorphometry, or histological morphometry, 
is the quantification of morphology at the tissue level. 
It is a well-established technique with applications in 
the research of many tissues, including the liver, where 
it has been used for the quantification of characteristics 
such as fibrosis, immunohistochemical markers, and 
steatosis.20, 21, 22 It has also been used as a grading and 
prognostic marker in a variety of tumors.23-25

Histomorphometry is still an underutilized, incipient 
technique in canalicular pathology26. Although some 
studies have used morphometric parameters such as 
canalicular length and total canalicular area in a research 
context, making use of tools such as immunofluorescence 
and transmission electron microscopy 27, 28, there are no 
studies on the use of histomorphometry in clinical liver 
samples. In this study, we adapted histomorphometry 
to the study the canalicular parameters in liver biopsies 
of patients with GD.

METHODOLOGY

Samples

We analyzed liver biopsies of patients with GD 
followed at the Gaucher Reference Center of the 
Hospital de Clínicas de Porto Alegre (GRC-HCPA). The 
samples were preserved in paraffin and were retrieved 
from the archive of the Service of Surgical Pathology 

(SSP) of HCPA. The archive of the SSP was also searched 
for liver biopsy samples with a diagnosis of “healthy 
liver tissue” or “steatohepatitis grade 1” (“clinical liver 
disease”) by an expert in Liver Pathology (CTSC).

Samples were processed and stained with 
immunohistochemistry (IHC) for CD10 (to highlight 
the bile canaliculi) according to the SSP protocol. 
Briefly, samples were cut into 3 µm-thick sections and 
deparaffinized. Antigen recovery was performed with 
CC1 buffer at pH 9.0 and 95ºC for 2 minutes followed 
by peroxidase blocking with OptiView Peroxidase 
Inhibitor (Ventana Medical Systems). The primary 
rabbit anti-human anti-CD10 monoclonal antibody 
(clone SP67; Roche Diagnostics, Tucson, Arizona, 
USA) was incubated for 28 minutes at 36ºC. After 
primary antibody incubation, the reaction was detected 
with the OptiView DAB IHC Detection Kit (Ventana 
Medical Systems) and slides were counterstained with 
hematoxylin and bluing reagent (Li2CO3 + Na2CO3).

Imaging

S t a i n e d  a n d  m o u n t e d  s l i d e s  w e r e 
microphotographed with the CellSens software 
(Olympus Corporation) at a magnification of 1000x. 
Each slide had 6 random high-power fields captured 
and saved as tagged image file format (.tiff) images.

Histomorphometry

Each stained image was converted from the 
native RGB color format to 8-bit using the ImageJ 
software.29 The pixel-to-µm conversion was calculated 
from the scale generated by CellSens. For canalicular 
histomorphometry, IHC-stained RGB images were 
treated with the IHC Toolbox plugin (https://imagej.nih.
gov/ij/plugins/ihc-toolbox) to isolate IHC-positive areas 
(i.e., hepatic canaliculi), as shown in Figure 1.

Manual thresholding was used to select all IHC-
positive regions of interest (ROIs). ROIs with <10 pixels 
of area were considered to be artefactual and were 
excluded from the histomorphometric analysis. Each 
ROI was then analyzed for area in µm2, mean gray 
value (MGV), perimeter in µm, Feret diameter in µm, 
and solidity. Feret diameter is defined as the mean 
measure of the projection of an object to orthogonal 
tangential axes. The perimeter-to-Feret ratio was 
calculated from obtained values and was used as 
a measure of canalicular branching, as detailed in 
Figure 2.
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Figure 1. A – RGB photomicrograph, 1000x, showing IHC staining anti-CD10 highlighting the canaliculi in brown; 
B – extraction of canaliculi from background using the IHC Toolbox plugin on ImageJ; C – Transformation of 
extracted canaliculi from RGB to 8-bit; D – Thresholding of 8-bit image selecting all IHC-positive areas, with no 
overlap with the background.

