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Resumo

Os modelos de rede e programação inteira são uma variedade bem conhecida de problemas de tomada de decisão. Uma área

muito útil e difundida de aplicação é o uso e gestão eficiente de recursos escassos para aumentar a produtividade. Estas

aplicações incluem problemas operacionais como a distribuição de mercadorias, programação de produção e sequenciamento de

máquinas e problemas de planejamento, como a alocação de orçamento de capital de instalações, seleção de portfolios, e

problemas de desenho de redes de telecomunicações e transportes. O problema do transporte, que é um dos problemas da rede

de programação inteira, é um problema que lida com a distribuição de qualquer bem de qualquer grupo de 'fontes' para qualquer

grupo de destinos ou na forma mais efetiva em custos, dadas restrições de 'oferta' e de 'demanda'. Dependendo da natureza da

função de custo, o problema do transporte pode ser categorizado em problemas de transporte linear e não linear. Neste artigo é

aplicado o algoritmo de otimização Karush-Kuhn-Tucker (KKT) para resolver o problema de transportes com volume de

descontos para um operador logístico em Gana.
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Abstract

Network models and integer programming are well known variety of decision making problems. A very useful and widespread

area of application is the management and efficient use of scarce resources to increase productivity. These applications include

operational problems such as the distributions of goods, production scheduling and machine sequencing, and planning problems

such as capital budgeting facility allocation, portfolio selection, and design problems such as telecommunication and

transportation network design. The transportation problem, which is one of network integer programming problems is a

problem that deals with distributing any commodity from any group of 'sources' to any group of destinations or 'sinks' in the

most cost effective way with a given 'supply' and 'demand' constraints. Depending on the nature of the cost function, the

transportation problem can be categorized into linear and nonlinear transportation problem. We applied Karush-Kuhn-Tucker

(KKT) optimality algorithm to solve our problem of transportation with volume discount for a logistic operator in Ghana.
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Introduction 

This paper seeks to solve a transportation problem with volume discount. The costs of goods 

are determined by factors such as: the costs of raw materials, labour, and transport. When cost 

of raw materials rises, so does the cost of the goods. Transportation cost also affects the 

pricing system. It is assumed that the cost of goods per unit shipped from a give source to a 

given destination is fixed regardless of the volume shipped. But in actuality the cost may not 

be fixed. Volume discounts are sometimes available for large shipments so that the marginal 

costs of shipping one unit might follow a particular pattern. Our focus will be to develop a 

mathematical model using optimization techniques to close the demand and supply gap by 

discounting so as to minimize total transportation cost.  

This research seeks to apply the existing general nonlinear programming algorithms to solve 

our problem. The research strategy that the study will utilize is the descriptive method. In this 

study, primary and secondary research will be both incorporated. The reason for this is to be 

able to provide adequate discussion for the readers that will help them understand more about 

the issue and the different variables that involve with it. The primary data for the study will be 

represented by the survey results that will be acquired from the respondents. On the other 

hand, the literature reviews to be presented in the second Section of the study will represent 

the secondary data of the study. The secondary sources of data will come from published 

articles from books, journals, theses and related literature. Different algorithms to the various 

transportation problems will be presented. 

Until recently, heavy trucks could load up to any capacity without limit. These trucks 

normally exceed the average loading capacity of the truck. This was partially due to high 

transportation cost. Drivers and transport owners together with transport users had to find a 

way of compensating for the high cost of transport by increasing the truck load so as to 

maximize profit. This had ripple effect on the state as a whole: increase road accidents, 

destruction of roads, pressure is also put on the vehicle, and longer time being spent on the 

road before getting destination. There is also the effect of increased cost of goods thereby 

increasing inflation. This has driven the attention of the stakeholders to find a lasting solution 
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to the problems. There is therefore the need to determine the maximum loading capacity of 

trucks. 

The purpose of this work is to find out whether given volume discounts on transportation 

costs could minimize total transportation cost thereby increasing total revenue of producers 

and retailers as well as solving some of the aforementioned problems associated with 

transportation. 

This paper is organized in the following way. In Section 1, we presented a background study 

of transportation problem, objectives, methodology, justification and limitations of the study. 

In Section 2, related works in the field of transportation problems will be discussed. Section 3 

presents various existing algorithms for solving the various transportation problems. Section 4 

presents data collection and analysis of the study. And finally, we present the conclusions and 

recommendations of the study. 

1.  Background  

Contemporary research in logistics management relies on an increased recognition that an 

integrated plan requires coordinating different functional specialties within a system in 

keeping with this trend; we focus on the integration of production, inventory and 

transportation arising in a supplier- retailer logistic system. In the general inventory models, 

costs of such issues are usually accounted according to the following assumptions: the 

production cost is proportional to the quantity of products produced. The ordering cost, which 

refers to the charge for preparing of production, is independent of the quantity ordered. The 

inventory cost (shortage cost) is proportional to the quantity of products stored (out of order) 

as well as the duration for which these items are stored (stock out). When products are 

delivered from the supplier to the consumer, transportation costs are incurred. In the 

traditional economic order quantity (EOQ) model, the transportation cost is calculated 

together with the production cost, or with the ordering cost. However, in a practical logistic 

system, the transportation cost of a vehicle includes both of the fixed cost and the variable 

cost. The fixed cost, which is considered to be a constant sum in each period, refers to some 

necessary expenses such as parking fare and rewards to the driver. As to the variable cost, it 

depends mainly on the oil consumed, which is related directly to the distance travelled. In 
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short, considering the real condition, it is unreasonable to assume that the transportation cost 

is proportional to the quantity delivered or is a constant sum.  

Transportation models provide a powerful framework to meet this challenge. They ensure the 

efficient movement and timely availability of raw materials and finished goods. 

Transportation problem is a linear programming problem stemmed from a network structure 

consisting of a finite number of nodes and arcs attached to them. When the transportation plan 

is made up, the volume discounts brought by large quantities of transportation should not be 

pursuited excessively. As this would bound to increase inventory costs throughout the system, 

also when the inventory strategy is determined, transportation costs cannot be dealt with as a 

fixed fee, but as a variable cost directly impacting on transportation frequency and inventory 

distribution. Under the prerequisite of comprehensively balancing the transportation costs and 

inventory costs, the objectives that Inventory-Transportation Integrated Optimization problem 

(ITIO) are to optimize the logistics system, reduce logistics costs, and determine the 

transportation program and inventory strategy of the system.  

One of the earliest and most fruitful applications of linear programming techniques has been 

the formulation and solution of the transportation problems as a linear programming problem. 

