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Abstract

This paper continues and expands several themes from previous studies of commercial airline cost functions. A well specified
industrial cost function reveals characteristics about the market players, such as economies of scale and the cost elasticities with
respect to operational styles. Using a translog specification, and its restricted first-order form, this paper updates previous
parameter estimates, reworks the experimental design, and gives new analysis to describe the spectrum of choices facing airline
firms in recent years. The translog model in this paper allows the energy cost share to interact with other variables and
illuminate what factors may exacerbate cost sensitivity to energy prices, an advance in this specific area of interpretation. The
result shows that fuel cost shares tend to be higher with older equipment, smaller fleet sizes, and to be increasing in aircraft size
and seating density. The restricted first-order model indicates that older aircraft designs are more costly to operate, even
accounting for operational style. This may imply that airlines with poorer access to capital suffer a cost disadvantage,
particularly during a fuel spike - also a new contribution of the paper. Finally, the first-order model does not reject constant
returns to scale (CRS) for fleet expansion, or increasing returns to scale (IRS) in aircraft size, which are the expected results.

Key words: airline cost function, translog model, econometric models.

Resumo

Este trabalho continua e estende varios temas de estudos anteriores de fun¢des de custo de companhias aéreas comerciais.
Uma fungio de custo industrial bem especificada revela caracteristicas sobre os participantes de mercado, tais como economias
de escala e as elasticidades de custo relativas a caracteristicas operacionais. Usando uma especificagdo translog e sua forma
restrita de primeira ordem, este artigo atualiza as estimativas anteriores da literatura, retrabalha o projeto do experimento, e
proporciona uma nova andlise para descrever o espectro de escolhas pelas quais as empresas aéreas vem enfrentando nos
ultimos anos. O modelo translog neste artigo possibilita que a participagdo dos custos de combustivel nos custos totais seja
interagida com outras varidveis, permitindo um esclarecimento dos fatores que podem agravar a sensibilidade dos custos aos
precos do combustivel - um avanc¢o nesta area especifica de interpretagdo. O resultado mostra que as participagdes de custos do
combustivel tendem a ser maiores com equipamentos mais antigos, com frotas menores, e tendem a ser crescentes com o
tamanho e densidade de assentos das aeronaves. O modelo restrito de primeira ordem indica que aeronaves mais antigas
possuem operag¢des mais custosa, mesmo levando em consideracdo o estilo operacional da empresa. Isto pode implicar que as
companhias aéreas com menos acesso ao capital sofrem uma desvantagem de custos, particularmente durante um pico de pregos
de combustivel - 0 que também constitui uma contribuigido do artigo. Finalmente, o modelo de primeira ordem nio rejeita a
hipétese de retornos constantes de escala para a expansdo da frota, ou retornos crescentes com o tamanho das aeronaves, que
sdo os resultados esperados.

Palavras-Chave: fungdo de custo de companhia aérea, modelo translog, modelos econométricos.
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Introduction

This paper updates prior literature by calibratengranslog cost function of US airlines for
recent years, using an engineering-centric, flesed approach. All costs are modeled at the
fleet by fleet. Fortunately, data sources existli@se fleet-level costs. Other parameters are
specified to help control for operational styleeeage flight stage length, seats per aircratft,
fleet count, number of airports served by the feed airline, etc. By doing this, coefficients
in the results should effectively model cost impaaf marginal changes in fleet
characteristics — adding seats, flying longer dists, or employing older or newer
equipment. Throughout, the aim is to produce aehsdfficiently disaggregated that it could
be used to model the cost of realistic operatiehahges, acknowledging that cost centers of

aircraft fleets can be quite independent of otlnatisin the same firm.

Historically, the cost function has been importaatause it can reveal to us nearly everything
about the production technology (Chambers, 1988re, by examining and modeling public
data, we can explain how airline firms convert itginto outputs. We can then identify
whether the efficiency of firms appears to increagh scale. The effects of various external
shocks — elevating the price of oil, for examplean be seen in the model outputs. The
distinctions between indirect and direct costsunmet to scale; returns to scope; and fixed

effects modeling are analyzed here with respeettber studies.

Understanding the cost functions for airlines, loeit revenue functions, can yield helpful
insights into transportation policy and/or genendlustrial forecasting. The most remarkable
elements of this industry, perhaps inspiring pasearchers, are (1) the contestability and
commodification of players, implying efficiency; én(2) centrally collected data whose

accuracy is overseen by a regulator.

Each major US airline collects and reports manggaties of quarterly cost and operational
data at the fleet level to federal regulators. sT@ives researchers great flexibility to test
different models. Thanks to “Form 41” data, aelkncan be seen as a transparent laboratory
where firms act out strategies in a “natural” seftigoverned by their own cost and revenue

functions, while highly visible to researchers.
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Competitively, a “settling out” process has beenpnogress since formal US air market
deregulation in 1978. That implies that the domsestarket is fairly “contestable.” If so, a
single cost function could be applied across athpanies in the market, representing “state
of the art” production technology. This paper meds (as others have) with the assumption

that one cost model generally applies.

| first construct a cost function for recent datang methods similar to Caves, Christensen
and Tretheway (1984). In the full translog resultfind that elasticity of total cost with

respect to fuel price (equivalently, fuel's cosais#) tends to be higher with older equipment,
and also with smaller fleet sizes. Also, costtaldg with respect to fuel price tends to be
increasing in aircraft size and seating densityd &rcraft technology, itself, appears to cause

higher costs in the restricted first-order transiogdel

The sections of the paper proceed as follows: terdiure Review; 2. Model Specification; 3.

Data and Empirical Strategy; 4. Estimation Res@@nclusion.