Figure 2. A – schematic depiction of a less-branching canaliculus, for clarification of the perimeter-to-Feret ratio. The solid 
red line is the canaliculus perimeter (P1). The solid green line represents the projection of the canaliculus on the Y axis of 
the image field, which is the Feret Y (Y1) measure. The solid blue line represents the projection of the canaliculus on the 
X axis of the image field, which is the Feret X measure (X1). The Feret diameter of a canaliculus (F1) is the arithmetic mean 
of X1 and Y1; B – schematic depiction of a more-branching canaliculus. The solid red line is the canaliculus perimeter (P2). 
The projection of this canaliculus in the Y (Y2) and X (X2) axes are depicted as the solid green and blue lines, respectively, 
and the Feret diameter of this canaliculus (F2) is the arithmetic mean of X2 and Y2. As shown, the increase in branching 
affects more the perimeter than the Feret diameter of a canaliculus: P1 < P2, F1 ≈ F2. In this way, P1/F1 < P2/F2. These images 
are theoretical simplified schemes for clarification and are per se not representative of either group.
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Table 1. Characteristics of GD patients

Patient Sex GBA Genotype
Age at 

biopsy (y)
Treatment at biopsy 

(months)
Biopsy diagnosis

1 F p.Glu388Lys/p.Ser405Asn 48 Miglustat (11) Macrovesicular steatosis

2 F p.Asn409Ser/p.Leu483Arg 63 Miglustat (22) Hemosiderosis, presence of 
Gaucher cells

3 M p.Asn409Ser/RecNciI 56 Imiglucerase 30 IU/Kg/
biweekly (69) Steatohepatitis with mild activity

4 M p.Asn409Ser/RecNciI 61 Imiglucerase 30 IU/Kg/
biweekly (72)

Cirrhosis, hemosiderosis, presence 
of Gaucher cells

5 M p.Asn409Ser/RecNciI 42 Taliglucerase alfa 30 
IU/Kg/biweekly (216) Macrovesicular steatosis

All patients are diagnosed with GD type 1. Y = years-old; F = female; M = male; RecNciI = recombinant allele with the 
GBA1 pseudogene, includes the p.Leu483Arg, p.Ala495Pro, and p.Val499Val variants.

Table 2. Results of histomorphometrical analysis.

Parameter

Gaucher disease Control group

p-value
Total (n=5)

Clinical liver 
disease (n=2)

No clinical 
liver  

disease (n=3)

Total  
(n=7)

Clinical liver 
disease (n=3)

Healthy (n=4)

Area (µm2) 8.21 ± 4.76 7.71 ± 3.33 8.52 ± 6.27 8.23 ± 6.30 2.96 ± 1.05 12.19 ± 5.48 0.639

cMGV 114.29 ± 31.67 97.96 ± 4.59 125.18 ± 39.39 113.62 ± 47.67 65.48 ± 11.30 149.72 ± 20.14 0.876

Perimeter (µm) 11.42 ± 2.17 12.33 ± 3.81 10.81 ± 0.92 12.77 ± 6.36 7.98 ± 1.93 16.36 ± 6.19 0.870

Feret diameter (µm) 3.52 ± 0.73 3.83 ± 1.09 3.31 ± 0.56 3.46 ± 1.95 1.86 ± 0.47 4.65 ± 1.73 0.085

Perimeter-to-Feret 
ratio 2.89 ± 0.20 2.83 ± 0.03 2.93 ± 0.27 2.94 ± 0.05 2.95 ± 0.05 2.93 ± 0.05 0.060

Solidity 0.75 ± 0.03 0.76 ± 0.01 0.74 ± 0.04 0.73 ± 0.04 0.68 ± 0.005 0.76 ± 0.007 0.343

Thickness (µm) 8.69 ± 1.34 9.24 ± 1.31 8.32 ± 1.50 8.46 ± 1.48 9.49 ± 0.94 7.10 ± 0.60 0.793

The p-values are a result of the comparison between Gaucher disease (total) and control group (total). No analyses were performed 
for the subgroups.