The basic transportation problem was originally developed by Hitchcock (1941). The 

objective of the transportation problem is to determine the optimal amounts of a commodity 

to be transported from various supply points to various demand points so that the total 

transportation cost is a minimum. The unit costs i.e. the cost of transporting one unit from a 

particular supply point to a particular demand point, the amounts available at the supply 

points and the amounts required at the demand points are the parameters of the transportation 

problem.  

Industrial development today depends on the efficiency of the transportation and logistics 

activities. Transportation can be described as a flow of materials between two organizations. 

The first formulation and discussion of a planar transportation model was introduced by 

Hitchcock (1941). The objective was to find the way of transporting homogeneous product 

from several sources to several destinations so that the total cost can be minimized. The 

Transportation Problem (TP) is well known as one of the practical network problems and 

there are many investigations of evolutionary approaches to solve the varieties of 

transportation problem. In the real-life applications, it is often that the problems to be solved 
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have a large-scale and has to satisfy several other additional constraints. For example, Sun 

(1998) introduced the transportation problem with exclusionary side constraint. To solve this 

problem, he developed a Tabu search procedure. 

Network models and integer programs are well known variety of decision problems. A very 

useful and widespread area of application is the management and efficient use of scarce 

resources to increase productivity. These applications include operational problems such as 

the distributions of goods, production scheduling and machine sequencing, and planning 

problems such as capital budgeting facility allocation, portfolio selection, and design 

problems such as telecommunication and transportation network design. The transportation 

problem which is one of the network integer programming problems is a problem that deals 

with distributing any commodity from any group of sources to any group of destinations or 

sinks in the most cost effective way with a given supply and demand constraints. 

Depending on the nature of the cost function, the transportation problem can be categorized 

into linear and nonlinear transportation problem. In the linear transportation problem 

(ordinary transportation problem) the cost per unit commodity shipped from a given source to 

a given destination is constant, regardless of the amount shipped. Also it is always supposed 

that the mileage (distance) from every source to every destination is fixed. To solve such 

transportation problem we have the streamlined simplex algorithm which is very efficient. 

However, in actuality we can see at least two cases that the transportation problem fails to be 

linear. First, the cost per unit commodity transported may not be fixed for volume discounts 

sometimes are available for large shipments. This would make the cost function either 

piecewise linear or just separable concave function. In this case the problem may be 

formulated as piecewise linear or concave programming problem with linear constraints. In 

special conditions such as transporting emergency materials when natural calamity occurs or 

transporting military supplies during war time, where carrying network may be destroyed, 

mileage from some sources to some destinations are no longer definite. So the choice of 

different measures of distance leads to nonlinear (quadratic, convex, concave...) objective 

function. In the above cases, solving the transportation problem is not as simple as that of the 

linear one. 
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In our work, solution procedures to the generalized transportation problem taking nonlinear 

cost function as a result of volume discounts are investigated. In particular, the nonlinear 

transportation problem considered in this research is stated as follows; we are given a set of n 

sources of commodity with known supply capacity and a set of m destinations with known 

demands. The function of transportation cost, nonlinear, and differentiable for a unit of 

product from each source to each destination. We are required to find the amount of product 

to be supplied from each source (may be market) to meet the demand of each destination in 

such a way as to minimize the total transportation cost. 

2. Models of transportation volume with discounts  

It is known to be real that the per unit transportation cost from a specific supply source to a 

given demand sink is dependent on the quantity shipped, so that there exist finite intervals for 

quantities where price breaks are offered to customers. Thus, such a quantity discount results 

in a non-convex, piecewise linear functional. Balachandran and Perry (2006) presented a 

model with an algorithm to solve this problem. This algorithm, with minor modifications, is 

shown to encompass the “incremental” quantity discount and the “fixed charge” 

transportation problems as well. It is based upon a branch-and-bound solution procedure. The 

branches lead to ordinary transportation problems, the results of which are obtained by 

utilizing the “cost operator” for one branch and “rim operator” for another branch. Suitable 

illustrations and extensions were also provided. 

Goossens et al. (2007) studied the procurement problem faced by a buyer who needs to 

purchase a variety of goods from suppliers applying a so-called total quantity discount policy. 

This policy implies that every supplier announces a number of volume intervals and that the 

volume interval in which the total amount ordered lies determines the discount. Moreover, the 

discounted prices apply to all goods bought from the supplier, not only to those goods 

exceeding the volume threshold. The author’s referred to this cost-minimization problem as 

the TQD problem. The authors give a mathematical formulation for this problem and argue 

that not only it is NP-hard, but also that there exists no polynomial-time approximation 

algorithm with a constant ratio (unless P = NP). Apart from the basic form of the TQD 

problem, the authors described three variants. In a first variant, the market share that one or 

more suppliers can obtain is constrained. Another variant allows the buyer to procure more 
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goods than strictly needed, in order to reach a lower total cost. In a third variant, the number 

of winning suppliers is limited. The authors showed that the TQD problem and its variants 

can be solved by solving a series of min-cost flow problems. Finally, they investigated the 

performance of three exact algorithms (min-cost flow based branch-and-bound, linear 

programming based branch-and-bound, and branch-and-cut) on randomly generated instances 

involving fifty (50) suppliers and hundred (100) goods. It turns out that even the large 

instances of the basic problem are solved to optimality within a limited amount of time. 

However, the authors found that different algorithms perform best in terms of computation 

time for different variants. 

Discount in transportation cost on the basis of transported amount is extended to a solid 

transportation problem. In a transportation model, the available discount is normally offered 

on items/criteria, etc., in the form AUD (all unit discounts) or IQD (incremental quantity 

discount) or combination of these two. Ojha et al. (2010) considered a transportation model 

with fixed charges and vehicle costs where AUD, IQD or combination of AUD and IQD on 

the price depending upon the amount is offered and varies on the choice of origin, destination 

and conveyance. To solve the problem, Genetic Algorithm (GA) based on Roulette wheel 

selection, arithmetic crossover and uniform mutation has been suitably developed and applied. 

To illustrate the models, numerical examples have been presented. Here, different types of 

constraints are introduced and the corresponding results are obtained. To have better customer 

service, the entropy function is considered and it is displayed by a numerical example. To 

exhibit the efficiency of GA, another method-weighted average method for multi-objective is 

presented, executed on a multi-objective problem and the results of these two methods are 

compared.  