1. Literature Review

1.1 Rationale of the Model: Contestability

The validity of a nationwide cost model has begmrapched with practicality by a number of
authors. While we can measure firm operations, fanadentity labels to their data, it is
unclear whether the coefficients have a directiappbn in the industry. Previous authors
have implied that firms are subject to a commono$eanstitutions, markets, technology and
the laws of physics. It is important to assert t@mpetition does prevail, rather than some
arbitrary uncompetitive space in which costs art mexessarily relevant, such as expense
preference behavior in the regulated, as mentityesickles (1986). It is most often claimed
that the markets amontestabléetween the players whose costs we are attemiatifiginto

the common model.

A perfectly contestablenarket is defined as “one into which entry is ctetgly free, from
which exit is costless, in which entrants and inbents compete on completely symmetric
terms, and entry is not impeded by fear of retatiatprice alterations” (Baumol, Panzar,

1982). Can the industry in question satisfy tleérdtion? The verdicts from various authors
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have been mixed. | assume that the productiorhis dtudy takes place in a contestable
fashion. Hence, a general set of cost elastic{i@&l cross-elasticities) are obtained and
reported from all firms, although the cost intetsepre unique by firm. Adoption of

contestable markets is an essential ingredientctisastudy.
1.2 Cost Model Specification Literature — Cost ModeTheory

A theoretically valid cost function must exhibit rt@n properties (Varian, 1984). In

particular, the cost function should be:

* non-decreasing in input factor prices and outjuantities;

» homogeneous of degree one in factor prices;

 concave in factor prices; and

« continuously differentiable (ideally, twice difentiable) in prices.

Also, there should be zero fixed costs, and faffdht of Shephard’s Lemma,

such that:

w =X, (1)
W,

with w; input prices and; input quantities.

The properties of a valid cost function are disedss Chambers, 1984.

1.3 Cost Model Specification Literature — Engineeng Based / Micro Models

Swan (2006) builds a simulation of generic airlpreduction costs at the micro level. This
idea suggests a way to achieve the aim of the preswk: to model actual airline cost data at
the micro level. The operational cost function &craft is described by Swan as a model

based solely on seat counts and flight distan8sgan’s model takes the form:

In(cos) = A + B*In(seat3 + C*In(distance (2)

JTL-RELIT | Journal of Transport Literature, Manaus, vol. 8, n. 2, Apr. (2014) 41



William J. Meland pp. 38-72

Other factors could be considered endogenous -assuiming CRS in fleet size, scale could
be irrelevant as well. While we lack sufficientaaesolution to use this model exactly, it is

important to recognize that disaggregation habatsefits.

Aircraft ownership costs (and maintenance costs) \&ry real, but may reasonably be
discarded in group analysis. Swan argues thas eoay equilibrate and be discarded, as “the
driver of used airplane values is the need to &stah cost position along the cost frontier...
the cost frontier itself is designated by the poé@ewly manufactured airplanes.” This cost
frontier could be construed as an operational facBhce curve, over which profitability is

equal; thus, equipment costs could drop’out.

Morrison (1984) looks more deeply at the relatiopdbetween aircraft capital cost and the
inherent efficiency of an aircraft's design. Umifo physical principles may underlie a
significant portion of airline cost functions. Tlews of physics, with their limitations of

speed, reliability and fuel efficiency, affect aaft operators uniformly in such a model, with
respect to the equipment they choose. Firm eqguprfector demands have a point of
interface in the aircraft exchange market. Asgwiprevail along a cost frontier, differences

that we observe can be assigned to coefficierasfixed-factor or fixed-effects model.

CAPITAL COST

OPERATING COST PER MILE

Figure 1 - Capital Operating Efficiency vs. Cost

! The assumption here by Swan is that a sufficiditliid exchange market exists for used aircréfollows
that the marginal profitability for such aircraftaild be equal among firms, equalizing their lezdaes.

2 Source: Morrison (1984), p. 136. Courtesy Brookifgpers.
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In Morrison’s graphic, a frontier exists betweerpital costs and operating costs per mile
(capital cost of aircraft versus its energy efindg and maintenance costs). If such a frontier
is monotonic, and exchange markets are liquid, daah firm chooses aircraft at its preferred
location along that frontier, assuming all playars efficient. Like firms would choose like
equipment, at like prices. An airline might wishidoy a more expensive aircraft with lower
fuel consumption to provide a cushion against casatility of future fuel price spikes.
Concerns about capital shortages, meanwhile, magueage hoarding of cash and depress

demand for new equipment temporarily.

These firm heterogeneity scenarios are each preglog Morrison’s assumption of a single

frontier. Using the liquidity of aircraft purchag and leasing, we are left with an operational
cost solely determined by output, exclusive of raiftc cost, which is also the method

suggested by Swan. This would perhaps rationakxe aircraft purchases at the firm level, a
key point for Swan's employer, the Boeing Corpamti (as such purchases could be
described as cost neutral).

The feature that distinguishes the “engineeringebaapproach to econometric analysis is the
analysis of a specific group of machines whose getdn process can be usefully understood
by a single unit of production data. This disagmted analysis comes closer to a
“mechanical” functional form that is amenable taefwasting or static interpretation. To

report only on aggregates of machines, while itlwamterpreted observationally, has limited
practicality in decision-making. Practical validis enhanced if we have an accurate model
of the micro production choices, as they exist,abse this clears away aggregation bias.

That issue is discussed directly in 1.7, and tlop@sed remedy in 2.3.
1.4 Cost Model Specification Literature — Panel Dat of Firm Operations

Caves, Christensen and Tretheway (1984) (here@ffdr) is the main precursor of this study.
CCT usescale anddensitycoefficients to obtain theeturns to scale (RTS) andreturns to
density (RTD). Their treatment of production “density” r(oincreased product per
geographical area) gives a fine substitutestraleitself within a geographic system. CCT use
the first-order coefficients of a translog for theiost model (omitting the second-order

components of the translog):
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In[Total Cos} = & + BIn[Aircraft Mileg + SIn[points servep+

Lidn[mean flight distandet S[load factol + S[labor pricq + 3)
S fuel pricd + B capital-materials pricg+ Sg[capacity +

S[firm identitieg.