MGV was corrected to absorbance (corrected MGV, 
“cMGV”) with the formula cMGV = 255 – MGV. Due 
to the background correction obtained with the IHC 
Toolbox plugin, canalicular cMGV was not normalized. 
Because of the pattern similarity between the hepatic 
canaliculi and the bone trabeculae, we used the 
Map_BoneMicrostructure plugin (https://imagej.nih.
gov/ij/plugins/microstructure) to obtain mean canaliculi 
thickness in µm for whole images.

Statistical Analysis

Because of the small sample sizes, all variables 
were considered parametric for statistical analysis. For 
descriptive statistics, variables are described as mean 
± SD. The Student’s T-test was used for comparisons 
between group means. A subgroup analysis was 
conducted post-hoc to the group comparisons. For this 
analysis, subjects were divided into those with clinical 
liver disease (steatohepatitis or cirrhosis) and those 
without. Analytic statistics were not performed in the 
subgroup analysis due to the small sample sizes.

Ethical Approval

This study was approved by the HCPA Research 
Ethics Committee under the number #18-0654. 
Research consent was waived by the HCPA Research 
Ethics Committee because of the retrospective nature 
of the analyses.

RESULTS

Patients

Liver biopsy samples of five type 1 GD patients 
were retrieved. Patient characteristics are displayed in 
Table 1. Two patients (pts 3 and 4) had clinical liver 
disease. Liver biopsy samples of seven controls were 
retrieved (healthy = 4; steatohepatitis = 3).

Canalicular Histomorphometry

Results of histomorphometrical analysis are 
displayed in Table 2. No significant statistical difference 
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was found between the groups for any of the variables. 
The closest parameter to statistical significance was the 
Perimeter-to-Feret ratio (p=0.06).

DISCUSSION

Histomorphometry is a digital image analysis 
approach that relies on the identification and analysis 
of morphological elements in a histological section.30 
It is a technique used for diagnosis of neoplasms 
and to aid in tailoring cancer treatment.31 We used 
histomorphometry to explore canalicular parameters 
in a sample of patients with GD type 1.

Although no statistically significant differences 
were found in this study, the borderline p-value 
for the Perimeter-to-Feret ratio is promising, and, if 
confirmed in further studies with bigger populations, 
might indicate canalicular dysfunction as part of the 
pathogenesis of GD.

On subgroup analysis, patients with GD and 
no clinical liver disease seemed to have a reduced 
canalicular area, cMGV, perimeter, and Feret diameter 
than healthy controls – however, because of statistical 
analyses not being possible due to the small sample 
size, conclusions from the subgroup analysis are limited.

In contrast with the common cholestatic pattern of 
many diseases which consists of canalicular dilation,32 
reduced branching has not been studied as much due 
to the lack of methods to perform a detailed analysis 
of these structures. It is known that patients with GD 
have increased secretion of GlcCer in bile, leading to 
physiological changes such as upregulation of GBA2, 
coding for a bile acid 3-O-glucosidase that can also 
metabolize GlcCer and GlcSph,33 producing toxic 
compounds such as sphingosine.34 It is possible that 
this process leads to biliary injury, thus impacting on 
the normal canalicular structure.

The main limitation of this study is the small 
sample size. GD is a rare metabolic disorder, and with 
the current technology available in clinical practice 
for follow-up of these patients – such as transient 
elastography and magnetic resonance imaging – 
liver biopsies are seldom performed because of the 
invasiveness of the procedure and the increased 
bleeding risk in this group.

In summary, this is the first report of the application 
of histomorphometry in the study of liver canaliculi in 
a metabolic disorder. A new parameter for canalicular 
analysis, the perimeter-to-Feret ratio, was developed 

and demonstrated. Although significant differences 
were not found, this study paves the way for further 
investigation of canalicular pathology in GD and in 
other diseases.

CONCLUSION

No significant differences were found between 
GD and control samples. An almost-significant p-value 
was found for perimeter-to-Feret ratio, indicating 
that further exploring this new parameter in larger 
samples might yield valuable results. This is the first 
histomorphometric technique developed for canalicular 
analysis on routine liver biopsy samples.

Research Highlights

•	 The perimeter-to-Feret ratio is informative on 
canalicular branching on liver biopsy samples.

•	 Canalicular parameters are amenable to 
quantification by histomorphometry on liver 
biopsy samples.
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