Crama et al. (2004) described the purchasing decisions faced by a multi-plant company. The 

suppliers of this company offer complex discount schedules based on the total quantity (rather 

than cost) of ingredients purchased. The schedules simultaneously account both for corporate 

purchases and for purchases at the individual plant level. The complexity of the purchasing 

decisions is further increased due to the existence of alternative production recipes for each 

final product. We formulate the corresponding cost-minimization problem as a nonlinear 

mixed 0-1 programming problem. We propose various ways to linearize this.  
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3. Methodology 

In most transportation problem cases it was assumed that the cost per unit shipped from a 

given source to a given destination is fixed, regardless of the amount shipped. In actuality, 

this cost may not be fixed. Volume discounts sometimes are available for large shipments, so 

that the marginal cost of shipping one more unit might follow a nonlinear pattern. The 

resulting cost of shipping x units then is given by a nonlinear function C(x), which is a 

piecewise linear function with slope equal to the marginal cost. Consequently, if each 

combination of source and destination has a similar shipping cost function, so that the cost of 

shipping     units from source             to destination             is given by a 

nonlinear function         , then the overall objective function to be minimized is      

        . 

Even with this nonlinear objective function, the constraints normally are still the special linear 

constraints that fit the general transportation problem model. In this section we shall provide 

an in depth explanation of the solution procedures to the generalized transportation problem 

taking nonlinear cost function. In particular, the nonlinear transportation problem considered 

in this paper as a result of volume discount on shipping cost is stated as follows; we are given: 

(i) a set of n sources of commodity with known supply capacity and a set of m destinations 

with known demands, (ii) the function of transportation cost, nonlinear, and differentiable for 

a unit of product from each source to each destination. We are required to find the amount of 

product to be supplied from each source to meet the demand of each destination in such a way 

as to minimize the total transportation cost. 

Our approach to solve this problem is applying the existing general nonlinear programming 

algorithms to it making suitable modifications in order to use the special structure of the 

problem. In order to understand our approach, it is necessary to have a good understanding of 

some of the background polyhedral theory for both the general linear and nonlinear 

programming problems. The general transportation problem is modelled as: 
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                       Minimize Z = ∑           

Subject to the constraints 

∑   

 

   

               

∑                         

 

   

 

      

3.1 Polyhedral Sets 

A set   in an n dimensional normed vector space    is called polyhedral set if it is the 

intersection of a finite number of closed-half spaces, i.e.  {    
             }, 

where    is a non zero vector in E
n 

 and  i  is a scalar. A polyhedral set is a closed convex set 

and can be represented by a finite number of inequalities and/or equations. We consider the 

polyhedral set  {          } , where A is an m x n matrix and b is an m-vector, 

assume also that the rank of A is m. If not, assuming that      is consistent, we can leave 

aside any redundant equations. Let P be non empty convex set in   . A vector    is called 

an extreme point of Pif              with x1 and x2 elements of P and    (0, 1). The 

following are basic theorems concerning extreme points
1
. 

Theorem 3.1.1 Let P = {x: Ax = b, x   0}, where A is m x n matrix of rank m, and b is an m 

vector. A point x is an extreme point of P if and only if a can be decomposed into [B, N] such 

that  

x = (  
  

) = (    
 

) 

Where B is an m x n invertible matrix satisfying B
-1

b   0. Any such solution is called a basic 

feasible solution for (BFS) P. The number of extreme points of P is finite. 

Theorem 3.1.2 (Existence of extreme points) Let P = {x: Ax = b, x   0} be non empty; 

where A is an m x n matrix of rank m and b is an m vector. Then P has at least one extreme 

point. 

                                                 
1
 Interested readers can contact the author for proofs of these theoretical results. 
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3.2 Extreme Direction 

Let P be a non empty polyhedral set in E
n
. A none zero vector d in E

n 
is called direction or 

recession direction of P if x +  d   P for each x    P for all    0. It follows that, d is a 

direction of P if and only if Ad = 0 and d   0.  

Theorem 3.1.3 (Characterization of Extreme Directions) Let P = {x: Ax = b, x   0}   , 

where A is an m x n matrix of rank m, and b is an m vector. A vector  ̅ is an extreme 

direction of P if and only if A can be decomposed into [B, N] such that B
-1

aj  0 for some 

column aj of N, and  ̅ is a positive multiple of d = (     
  

) , where ej is an n-m vector of zero 

except for in position j which is 1. 

Theorem 3.1.4 (Representation theorem) Let P = {x: Ax = b, x   0}   . Let x1, .,. xk be the 

extreme points of P and d1, d2, .., dl be the extreme direction of P. Then x  P  if and only if x 

can be written as: 

x = ∑    
   xj + ∑    

    di  

∑    
    = 1 

 j  0 , and  i  0. 

Theorem 3.1.5 (Existence of extreme directions) P = {x: Ax = b, x   0} where A is an m x n 

matrix with rank m. Then, P has at least one extreme direction if and only if it is unbounded. 

3.3 The Karush-Kuhn-Tucker (KKT) optimality condition for nonlinear programming 

problem (NPP) 

Given the nonlinear programming problem: 

        (NPP)          

 s. t.                                    
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3.3.1 KKT Necessary optimality conditions   

Theorem Given the objective function f : R
n  R and the constraint functions are gi : R

n  R 

and hj : R
n   R and I = { i : gi(x*) = 0}. In addition, suppose they are continuously 

differentiable at a feasible point x* and   gi(x*) for i   I and   hj(x*) for j = 1, .., l be linearly 

independent. If x* is minimizer of the problem (NPP), then there exist scalars  ̅i  i = 1, ..., k 

and  ̅j j = 1, ., ., l, called Lagrange multiplier, such that    

 f(x*) +∑    
     gi(x*) + ∑    

   i  hi(x*) = 0 

 ̅jgj(x*) = 0,   ̅j   0, and  ̅j  R 

3.3.2 KKT Necessary optimality conditions for convex NPP  

Further, if f and gi are convex, each hj as affine, then the above necessary optimality 

conditions will also be sufficient. 

3.4 The Linear Transportation Problem 

The linear transportation problem is concerned with distributing any commodity from any 

group of supply centres, called sources, to any group of receiving centres, called destinations 

in such a way as to minimize the total distribution cost, where the cost per commodity is 

constant regardless of the amount transported. By letting z to be the total distribution cost and 

xij the number of units to be distributed from source i(si) to destination j(dj) the linear 

programming formulation of this problem become:  

min z = ∑ ∑       
 
   

 
    

             s. t         ∑    
 
                       for i = 1, 2, ...n 

                           ∑       
 
   for j = 1, 2, ...m 

                   

3.5 Methods for Finding Initial Basic Feasible Solutions  

The first phase of the solving a transportation problem for optimal solution involves finding 

the initial basic feasible solution. An initial feasible solution is a set of arc flows that satisfies 
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each demand requirement without supplying more from any origin node than the supply 

available. Heuristic, a common – sense procedure for quickly finding a solution to a problem 

is a producer most employed to find an initial feasible solution to a transportation problem. 

This project examines three of the more popular heuristics for developing an initial solution to 

transportation problem: i. The Northwest Corner Method, ii. The Least Cost Method and iii. 

The Vogel’s Approximation Method. 