Expressed symbolically, CCT did a first-order res¢d translog regression:

In[Total Cost] = @, +a, INY + 2, AInW, +>_@InZ + > a; > a; (4)
i i Times Firms
Where Y is output,Wi are input prices, and th& are operational control variables that
describe airline characteristics, or productionesty The coefficients on 4 can give us cost

elasticities of these characteristics.

CCT also performed both a full translog model:
Ln[TotalCos}=

ay+a,InY+Y BInW + > @InZ + %3, (InY)?

%2 D INWINW, + %> > @ InZInZ, 5)
~ 2 2

i i i

+2 2, INYINW, +D 44 InYINZ + " Y A InWInZ, + Y a, + ) a,
i i i i Times Firms

Here,Aircraft Milesis the outpuly variable. This scale variable’s coefficient, inregression,
tells us how unit costs would be influenced by dimmepeating the activities of production
more times. This gives us an indication of whetlwerindustry becomes more efficient as
firm size increases, i.e., whether it experienaesitive “economies of scale.” In CCT, seats
and average flight distanc8tage¢ are held constant whil&ircraft Miles, the scale variable,
grows or shrinks. Effectively, this becomes departcount the logical building block of
“scale.” The partial derivative of cost with resp¢o Available Seat MilegASM3 is also

found here by usingircraft Miles as a proxy for departures.

% Supposing the length of haul remains the samephlihg inaircraft mileswould by definition by
synonymous with a doubling dipartures This may help readers come to terms \&itieraft milesbeing used
as a marker for firm size; it works because wehalding other factors equal.
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CCT estimate the above coefficients both as atfafislog model, and a simplified model in
which only the first-order coefficients are includeCCT report that “the coefficients for the
simplified translog form... are remarkably simitarthe first-order coefficients from the basic
translog model.” This suggests that second-ordefficients were either insignificant, or

counterbalanced each other.

The interpretations of key coefficients for CCT wes follows:

« Aircraft Miles, Cost elasticity of density, identical flights, didt network;

« Points served the cost impact of spreading resources over ditiaial service point;
* Flight distance cost of impact spreading the aircraft miles owsvdr, longer flights.
b+ B, customary elasticity of scale, allowing geogradriea to expand.

1.5 Cost Model Literature — Returns to Scale, Dentyi, Scope

Positive economies of scope suggest that, evencongestable market, firms will produce
multiple products (or expand their networks) thamiscross-product economies (Baumol,
1982). Without economies of scope, firms would eater multiple cities or pursue hub
networks. Most earlier papers have observed ecmsoai density (decreasing unit costs as
output increases in a given geographical areapy Have also observed economies of scope,
at least in the sense that one firm offering twodpicts (or two travel routes) will be more
efficient than two such firms covering that growsgparately.

CCT find constant returns to scale in firm openmagi@f the US airline industry. Economies
of scope should be assumed in our environmentidsay Baumol, “Economies of scope are

necessary for the existence of multiproduct conipetfirms” (Baumol, 1982).

Gillen uses the formulation

dinC ,dinc B
din[Point Served] = dInY

RT&IALE = ’ (6)

where values above unity signify positive “returms’scale. The reciprocal, cost elasticity of
scale, would be less than unity. From their logér model, they find RTS of 1.36« stat =
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2.1), meaning that RTS was significantly above ynithen firm dummies were included.
With firm dummies omitted, there were no signifitabserved economies of scale. Canadian
airline companies show increasing returns to dgnsibhen airline identities are included in

regression, but no difference from unity if theg aot included (Gillen, 1985).

Caves and Tretheway, writing in the period of théal post-deregulation shakeout following

1978, believed that low costs of entry would faatk equilibrium slowly. Their expectation

was for any clear differences in technical efficgrmmong firms to abate over time, “as the
regulatory era recedes into history,” replaced thy &pparently more thriving competitive

market of today. Returns to scale would favor stdal consolidation, something that has in
fact occurred dramatically since the CCT 1984 paper

Table 1 - Prior Literature First Order Approximated *

Cost Elasticities of Scale, Density, Fuel Price

SCALE DENSITY FUEL PRICE Years
Caves (1984) .936 (se .065) .804 (se .034) .l68)(d9 1970-1981
Gillen (1985) | .741 (=2.1) .5681(= 4.8) .04(=2.3) 1964-1981
Wei (2003) 0.811t(= 24.3f | N/A 240 ¢ = 7.21) 1987-1998
Chew (2005) | 1.012 (se .023) | Not done .1106 (.0035) 1994-2001

Positive economies a$cope if found, imply that airline hubs will emerge, caeding to
simulation literature on the topic (Hendricks et1#899). Hub-spoke networks can be “a
deterrent” to the entry of smaller carriers, duestiactural revenue advantages (in essence,
the revenue premium obtained by scope, as customeutd prefer firms with greater
network points, affording ease of shopping). Impetitive markets, the increased cost of

larger scope would apparently be justified by tr@tenue premium. While comparative

* While these are from full translog models, in whinteractions matter, the first order coefficiefwsthout
interactions) can signify the cost elasticitieshat sample means of the data (Wei, 2003).

® Gillen uses Canadian data. Log-linear model. fBiseare U.S. only.
® This is returns to seat count (machine scale)iwiingle aircraft types

" With local concavity imposed:; for fleets.
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network costs are beyond the topic of their studisndricks says that a least-cost hub will be
located where origin and destination distancesnairemized across the cumulative traffic
spectrum. This, too, explains how multiple hubs eaise in opposition to one another.
Significantly, contestability and cost advantages aot simply analyzed at the flight leg
level. Instead, airline costs represeatworksthat maycompetdrom differing geographical
perches (heterogeneity, as allowed by Berry, 199R).competition, Hendricks finds the
industry prone to monopoly due to economies of igns “Every city-pair market is
effectively served by only one carrier, the onehwat length advantage [across its transfer
hub]...” Also, they note that while one hub carrieitl wend to dominate, “nonhub networks
raise average costs of service but may allow tineecs to price less aggressively,” meaning

they can expect another type of revenue premium.