The Northwest Corner Method is the simplest of the three methods used to develop an initial 

basic feasible solution. This notwithstanding, it is the least likely to give a good “low cost” 

initial solution because it ignores the relative magnitude of the costs    in making allocations. 

The Least-Cost Method tries to reflect the objective of cost minimization by systematically 

allocating to cells according to the magnitude of their unit costs. Finally, the Vogel’s 

Approximation Method (VAM) is by far the best method (better than the Northwest Corner 

Method and the Last-Cost Method) of developing an initial basic feasible solution to 

transportation problems. In many cases the initial solution obtained by the VAM will be 

optimal. It consists of making allocations in a manner that will minimize the penalty (regret or 

opportunity cost) for selecting the wrong cell for an allocation. 

3.6 Optimality-Test Algorithm for Transportation Problems  

These are methods of determining the optimal solutions for transportation problems following 

the determination of the initial basic feasible solution: i. the Stepping Stone Method and ii. 

The Modified Distribution Method shall be the focus of this project.  

The Stepping Stone optimality test begins, once an initial basic feasible solution is obtained 

for the transportation problem, by determining if the total transportation cost can be further 

reduced by entering a nonbasic variable (i.e. allocating units to an empty cell) into the 

solution. Thus each empty cell is evaluated to determine if the cost of shifting a unit to that 

cell from a cell containing a positive unit will decrease. A closed loop of occupied cells is 

used to evaluate each nonbasic valuable. An initial basic feasible solution is considered 

optimal if the total transportation cost cannot be lowered/ decreased by reallocating units 

between cells. The Modified Distribution Method of solution is a variation of the Stepping 

Stone method based on the dual formulation. The difference between the two is that with the 

MODI, unlike the stepping-stone method, it is not necessary to determine all closed paths for 
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nonbasic variable. The C
*

ij
values are instead determined simultaneously and the closed path is 

identified only for the entering nonbasic variable. In the MODI method, a value ui is defined 

for each row (i) and a value vj is defined for each column (j) in the transportation tableau.  

3.7 Solution procedures to nonlinear transportation Problems (NTP)  

This section considers the solution to the transportation problem with nonlinear cost function 

arising from volume discount. We shall consider different solution procedures depending on 

the nature of the objective cost function. Before considering the different special cases, let us 

first formulate the KKT condition and general algorithm for the problem. Given a 

differentiable function C: R
nm  R. We consider a nonlinear transportation problem (NTP), 

Min C(x) 

s.t  Ax = b,   x   0 

3.7.1 The KKT Optimality Condition for the NTP 

Given the transportation table as below: 

    ̅ 

    
       ...        ...       

    ̅ 

    
       S1       U1 

  ...          ...        ...        ...          ...         ...  

  ...         
    ̅ 

    
     ...        ...         Si              Ui 

    ̅ 

    
       ...         ...      

    ̅ 

    
      Sn          Un 

d1                 ...         ...         dm 

v1                 ...         ...         vm 

 

Where  ̅ is the current basic solution. The Lagrange function for the NTP is formulated as 

z(x, , w) = C(x) + w (b- Ax) –  x. Where   and w are Lagrange multipliers and    R
nm

. 

The optimal point  ̅ should satisfy the KKT conditions: 

 z =   C( ̅) – w
T
A –   = 0 

  ̅ = 0 

   0 

 ̅   0 
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Specifically for each cell (i,j) we have  

  

    
 = 

    ̅ 

    
  - (u,v) (ei, en+j) – ij= 0                                     (3.1) 

 ijxij = 0 

xij  0 

 ij  0 

where k = 1 ... mn and w = (u, v) = (u1, u2, ..., un, v1, v2, ..., vm), ek   R
m+n 

is a vector of zeros 

except at position k which is 1. From the conditions (3.1) and    0 , we get, 

  

    
 = 

    ̅ 

    
  - (ui + vj)   0                                                (3.2) 

xij
  

    
 = xij

    ̅ 

    
  - (ui + vj) = 0                                             (3.3) 

xij  0 

3.7.2 General Solution Procedure for the NTP 

- Initialization: Find an initial basic feasible solution  ̅ 

- Iteration: 

• Step 1) If   ̅ is KKT point, stop. Otherwise go to the next step; 

• Step 2) Find the new feasible solution that improves the cost function and go to 

Step 1. 

3.8 Transportation Problem with Concave Cost Functions 

For large shipments, volume discount may be available sometimes. In this case the cost 

function of the transportation problem generally takes concave structure for it is separable and 

the marginal cost (cost per unit commodity shipped) decreases with increase of the amount of 

shipment; and increasing, because of the total cost increase per addition of unit commodity 

shipped. The discount (1) may be either directly related to the unit commodity: (2) or have the 

same rate for some amount. 
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Case 1: If the discount is directly related to the unit commodity the resulting cost function 

will be continues and have continues first order partial derivatives. The graph of Cij (xij) will 

look like: 

 

                   Total Cost 

                                     80 

 

                                    60 

                                 

                                    40 

      

                                    20  

                                     

                                          0        5         10     15        20     25   

             

Nonlinear programming formulation of such a problem is given by 

                       Minimize Z = ∑           

Subject to the constraints 

∑    
 
    = Si       I = 1, 2, ., ., m 

∑    
 
    = Dj       j = 1, 2, ., ., n 

Xij  0 

Where Cij : R   R. Now before we go to look for an optimal solution let us state an important 

theorem: 

Theorem 3.3.1.2 Let f be concave and continues function and P be a non empty compact 

polyhedral set. The optimal solution to the problem min f(x), x   P exists and can be found at 

an extreme point of P
2
. 

Because of the above theorem, it suffice to consider only the extreme points to find the 

minimum; the following is the procedure. After we find the initial basic feasible solution 

(which are n + m – 1 in number), let  ̅ be the basic solution we have in the current iteration. 

                                                 
2
 Interested readers can contact the author for proofs of these theoretical results. 
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Next let us decompose our  ̅ to (  ̅B,  ̅N) where  ̅B and xN are the basic and nonbasic variables 

respectively. Since  ̅B  > 0, the complementary slackness condition given in equation (3.3) 

above gives as m + n – 1 equations; 

  

     
 = 

    ̅ 

     
  - (ui + vj)  = 0                                                   (3.4) 

From the above relation we can determine the values of ui and vj by assigning one of u’is the 

value zero for we have m + n variables, ui and vj. Then we calculate  
  

    
 for the non basic 

variable xij. Since all xij are zero at the extreme, the complementary slackness condition is 

satisfied. Therefore if equation (3.2) is satisfied for all no basic variables xij,  ̅ is a KKT point. 

Otherwise, if 
  

    
  - (ui + vj)  < 0, We shall move to look for better basic solution such that all 

the constraints (feasibility conditions) are satisfied. We do this by using the same procedure as 

the transportation simplex algorithm as stated below. 

3.8.1 The Transportation Concave Simplex Algorithm (TCSA) 

- Initialization: Find the initial basic feasible solution using some rule like the north west 

corner rule. 

- Iteration: 

     • Step 1) determine the values of ui and vj from the equation, 
    ̅ 

     
  - (ui + vj)  = 0, where 

xBij are the basic variables; 

     • Step 2) If 
    ̅ 

     
  - (ui + vj)   0, for all xij non basic, stop,  ̅ is KKT point. Otherwise go to 

Step 3; 

     • Step 3) Calculate 
  

    
 = min {

    ̅ 

    
  - (ui + vj) } xrl will enter the basis. Allocate xrl =   

where   is found as in the linear transportation case. Adjust the allocation so that the 

constraints are satisfied. Determine the leaving variable say xBrk, where xBrk is the basic 

variable comes to zero first while making the adjustment. Then find the new basic 

variable and go to Step 1. 
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The feasible set of our problem is a non empty polyhedral set. And by definition, a polyhedral 

set P is a set bounded with a finite number of hyperplanes from which it follows that it 

possesses finite number of extreme points. In each step of the algorithm, we jump from one 

extreme point to another looking for a better feasible solution implying that the algorithm will 

terminate after a finite iteration. In addition since for all i and j, 0         max { si, dj}, P is 

bounded that guarantees the existence of minimum value. 

Case 2: In the case when the volume discount is fixed for some amount of commodity, rather 

than varying with unit amount shipped, the transportation cost function will be piecewise 

linear concave yet increasing. The graph is like: 

               Total Cost          

 

 

 

 

                                         Commodity Shipped 

Figure 3.2: Transportation problem with piecewise linear concave cost 

To avoid complication, assuming that to each combination of source and destination, the 

interval in which the marginal cost (cost per unit commodity) changes is the same, the cost of 

shipping xij units from source i to destination j is given by Cij(xij),then the nonlinear 

programming formulation of the problem is given by  

                       Minimize Z = ∑           

Subject to the constraints 

∑     
    = Si       I = 1, 2, ., ., m 

∑     
    = Dj       j = 1, 2, ., ., n 

Xij  0 
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Where: 

                                                Cij
0
(xij),             0   xij  a1 

    Cij
1
(xij),             a1   xij   al+1  

    Cij
l
(xij),             al   xij   a2 

    Cij
k-1

(xij),             ak-1   xij ak 

    Cij
k
(xij),             ak   xij   b = max {si, dj} 

and 1. {0, a1, ..., al, ..., ak-1, ak, b}is the partition of the interval [0, b] into k+ 1 sub intervals; 2. 

each C
l
ij is linear in the sub interval [al,  al+1]. To solve this problem, as we can see from the 

structure of the cost function, it's impossible to directly apply the algorithm of the previous 

section for non differentiability of the total cost function hinders as to do so. But, since the 

function, also, has a simple structure and differentiability fails at discrete points, it can be 

easily approximated using differentiable functions like Chebshev, trigonometric or Legendre 

polynomials. We choose to approximate it by the so called shifted Legendre polynomials. 

These set of Legendre polynomials say {p0,p1..., pr,}is orthogonal in [0,1]with respect to 

weight function w(x) = 1, where the inner product on C[0,1] is defined by  

<f, g> = ∫           
 

 
 , for all f, g   C[0, 1], 

Where C[0; 1] is the space of continuous functions on [0,1]. The first four of them are 

p0(x) = 1 

p1(x) = 2x -1 

p2(x) = 6x2 + 6x + 1 

p3(x) = 20x3 + 30x2 + 12x ¡ 1 

and the others can be obtained from pr(x) =  
 

   

  

   
 [(x

2
 – 1) 

r
]. Then, the space spanned by 

{p0, p1...,pr}is a subspace of C [0,1]. Hence, given any f(x)   C [0,1], we can find a unique 

least square approximation of f in the subspace. Note that every element of the subspace 

spanned {p0, p1, ...,pr}is at least twice differentiable. The least square approximation of any 

function f(x) with r of these polynomials in [0, 1] is given by f(x) = a0p0(x) + a1p1(x) + ...+ 
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aipi(x) + ... + arpr(x) where ai = 
∫         
 
 

∫ [     ]   
 
 

 ,    i = 0, 1, ..., r. To approximate our functions 

Cij(xij), in the same manner, we define a one to one correspondence between [0,b] to [0,1] by 

g: [0, b]  [0, 1] 

g(xij) = 
 

 
xij 

That is, we substitute xijby 
 

 
xij  so that it's domain will be [0,1] then we have,  

          C
o
ij(

 

 
xij ),   0   xij 

  

 
 

 

Cij(xij)   ̂ij(xij) = Cij(
 

 
xij) =       C

1
ij (

 

 
xij ),   

  

 
  xij 

  

 
 

                                                         .                  

                                                         . 

         C
k

ij(
 

 
xij ),   

  

 
  xij  1 

Now, after approximating  ̂ijxij by the shifted Legendre polynomials on [0, 1], assume we 

have found it's best approximation  ̂ij(xij). Then, substituting back the xij in Cijby bxij gives us 

the approximation to Cij(xij) over [0,b]. Therefore the best approximation of Cij(xij) over [0,b] 

will be   ̅ij(xij) =  ̂ij(bxij), which has continuous derivatives. Consequently, we solve the 

problem  

Min ∑ ∑  ̅ 
   

 
   (xij) = ∑ ∑ ∑   

   
 
   

 
   lpl(xij) 

s. t ∑     
    = 

  

 
 

∑     
    = 

  

 
 

i = 1, 2, ..., n         and j = 1, 2, ..., m 

Using exactly the same procedure as the previous case. 
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3.9 Convex Transportation Problem 

This case may arise when the objective function is composed of not only the unit 

transportation cost but also of production cost related to each commodity, or in the case when 

the distance from each source to each destination is not fixed. The problem can be formulated 

as: 

Min C(x) 

s.t Ax = b 

x 0  

Where C(x) is convex, continuous and has continuous first order partial derivatives. 

3.9.1 The Convex Simplex solution procedure for Transportation Problem 

In the case when the cost function is convex, the minimum point may not be attained 

necessarily at an extreme; it may be found before reaching a boundary of the feasible set. 

What precisely happens is that there may be non basic variable with positive allocation while 

non of the basis is driven to zero. To solve this problem, we use the idea of the convex 

simplex algorithm of Zangwill (1967) which was originally designed to take care of convex 

and pseudoconvex problem with linear constraints. Actually the original procedure is used to 

look for a local optimal solution for any other linearly constrained programming problem. We 

use the special structure of transportation problem in the procedure so as to make it efficient 

for our particular problem. The method reduces to the ordinary transportation simplex 

algorithm whenever the objective is linear, to the method of Beal when it is quadratic and to 

the above concave simplex procedure when the function is concave.  