Table 1 shows a compendium of previous airline stistlies in which returns to scale and
density (and cost elasticity of fuel price) areaed. While these may be expected to
change over time, and particularly as regulatorytemhnological characteristics varied, a
general CRS or light IRS characteristic is visiol@CT did not reject CRS in translog.

1.6 Cost Model Specification Literature — ConcavityConsiderations

The concavity of a cost function is one of the keynditions of its validity (Varian, 1984;
Chambers, 1988). Concavity checks of the firsteordg-log cost function can be done
directly by taking the second derivatives of the& (aon-logged) cost function. With the full
translog-style equation however, it is noted thatoacave function is always log concave.
Therefore, by retaining logs, we can at least altbes possibility to reject (if the function is

not log concave). Improvement on that basis caméasured.

A more complete way to check concavity of a tragstyle function is to check the Allen-
Uzawa matrix of partial cost elasticities. Allendpa matrix concavity implies Hessian

matrix concavity (Featherstone, 2007). For fAeross price elasticity at each observation,
b.
we havern; =S, +§, where§ is the cost share of input factor The equation also works

where i=] to get own-price Allen-Uzawa cost partial elastest from which the partials

matrix can be made. This is done in the projecliagnose any concavity problems.
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A process has been developed to impose cost functacavity, if needed, in projects such
as CCT and the present one (Ryan and Wales, 200}k procedure was used recently by
Chua, Kew and Yong, 2005; (hereafter, CKY). Eanieethods to impose global concavity
will negate the flexibility of the translog forminstead, CKY and Ryan / Wales impose local
concavity. To do this, a particular data obseorais designated the “normalization point.”
All its price, scale and state of nature varialdes scaled to equal one; this ensures that the
cost Hessian is negative semidefinite for that plzde®n. By selecting the normalization
point carefully, many or all of the observationgblations of concavity can be remedied.
CKY detail several examples of cost studies whasilts are questionable or reversed,
following this procedure. The CKY method of impggimocal concavity maintains the

translog model’s flexibility.

Using data for 10 airlines over the period 1992891, CKY present an enhancement and
update of the earlier CCT cost estimation techniqG€T’s cost function violates concavity

at approximately half its observations. CKY wel@leato rehabilitate those data. They
present their new study, which includes a translogt function. They re-estimate the CCT
cost function after imposing concavity, finding “tegal differences in scale economies” after
doing so. Note that the CCT and CKY papers both aggregate corporate data. In this
paper, the concavity check recommended by CKY isduwith consideration for their

normalization remedy.

Further, modeling all normalizations and choosing best one is a feasible extension that
should prove simple and useful. Other concavitynmadizations can impact flexibility of the

cost function.
1.7 Cost Model Specification Literature — Aggregabn Considerations

The second recent innovation subsequent to the €@y is a method to dis-aggregate data
when necessary. A recent translog cost estimasimmly provides a logical way to
disaggregate operational numbers from firms inéet8 (Basso and Jara-Diaz, 2005). It is
noted that aggregate outpyits are implicit functions of fleet output¥. Looking at
operational metrics, Basso and Jara-diaz use tomkteres TK) and average length of haul
(ALH) in Y. Then,
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TK(Y) = Zyij [d; [wheredi is distance of haul] (7)
i
and
2y; Lo Zyi-JEdep e
ALH(Y):Zyij -dij/Zyij, [as opposed tg” ! ]/” ! % pes - (8)
ij ij

2. deps
t=1

Basso and Jara-diaz explain that the above appllesre d; is the distance travelled by flow
y; between origin and destinatio). Therefore, even if the true (disaggregated) pcod
vectors Y*, Y and Y° were unknown,SC [economies of scale] could still be calculated
correctly if the corresponding aggregat@G{A), ?(YB) and \7(YD) were known, and an
estimated cost functiol©(Y,PS) was available..® This is a method of rationalizing the
distribution of aggregate metrics such as averaggth of haul by weighting it by product, in
this case the ton-kilometer (the passenger-milddcawork equivalently well, if we need a

method to distribute such costs in a passengey)stud

In similar recognition of aggregation problems, @ieo recent study uses disaggregated, fleet
level datd to construct a translog operations cost model ffmmm 41 data (Wei and Hansen,
2003). This was done to study aircraft capitat€@nd the demand for certain aircraft types.
Their use of Form 41’s unaggregated direct opegatost data tables indicates some curiosity
about fleet-level cost analysis, something expanddke present project. | use the same data
source tables as Wei and Hansen, together witk-agijregation technique similar to Basso,

as will be described in the Model section for iedircosts.

While Form 41 includes detailadirect operating costs for all fleet types separatelya dar
indirect costs are not available by fleet. Indirect, oertvead, costs are only available at the
firm level. To deal with this, Wei and Hansen dogaftheir study talirect operating costs
only, of fleets. But a full study of returns toase (RTS) within the fleet context would

require a total cost specification. By combiniihg methods of prior researchers, this paper

8 Basso and Jara-Diaz (2005) , p. 32

°“Fleet level data” refers to a data source thac#jzally breaks out operational numbers by aitdigpe within
the firms. For example, it will give quarterly gepures and gallons of fuel burned by AA MD-80s73,3tc.
Otherwise, data is aggregated at the firm level,(American Airlines as a whole).
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makes a special arrangement to pursue a disaggdegedel, by synthetically disaggregating
the indirect costs, and achieving a total cost measurementtherfleets, which is the

dependent variable to be studied here.