We partition the variable x = (x11, ..., xnm) to (xB,xN), where xB is n+m -1 component vector of 

basic variables and xN is nm - (n + m -1)) component vector of non basic variables, 

corresponding to the (n +m -1)X(n +m -1)basic sub matrix and (n + m - 1)X(nm - (n + m - 1)) 

non basic sub matrix of A. 

Suppose we have the initial basic feasible solution  ̅0.In the procedure what we do is to find a 

mechanism in which non optimal basic solution  ̅ at a given iteration is improved until it 

satisfies the KKT conditions which are also sufficient conditions for convex transportation 
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problem, i. e, until for each cell we have xij (
    ̅ 

    
  - (ui + vj)) = 0 and 

    ̅ 

    
  - (ui + vj)    0. 

Since we have each basic variable xBij>0, the above complementary slackness condition 

implies that for each basic cell, we must have  
    ̅ 

     
  - (ui + vj)) = 0, xBij- basic variable. Since 

we have n + m -1 of such equations, by letting u1 = 0 we obtain all the values of ui and vj as 

we have done exactly for the concave and linear cases. Now for a non basic cell, at a feasible 

iterate point  ̅;  we may have:  

    ̅ 

    
  - (ui + vj)  > 0 ,  xij (

    ̅ 

    
  - (ui + vj))  > 0 , 

    ̅ 

    
  - (ui + vj)  < 0 ,  xij (

    ̅ 

    
  - (ui + vj)) < 0 , 

    ̅ 

    
  - (ui + vj)  = 0 , xij (

    ̅ 

    
  - (ui + vj)) = 0  

Or for non basic xij, we may have: 
    ̅ 

    
  - (ui + vj)     0,  xij (

    ̅ 

    
  - (ui + vj)) = 0. From the 

KKT conditions given earlier, the last case occurs when  ̅is optimal. But if the solution  ̅falls 

on either of the other three, it must be improved as follows. Let IJ = {ij:xij is non basic 

variable} and suppose that we are in the k
th 

iteration. We first begin by computing;  

  

    
 = min {

    ̅ 

    
 - ui – vj }ij   IJ 

xst
  

    
 = max {xij( 

    ̅ 

    
 - ui – vj )} ij  IJ 

Here we don't want to improve (decrease) a positive - valued non basic variable xij unless its 

partial derivative is positive. Therefore we only focus on positive values of the product 
  

    
xij. 

Now the variables to be adjusted are selected as: 

Case 1  If  
  

    
  0 and xst ( 

  

    
  ) > 0. 

Decrease xst by the value  using the transportation table as in the linear and concave cases.  

Let y
k
= (y

k
11, y

k
12 , ..., y

k
nm) be the value of  ̅k

= ( ̅k 
11, ...,  ̅

k 
nm) after making the necessary 

adjustment by adding and subtracting  in the loop containing xst so that all the constraints are 

satisfied. By doing so, either xst itself or a basic variable say xBst will be driven to zero. Now 
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y
k 

may not be the next iterate point; since the function is convex, a better point could be found 

before reaching y
k 

to check this, we solve problem; 

f( ̅k + 1
) = min { f(  ̅k 

 + ( 1 –   ) y
k 

:  0     1 }                             (3.5) 

and get  ̅k + 1 
 =  ̅ ̅k  

+ (1 -  ̅) y
k 

 where  ̅ is the optimal solution of equation 3.5. Before the 

next iteration, if  ̅k + 1 
= y

k 
and if a basic variable became zero during the adjustment made, we 

change the basis. If  ̅k + 1  y
k
or if  ̅k + 1 

= y
k 

and xstis driven to zero, we don't change the basis 

by substituting the leaving basic variable by xst.  

Case 2   If  
  

    
< 0 and xst ( 

  

    
  )   0. 

In this case the value of xrl should be increased by  and then we find y
k
, where  and y

k 
are 

defined as in the case 1.  

Note that: as we increase the value of xrl one of the basic variables, say, xBtwill be driven to 

zero, and this is the exit criteria of the linear and concave transportation simplex algorithm 

and y
k 

would have been the next iterate point of the procedure. But now after solving for  ̅k + 1 

from 3.5, before going to the next iteration, we will have the following possibilities: If  ̅k + 1 
 

=y
k
, we change the former basis, substitute xBt by xrl; if  ̅

k + 1  y
k
, we do not change the basis. 

All the basic variables outside of the loop will remain unchanged.  

Case 3  If 
  

    
< 0 and xst ( 

  

    
  ) > 0  

In this case either we decrease xst as in the case 1 or increase xrl according to Case 2.  

3.10 The Transportation Convex Simplex Algorithm 

Now we write the formal algorithm for solving the convex transportation problem. 

- Initialization: Find the initial basic feasible solution. 

- Iteration 

     • Step 1: Determine all ui and vj from  
    ̅ 

     
  - ui  -vj = 0 for each basic cell.  
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     • Step 2: For each non basic cell, calculate: 
  

    
 = min {

    ̅ 

    
 - ui – vj }; xst

  

    
 = max {xij( 

    ̅ 

    
 - ui – vj )} If 

  

    
  0 and xst ( 

  

    
  ) = 0. Stop. Otherwise go to Step 3.  

     • Step 3: Determine the non basic variable to change. Decrease xst according to case 1 if  

  

    
  0 and xst ( 

  

    
  ) > 0. Increase xrl according to case 2 if 

  

    
< 0 and xst ( 

  

    
  )   

0. Either increase xrl or decrease xst if 
  

    
< 0 and xst ( 

  

    
  ) > 0. 

     • Step 4: Find the values of y
k
, by means of  , and  ̅k + 1 

, from 3.5. If y
k
=  ̅k + 1 

and a basic 

variable is driven to zero, change the basis. Otherwise do not change the basis.                       

 ̅k  
= ̅k + 1

. Go to step 1.  

4. Case study 

In this section, we shall consider a computational study of the above solution procedures. 

Emphasis will be given to a transportation problem where discounts are given to volume on 

quantity of goods transported which is concave in nature. Data from the Multi-Plan Limited 

shall be examined. 

4.1 Data collection and analysis 

The Multi-Plan Limited, a distributor of various kinds of drinks located in Accra, purchase 

from three manufacturing companies in different places and sell the same to four market 

segments in Ghana. The cost of purchasing and transporting the drinks from the traders place 

to the market centres is given in Table 1 below. 
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Table 1 - Cost of transporting the drinks to the various market zones 

 

All values in Table 1 apart from requirements and supply are in cedi monetary value. The 

policy of the company allows discounts on each box transported from source to destination 

and it is directly related to the unit commodity purchased and transported, and the percentage 

discounts are shown in Table 2 below. 

Table 2 – Percentage discounts 

 A B C D 

P. RED  0.02 0.01 0.04 0.07 

OVIDIO  0.01 0.04 0.03 0.02 

MERLOT  0.005 0.03 0.015 0.01 

The problem is to determine how many boxes of each product to be transported from the 

source to each destination on a monthly basis in order to minimize the total transportation 

cost.  

Table 3 - Forming the transportation tableau 

 A B C D SUPPLY 

P. RED  15 10 4 20 15 

OVIDIO  7 6 8 3 25 

MERLOT  1 9 5 3 10 

DEMAND 20 10 8 12 50 
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To form transportation tableau, let i = product to be shipped; j = destination of each product; 

s
i  = the capacity of source node i; d

j  = the demand of destination j; x
ij
= the total capacity from 

source i to destination j; C
ij
= the per unit cost of transporting commodity from i to destination 

j. If we suppose that discount is given on each box transported from i to j then the non linear 

transportation problem can be formulated as: 

  Minimize    15x11 + 10 x12 + 4 x13 + 20 x14 

          7x21 + 6 x22 + 8 x23 + 3 x24 

                   x31 + 9 x32 + 5 x33 + 3 x34 

  Subject to    

                                        x11 + x12 + x13 + x14 = 15 

           x21 + x22 + x23 + x24 = 25 

                                        x31 + x32 + x33 + x34 = 10 

                                        x11 + x21 + x31  = 20 

                                        x12 + x22 + x32  = 10 

                                        x13 + x23 + x33  = 8 

                                        x14 + x24 + x34 = 12 

where 

                 C11x11 = 15x11 – p11x
2
11               C22x22 = 6x22 – p22x

2
22 

                 C12x12 = 10x12 – p12x
2
12               C23x23 = 8x23 – p23x

2
23 

                 C13x13 = 4x13 – p13x
2
13                 C24x24 = 3x24 – p24x

2
24 

                 C14x14 = 20x14 – p14x
2
14                C31x31 = x31 – p31x

2
31 

                 C21x21 = 7x21 – p21x
2
21                 C32x32 = 9x32 – p32x

2
32  

                 C33x33 = 5x33 – p33x
2
33                 C34x34 = 3x34 – p34x

2
34 

If we allow the discounts on each transported product i from the source to each of the 

destinations j as given in Table 2, the cost function become: 

               C11x11 = 15x11 – 0.02x
2

11                    C22x22 = 6x22 – 0.04x
2
22 

               C12x12 = 10x12 – 0.01x
2

12                   C23x23 = 8x23 – 0.03x
2
23  

               C13x13 = 4x13 – 0.04x
2

13                     C24x24 = 3x24 – 0.02x
2
24  

               C14x14 = 20x14 – 0.07x
2

14                    C31x31 = x31 – 0.005x
2
31 

               C21x21 = 7x21 –0.01x
2

21                      C32x32 = 9x32 – 0.03x
2
32  

                C33x33 = 5x33 – 0.04x
2

33                    C34x34 = 3x34 – 0.01x
2
34 

Using the West Corner rule we get the initial basic solution.  The solution tableau is as shown 

below: 
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Table 4 – Solution tableau 

 A B C D SUPPLY 

P. RED  15           15              10               4              20 15 

OVIDIO  5           7 10             6 8            8 2             3 25 

MERLOT                1               9                5 10           3 10 

DEMAND 20 10 8 12 50 

 

The initial basic feasible solution is:  ̅ = (xB11, x12, x13, x14, xB21, xB22, xB23, x24, x31, x32, x33, 

xB34). This from the table is given as  ̅ = (15, 0,0, 0, 5, 10, 8, 2, 0, 0, 0, 10) in thousands with 

the total transportation cost of Cost = (1,500*15) + (5000*5) + (10,000*6) + (8,000*8) + 

(2,000*3) + (10,000*2). Total Cost = GH¢400,000.00. 

Now, we use the KKT optimality conditions to improve upon our solution. The partial 

derivatives at  ̅ for the cost function are given as: 

     

    
= 14.4          

     

    
 = 10         

     

    
  = 4            

     

    
  = 20 

     

    
 = 6.9          

     

    
  = 5.2         

     

    
  = 7.52            

     

    
  = 2.92 

     

    
 = 1          

     

    
  = 9         

     

    
  = 5            

     

    
  = 1.8 

Now we find from the cost equation of the occupied cell; 

  

     
 =   

     

     
 - ui – vj = 0 

Thus, 

     

     
  = ui + vj 

      u1 + v1 = 14.4          u1 + v2 = 10          u2 + v2 = 5.2 

      u2 + v4 = 2.92          u2 + v1 = 6.9          u2 + v3 = 7.52      u3 + v4 = 1.8 

Letting u1 = 0, from the equations we have: 
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u1 = 0,    u2 = -7.5,     u3 = -8.62,     v1 = 14.4, v2 = 12.7, v3 = 15.02, and v4 = 10.42 

We find the net evaluation factor or the reduced costs for the non-basic variables. 

  

    
 =   

     

    
 – u1 – v2 = -2.7             

  

    
 =   

     

    
 – u1 – v3 = -11.02  

  

    
 =   

     

    
 – u1 – v4= 9.58             

  

    
 =   

     

    
 – u3 – v1 = -4.78 

  

    
 =   

     

    
 – u3 – v2 = 4.92             

  

    
 =   

     

    
 – u3 – v3 = -1.4 

 

The presence of negative values for the reduced cost signifies non optimality; hence we 

readjust. From the above, the minimum reduced costs for the non-basic variable is x13. 

Therefore x13 should enter the basis since it is the most negative reduced cost. 

We then move on to next iteration. At the end of this stage of iteration, the basic feasible 

solution is  ̅  = (15, 0, 0, 0, 5, 10, 8, 2, 0, 0, 0, 10). After adjusting the values x23 entered the 

solution. Next we find the cost equation for the occupy cell. 