2. Model Specification

2.1 Model Overview

The first goal of this paper is to build an effgetibase total cost model similar to prior
literature. The CCT econometric model introducedier is still an effective framework if
applied legitimately (as authors have done in weriways). The translog cost model (such as
Eq. 5) is a well-tested practical method to appr@ate an unknown cost function with
multiple input prices, operational styles, a timector and firm dummy variables,

nonlinearities, and interactions among the vargble

Ideally, that cost model would apply to fleets indually, to the extent that separate cost data
sources exist. In this project, we have the rigita ingredients to construct a cost study
using the CCT framework at the fleet level, ratham the firm level. This allows analysis of
fuel price effects on costs, as it impacts indialdileets within firms.

Fixed-effects model building is probably necessprgsuming firm-specific dummy variables
are significant. A fixed effects model estimateefficients for the variables, controlled for
the time period and the entity (airline) reportitng costs. The model would then become
more targeted, specific to each airline identiBy having fixed identities, the interpretation
of coefficients (cost elasticities) refers to th&periences ofindividual firms whose
parameters have changed over time, within the samspt. (“Within,” as opposed to

“between” firms).

Fleet-leveldirect operating costs are reported directly in the ddtae assignment ofdirect

costs to flight operations is an inherently subyecendeavor that | must perform, because |
lack the private data on fleet allocations of oeath costs. A researcher can perform this
allocation nearly as well as the firms themsehsdsce we possess the firm-wide overhead

cost data. Thesmdirect costs such as advertising, insurance and corpogateestate are
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here weighted bwircraft miles Thus, we have a source ©btal Costdata for individual
fleets™®

Total Cost =(Direct Costs + Pro-Rated Indirect Co¥ts (9)

This project uses Eq. 5 with the slight differeticat Yearis included among thg as a trend
variable, rather than as dummy variables.

Because of the homogeneity of degree one restiatianput prices, (th&\), we impose the

following restrictions on (Eq. 5):

2B=1  2)=0 2.5, =0 (10)
| estimate the first-order translog functions usB®S PROC SYSLIN; the translog equation
is estimated using PROC MODEL, iterated SUR witktrietions entered imposed on the

primal translog cost function.

Because the full translog cost function alone ienprto multicollinearity, it is standard
practice to estimate it together with its dual engiture-share functions (Ray, 1982). Two of
the three inputs whose prices | includgil(Price and Pilot Wage$ have share equations
included; the other share equati@apital-Materials Priceneed not be included because it is
defined by the remaining two. The three equatiofstg]l Costand two of its input
expenditure shares) are estimated together in aratédd Zellner seemingly unrelated
regression (SUR) as a system of linear equatiorie worrelated errors. The estimated
parameters on the variables should be the maxinkethlood estimator (MLE) of their true
values (CCT, 1984).

Expenditure shares are calculated as follows fimgrabove translog cost primal:

g = WX _[@JWF _dInTC

T TC |ow. |TC

i i L RSE 11
TC = anw, =AW, * A InY 42 A, nZ 1)

19 Another method might have been to weight overluests byAvailable Seat Mile¢ASM$, which might be
useful in while accounting things like catering,igéhare sensitive to passenger count. Such adogunt
assignments are to some extent an arbitrary decisio
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A translog function is a second order Taylor sedpproximation of an unknown “true” cost
function. Unlike with first-order translog, theasticities of substitution between factors
and/or production characteristics can vary in aated “flexible” functional form such as

translog.

First-order translog assumes the production teciyyols homotheti¢! while translog does
not. Still, this is not to say translog entiregptures the behavior of complex functions. For

example, a generated CES function has been shol poorly approximated by translog.

In this notation, the intercept, firm dummies, auitpinput prices, and production
characteristics are entered exactly as above. [8¢ehave symmetry singg = ;. In the SAS
code for this project, the symmetric variables wasmbined to conserve degrees of freedom.
Given that this project uses time series data, reewmaulticollinearity may be a concern.
Estimating the cost function alone as a single eguanodel would typically be vulnerable to
multicollinearity (Ray, 1982). To avoid it, | expt the features of duality to estimate the
flexible cost function together with its input shaequations, in a Zellner Seemingly
Unrelated Regression (SUR) technique. Singulasitgvoided by including only two of the
three share equations in the model (fuel and pilots

Unlike CCT 1984, I include time as a continuousiatale so that time can be interacted with
other items of interest (i.e., here | include itcae of thez)). Otherwise, the model is very

similar to that earlier study, computationally. tBeeep in mind that the simultaneous study
here of firm-level and fleet-level economies ofleda a major conceptual adjustment to their

model.

Including factor share equations with the abovel wiiprove efficiency (Ray, 1982) by

estimating the full dual system of equations, hmikt and share equations together.

1 Generally,f(x) is homothetic if and only if it can be writtes f(x) = ®(g(X)), where functiorg(.) is
homogenous of degree 1, adds some transformation of the reals.
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2.2 Model Key Point — Returns to Scope and/@cale

This model, like CCT, gives cost elasticities widspect to scale, density, or breadth/scope of
service (the network points). Scale equals gredgesity over greater breadth (so those two
separate coefficients can be summed to find RTSise the economies of network scope as
described by Basso and Jara-Diaz to identify bdtB Bnd RTD, as described in Table 2:

Table 2 - Cost Elasticies of Scale

Within An Aircratft,

E_Scale = Bseatst Beasin AREA.