  

     
 =   

     

     
 - ui – vj = 0 

Thus, 

                      
     

     
  = ui + vj  

                u1 + v1 = 14.4          u1 + v3 = 4          u2 + v1 = 6.9 

                u2 + v2 = 5.2          u2 + v4= 2.92           u3 + v4 = 1.8 

 

Letting u1 = 0, from the equations we have; 

u1 = 0,    u2 = -7.5,     u3 = -8.62,     v1 = 14.4, v2 = 12.7, v3 = 4, and v4 = 10.42 

 

The net evaluation factor or the reduced costs for the non-basic variables is; 

  

    
 =   

     

    
 – u1 – v2 = -2.7             

  

    
 =   

     

    
 – u2 – v3 = 11.02  
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 =   

     

    
 – u1 – v4= 9.58             

  

    
 =   

     

    
 – u3 – v1 = -4.78 

  

    
 =   

     

    
 – u3 – v2 = 4.92             

  

    
 =   

     

    
 – u3 – v3 = 9.62 

 

The presence of negative values for the reduced cost signifies non optimality; hence we 

readjust. From the above, the minimum reduced costs for the non-basic variable is x31. 

Therefore x31 should enter the basis since it is the most negative reduced cost. 

We then move on to next iteration.  At the end of this stage of iteration, the basic feasible 

solution is   ̅  = (7, 0, 8, 0, 13, 10, 0, 2, 0, 0, 0, 10). Next we find the cost equation for the 

occupy cell. 

  

     
 =   

     

     
 - ui – vj = 0 

Thus, 

                      
     

     
  = ui + vj  

                u1 + v1 = 14.4          u1 + v3 = 4          u2 + v1 = 6.9 

                u2 + v2 = 5.2          u2 + v4= 2.92           u3 + v4 = 1.8 

 

Letting u1 = 0, from the equations we have; 

u1 = 0,    u2 = -7.5,     u3 = -8.62,     v1 = 14.4, v2 = 12.7, v3 = 4, and v4 = 10.42 

 

The net evaluation factor or the reduced costs for the non-basic variables is; 

  

    
 =   

     

    
 – u1 – v2 = -2.7             

  

    
 =   

     

    
 – u2 – v3 = 11.02  

  

    
 =   

     

    
 – u1 – v4= 9.58             

  

    
 =   

     

    
 – u3 – v1 = -4.78 

  

    
 =   

     

    
 – u3 – v2 = 4.92             

  

    
 =   

     

    
 – u3 – v3 = 9.62 

The presence of negative values for the reduced cost signifies non optimality; hence we 

readjust. From the above, the minimum reduced costs for the non-basic variable is x31. 

Therefore x31 should enter the basis since it is the most negative reduced cost. We then move 

on to next iteration. At the end of this stage of iteration, the basic feasible solution is              

 ̅  = (7, 0, 8, 0, 3, 10, 0, 12, 10, 0, 0, 0). Next we find the cost equation for the occupy cell. 
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 =   

     

     
 - ui – vj = 0 

Thus, 

                      
     

     
  = ui + vj  

                u1 + v1 = 14.4          u1 + v3 = 4          u2 + v1 = 6.9 

                u2 + v2 = 5.2          u2 + v4= 2.92           u3 + v1 = 1 

 

Letting u1 = 0, from the equations we have: 

u1 = 0,    u2 = -7.5,     u3 = -13.4,     v1 = 14.4, v2 = 12.7, v3 = 4, and v4 = 10.42 

The net evaluation factor or the reduced costs for the non-basic variables is; 

  

    
 =   

     

    
 – u1 – v2 = -2.7             

  

    
 =   

     

    
 – u2 – v3 = 28.42  

  
  

    
 =   

     

    
 – u3 – v4 = 4.78 

  

    
 =   

     

    
 – u3 – v2 = 9.7             

  

    
 =   

     

    
 – u3 – v3 = 14.4 

The presence of negative values for the reduced cost signifies non optimality; hence we 

readjust. From the above, the minimum reduced costs for the non-basic variable is x12. 

Therefore x12 should enter the basis since it is the most negative reduced cost. We then move 

on to next iteration. At the end of this stage of iteration, the basic feasible solution is              

 ̅  = (0, 7, 8, 0, 10, 3, 0, 12, 10, 0, 0, 0). Next we find the cost equation for the occupy cell. 

  

     
 =   

     

     
 - ui – vj = 0 

Thus, 

                      
     

     
  = ui + vj  

                u1 + v2 = 10          u1 + v3 = 4          u2 + v1 = 6.9 

                u2 + v2 = 5.2          u2 + v4= 2.92           u3 + v1 = 1 

Letting u1 = 0, from the equations we have; 

u1 = 0,    u2 = -4.8,     u3 = -10.7,     v1 = 11.7, v2 = 10, v3 = 4, and v4 = 7.09 

The net evaluation factor or the reduced costs for the non-basic variables is: 
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 =   

     

    
 – u1 – v1 = 2.7             

  

    
 =   

     

    
 – u1 – v4 = 12.91  

  
  

    
 =   

     

    
 – u2 – v3 = 8.32         

  

    
 =   

     

    
 – u3 – v4 = 2.5  

  

    
 =   

     

    
 – u3 – v2 = 9.7             

  

    
 =   

     

    
 – u3 – v3 = 11.7  

Since all the reduced costs for the non-basic variables are all positive, it implies  ̅   is the 

KKT optimality point. Because optimal solution is our goal, we then proceed to make our 

allocation and calculate our total optimal cost of transportation. 

From our feasible solution, 7000 boxes of P.Red should be supplied to market zone B, 8000 

boxes to market zone C, 10000 boxes of Ovidio to market zone A, 3000 to market zone B, 

12000 to market zone D, and 10000 boxes of Merlot be supplied to market zone A. Total Cost 

= (10*7) + (8*4) + (10*7) + (3*6)+ (12*3)+ (10*1) thousand. Total Cost = GH¢236,000. 

Conclusion 

We have described the transportation problem of a company as a non-linear transportation 

problem. We applied KKT optimality algorithm to solve the company’s problem. Our 

research focused on the model of the non-linear transportation problem for a particular 

company in Ghana. It can however be applied to any situation that can be modelled as such. 

This paper aimed at solving transportation problem with volume discount on quantity of 

goods shipped which is a non-linear transportation problem. Using KKT optimality algorithm, 

with a data from a Ghanaian company, it was observed that the optimal solution that gave 

minimum achievable cost of supply was the supply of 7000 boxes of P. Red to market zone B, 

8000 boxes to market zone C, 10000 boxes of Ovidio to market zone A, 3000 to market zone 

B, 12000 to market zone D, and 10000 boxes of Merlot be supplied to market zone A at a cost 

of GH¢236,000. 

Using the more scientific transportation problem model for the company’s transportation 

problem gave a better result. Management may benefit from the proposed approach for their 

transportation problem purposes. We therefore recommend that the transportation problem 

model should be adopted by the company for their transportation problem planning. 
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Our study is limited to a nonlinear transportation problem with concave shape which is as a 

result of discount given on volume of goods transported. Unlike the linear transportation 

problems, maximization of profit is realized with discounts on large volumes, which means 

the determination of the best transportation route that would lead to low transportation cost 

and the effective transportation of these goods. 
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