E_Density = Bseats

E_Scort = BcaBIN ARES

For Fleets of Aircraft,

E_Seate = Buites + BroiNTs SERVED (of Fleet data)
E_Density = BrLEET MILES

E_Scope = BrLEET PONTS SERVE
For Airline Firms,

E_Sae = Brirv asms + BroinTs servep  (Of Firm data)
E_DensiTy = [rIRM AVAIL SEAT MILES
E_Scopt = SrirM POINTS SERVE

2.3 Model Key Point — An Effort to Model Individual Flights, through Quarterly
fleet Aggregates

The Hicks Composite Commodity Theorem states thifathe prices of a group of goods
move in parallel, then that group of goods canrbatéd as a single good.” This implies that
it is desirable to model costs below the firm levélis unlikely that firm-wide statistics will
have the same cost elasticities of operational rpar@rs, scale, and so on, as for its
component fleets. Therefore, the firm-wide producttprocess ought not to be treated as a
single production function. Instead, using disaggted data at the fleet level is more
desirable. Meaningfully, equipment-specific datdl ensure that the cost function does not
mis-state the fleet level cost elasticities, whichuld occur without warning in the context of
conventional firm-level aggregation, whose metrige most often averaged by departure

count.
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| usetypical flightswhich are the average departure-weighted journegéch fleet. Fleets
usually are directed to fairly narrow bands of @pens, to capitalize on the relative strengths
of each aircraft type. The mean distance per fflgffould have low variation within these
fleets — certainly a lower variation than when ragéng firm-wide analysis. By using
guarterly data, a researcher is partway to an eeging-based cost model. Operationally
similar flying should have similar costs, regardled which particular cities are involved.
This is because the laws of physics acting uporaitegaft are uniform, airports contestable,

and a parameter for airway congestion can be iedunl the model.
Consider this hypothetical example in Table 3:

Table 3 - Example of Assignment-Driven Cost Efficiecy Differential

Aircraft Type | Seats Stage Quarterly Quarterly Cost per
Departures | Operating Cost Available

Seat Mile

A319 120 375 mi 900 $8 million $0.198
A319 120 1,500 mi 360 $9 million $0.139

This sort of data display can be used to isolageftbntier of operational feasibility. Firms
that operate in a particular way would be expettedave particular costs by virtue of their
schedule, and its interactions with other factorbe efficient frontier of production can best
be found by examining fleet-level data. The vasliffjerent Cost per Available Seat Mile
(CASM in the above pair could obscure the idea that lbame from the same cost function.
They may be equallgfficientin terms of some underlying physical model. Tismihedules
largely dictate the average speed at which thetsfleperate, which directly results in
“outputs” such a®\SMsthat a model would expect can be produced by faels. We must
take care that the costs are modeled realisticalbying that each fleet has a particular

operational cost frontier.

The LHS of our regression will be the total costagfubfleet’'soperations quarterly. This is
reminiscent of a micro model of individual flighis, a Morrison/Swan engineering sense, as
if the subfleet is iterating many identicalerageflights. Unfortunately, in the typical
heterogeneous flight schedule, this assumptiodigiitfuniformity is a gross simplification
that is nonetheless required, since the cost Hatagelves are aggregates to some extent. Itis

hoped that mean values such as length of haullelivby departures, will sufficiently model
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the micro flights from fleet data. Then the fleaverage operational metrics could
approximate the metrics of individual flights, upatich the laws of physics are likely to

exert a role in terms of fuel and time requiremeatsl therefore cost.

This is a second-best method compared to actgdhitfinodeling. We do not have data points
for each of the roughly 10 million commercial pasger flights in the USA annually. The
dataset compares fleet level data for several Rahdieets over the period 2000-2007

(comprising 2,660 usable observation points).

3. Data and Empirical Strategy

3.1 Data Overview

This project uses US DOT Form 41 data for the y@f@0-2007, an eight-year panel of
operational, financial, equipment and macro envitent data. This is a large data source
with high presumed reliability and completenests nhetrics include quarterly data for each
aircraft subfleet (such as Boeing 737-300, Airbu&l9, etc) for each airline included in the
sample. The sample includes most of the majoregptathat comprise the US commercial
market, as shown in Table 4.

Table 4 - Airlines in Sample, by Category

Legacy Alaska Continental Northwest

Carriers Aloha Delta United
American Hawaiian US Airways
America West Midwest

Major Low- AirTran JetBlue Southwest

Cost Carriers | ATA Frontier Spirit

“Regional” American Eagle Pinnacle SkyWest

Airlines Comair Mesa Air Wisconsin

(<100 Seats / | ExpressJet Mesaba

aircraft)
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This sample is diverse in equipment types, fleetnt® and styles of utilization. The data

source is time series panel data with about 80(¢kemvhtions, of which about 2500 are

complete. The most commonly missing variable itasiet completeness has been network
size (points served), for which certain values donbt be obtained. Other values were
manually corrected or deleted by the author if obsly false. Some included erratic

numbers in connection with extremely small opersldevels.

The Form 41 data source includes fleet spedhirect operating cost§DC) such as pilot
wages, fuel, etc, but does not includdirect costs [C) like advertising and headquarters
salaries. Indirect costs are only available atafpgregate corporate level (summing the fleets
for each firm.) While corporate level Total Costalare available on Form 41 Schedule P-12,
subfleet level data must be simulated based onkade assuming that overhead costs (= TC
— Direct Costs) are distributed uniformly across finm’s produced units. For now, we say
overhead costs are distributed evenly ac/issraft Miles. This allows us to have realistic
total operating cost¢éTC) for each fleet, in addition to the detailed opierzal data.

A representative data observation is describedahlel'5, and the data are summarized in
Table 6.

Table 5 - A Representative Data Observation from ta Sample

Airline Aircraft | Quarter| Departures Seats Avg Seat Available | Gallons| Crew
Type Available | Length | Capacity| Seat of Fuel | Costs
of Miles
Haul
American| MD-80 | Q2 2003 112,681 17,352,000 856 mi 129 12.94 | 260.5 | $150.5
Airlines Billion Million | Million

Table 6 - Data summary, with Arithmetic and Weighted Means

N=2660 Mean Std Dev Minimum  Maximum Weighted Mean
(ASM3
FleetMi 16,249,217 16,466,421 7,944 114,559,245 6&1,496
ACPoints 34.444 24.651 2 132 43.037
ACSeats 158.019 76.622 30 430 178.210
ACCabinArea | 124.168 80.460 27.195 380 143.502
ACFlightDist 1357.54 1122.62 137.49 6570.79 1605.85
ACPilotWage | 481.70 348.37 2.01 9903.38 519.923
FuelPrice 36.16 12.867 18.494 70.325 36.522
CapMPrice 5293.75 2717.54 863.15 50530.4 5816.6
TechAge 14.668 8.702 1 40 15.205
FirmASMs 20355210153 14072344362 75669086 459208D2127411965363
FirmPoints 111.67 41.00 5 163 121.12
YearCount 7.44 2.24 4 11 7.478
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The dataset was assembled in Microsoft Excel usamg data from the US Department of
Transportation Bureau of Transportation Statisbedine sources (www.bts.gov). Panels
were merged into quarterly, fleet specific numldersoperations and direct costs of operation
from Form 41 T2, T100. Lastly, the data were fetioi SAS 9.1.3 for further data

manipulation and econometrics processing.
3.2 Model Regression Variables

For both the first-order translog and translog costdels, the dependent variable was a
calculation of Total Operating Costs This was the sum of itemizedirect costsand

synthetically disaggregateddirect costsby fleet, in 1997 dollars.

The 13 explanatory variables are:

* Fleet Aircraft Miles * Mean Flight Distance  Eipment Design Age
* Fleet Network Points » Cockpit Wage  Firm Production
Quantity

» Seat Capacity * Oil Price * Firm Network Size

» Cabin Area * Capital, Materials Price e« Year

(Firm identity — carrier-specific fixed effec}s.

Cockpit wageis included in the regressions because, as noted/ddi and Hansen (2003),

“pilots flying larger aircraft are paid more thahose flying smaller aircraft, and these
‘diseconomies’ of pilot cost offset the ‘technicatonomies of aircraft size (...)” Therefore,
| explicitly itemize the cost of the pilot facton ieach fleet, from the item “Pilots and
Copilots” of quarterly operational costs on Form 4This allows us to treat pilot wages as
essentially exogenous by entering the data. Téimsowes bias from the coefficients on
operational choices (aircraft types and statistiosinoving potential bias of the estimators

that were hiding pilot wage.

Is it reasonable to treat pilot wages as an exageoorrection of the model, but aircraft least
rates as implicit? The rationale is the liquidafyaircraft, compared to the pools of airline
pilots, which are fundamentally illiquid due prinigrto unionization. But aircraft cannot

unionize. From the data, similar airlines dispsagrk wage disparities, both over time within
firms, and among firms during constant time. Tpessistent illiquidity of factors is presumed

not to exist with the capital stock.
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A key data omission to mention again is aircrafiitzd costs. | seek to omit aircraft costs by

assuming that depreciation and rent parametermscargmic equals.
Rent = Amortization = Economic Depreciation of Hyuient. (22)

While maintenance costs are explicitly available Harm 41, the purchase, ownership
opportunity costs, or lease arrangements are rpEcedly amenable to direct comparison.
This becomes a serious problem if equipment ceststare only partially specified in the
model, leading to problems with the adding-up festm across many diverse firms with
different equipment procurement or repair behaviofonfusing the bookkeeping, a firm
could try to maximize depreciation booked on sushets for tax purposes, or engage in
accounting logic that deviates from economic resdit Rent may, consequently, be a
problematic variable in our cost function. By metl focusing on operational parameters, as
in the Morrison and Swan theory, we build equipneadts into the intercept of the equation.
Or, in our case, it could form an amorphous “reanlgraft” commodity that we can build into
Capital-Materials pricing. Firm identity variablesght capture any remaining special nature
of aircraft cost. This is based on the assumptiba liquid secondhand market for aircraft

and continuous operating decisions on repairseggacement of new aircraft.

4. Estimation Results

The cost model implies an industry-wide cost modat, therefore, an industry-wide
production function. The industry’s cost and prcithn data are put into a model. The
model yields estimated coefficients for the costsgtities of various factors and styles of
production. The degree of statistical confirmatioihthese estimates is reflected in the
closeness of fitment of cost outcome estimatioresb cost data — i.e., th& for the estimated

linear regressions.

By estimating a disaggregated model, the hopeads tthe most appropriate estimate takes
place, which represents firm costs with respecthto type of machines employed. These
machines represent, over time, variable decisionagament units that might be subject to
actual decisions or variations of production basadvariables (such aseats per aircrajt

dealt with here. If more seats are installed iraaaraft, this paper claims to model the cost

JTL-RELIT | Journal of Transport Literature, Manaus, vol. 8, n. 2, Apr. (2014) 58



William J. Meland pp. 38-72

elasticity — without, and then with second-ordeeractions — of that type of decision upon
existing fleets. Therefore, the empirical modelhistorically meaningful, and also has
something to say about the effects might be obastiaken by market actors. So, the model

could reasonably be used for simulation.
The restricted model is:

In[Total Cos}=

[ + fin[Fleet Aircraft Mileg + SIn[Fleet points servddr ;[ Seat Capacity+
Lidn[Cabin Ared + Ss[Mean Flight Distanck+ Ss[ Cockpit Wagg+

GOl Price] + Sg[Capital-Materials Pricg + [ Design Age+ Sio[Firm Quantity] +
Lu[Firm Scopég+ B Yeal + S[firm identitieg.

The less resricted, translog-style model is:
a,+a,InY+ > BInW +> @InZ + %4, (nY)?+
In[Total Cost= %2, >y, InW,InW, +%> > . InZInZ, +
i j i j

pr InYInW, +Z,uW InYInZ, +Z Z/]” INW,InZ, + Y a,

j Firms

(plus restrictions in Eq. 10)
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4.1 First-order, Restricted Specification

Table 7 - Subfleet First Order Total Cost Regressn, 2000-2007 (1997 dollars)

log_TotalCost=

Fixed Effects Statistics
Variable B S Error t Total 2660
Observa
tions
Intercept -2.794 4156 -6.72 Model DF 32
Log_ACMiles .8610 .0069 124.89 Error DF 2628
Log_ACPointsSrv .1562 .0103 15.16 SSE 71.4793
LogACSeats -.5126 .0370 -13.86 Root MSE .1649
Log_ACCabinArea .5944 .0328 18.15 R? 9753
Log_ACFlightDist -.0994 .0130 -7.64 Adjusted R .9750
Log_ACPilotWage .0575 .0084 6.84 Durbin-Watson .7102
Log_OilSpot 2037 0128 15.88
Log_C-MPrice .7387 .0147 50.21
ACTechAge .0043 .0004 9.68
Log_FirmASMs .0169 .0193 0.88
Log_FirmPointsSrv .0006 .0190 0.03
YearCount -.0009 .0023 -0.39

Fixed Effects Firm DummigdetBlue as base)

Firm B t Firm B t Firm
B t
AA | -.1458 -2.65 HP| -.0364 -1.01 XE  -.1479 -2.71
DL | -.1365 -2.61 TZ| .3429 9.61 X] -.2083 -2.98
NW | -.1174 -2.43 B6 0 0 ZW  -.1667 -2.66
WN | .0139 0.32 FL| -.0047 -0.13 o0  -.1979 -4.65
us | -.0150 -0.35 Fg -.1118 -1.26 OH  .3390 6.07
UA | -.1023 -1.90 YV| -.1293 -3.02 MQ  -.1201 -2.24
CO | -.1400 -2.95 AS  -.0957 -2.55 Y -.1606 -3.51
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The first order translog model appears to be a gpatification (according to Figure 3) and
enjoys easy interpretability. The coefficientsrexent fleet-level cost elasticities. Holding
all else equal, this regression allows us to imtErghe economies of density and scope, cost
effects of increasing aircraft size, seat denstyoil costs and cockpit crew wages. While
prohibiting interactions among the coefficients gy a bit simplistic, this regression does

give some clear results that can be reported.

As shown in Table 8, cost elasticity of scale ipragimately one (CRS is not rejected). In
practical terms, this means that a firm could exiamarticular fleet with constant unit costs.
So, this means that firms have exploited avail@denomies of scale, and attained efficient

scale. This is not unexpected, considering theéestability of markets asserted.

The cost elasticity of aircraft scale is a bit ndwt also well worth examination. The
physical size of aircraft should engender gredfesiency, at least to a point. The coefficient
on cabin area suggests that total costs increafie e@bin area with an elasticity of
approximately 0.594 (SE 0.33). This is so aftemtaaling for seat count and operational
style, including length of haul. Hence, aircradivk increasing returns to scale. See Table 8
(below) for this breakdown. Returns to scale irmte of the firm are measured to be
insignificant. The coefficient oRirmASMsandFirmPointsSrvsuggest that attributes of the
overall firm do not directly impact costs accruedtlie fleets, which is my topic of concern.
Therefore the firm size, irrespective of fleets f@vhthemselves have sizes), appears to carrly
little or no predictive power over costs. We mighy that there are no economies, positive or
negative, associated with firm size after specdyileet size. That’s surprising, because the
firms’ fixed costs are allocated into the fleettspso we would expect economies of firm size
to be visible. Also, no time trend is visible (athst numbers are inflation-adjusted by CPI-
Urban).
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First Order Trandog Fixed Effects Cost Function: Residuals

Residual
3

13 14 15 16 17 18 19 20 21 22

Pred_Obj_Value

Figure 2 - First Order Restricted Fixed Effects: Raiduals

Table 8 - Cost Elasticities of Scale and Scoffe

Fixed Effects Restricted Model:
Cost Elasticities of Scale and Scope
Coeffs SE
Fleet Miles 0.861 .070
Fleet Scope 0.156 .010
= Fleet Scale = 1.017 = .080
Aircraft Seats -.513 .037
Aircraft Scope 594 .033
— Aircraft Scalé® | = 0.082 = .070

12 Note: “Fleet Scale” refers to economies from marevider operations of a given fleet; “Aircraft&e” refers
to larger or smaller aircraft.

3 This appears to be a victim of model endogenéitile increased seat count may be associatedlesith
costly operators, any great increase in seat cghold bring higher costs. Evidentfyabin Areaaccounts for
fleet scale while&seat Counts contingent upon it. The two do not interactgady for ascalemeasurement.
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Table 9 - Subfleet Translog Style Total Cost Regssion, 2000-2007 (1997 dollars)

Equation N DF Model | DF Error | SSE Root MSE | R-Square DwWatson
Log_TC 2660 95.78 2564 29.2993 0.1069 0.9899 0.9508
ShareFuel 5.611 2564 1.6670 0.0251 0.8429 0.4728
SharePilo 5.611 2564 0.5977 0.0150 0.7244 0.8730
t

log_TotalCost=

Variable B S Error t Variable B S Error t
Intercept 3.322 2.423 1.37 (3*4) 0.224 0.279 0.80
(1) Log _ACMiles -1.043 0.122 -8.53 (3*5) -0.983 0.083 -11.78
(2) Log_ACPointsSrv 2.477 0.181 13.70 (3*6) -0.005 0.002 -2.06
(3) LogACSeas -6.768 0.751 -9.02 (3*7) 0.030 0.004 6.99
(4) Log_ACCabinArea | 9.740 0.770 12.65 (3*8) 0.771 0.083 9.29
(5) Log_ACFlightDist | 0.146 0.305 0.48 (3*9) 0.013 0.004 3.17
(6) Log_ACPilotWage | 0.239 0.008 30.61 (3*10) 0.047 0.058 0.80
(7) Log_FuelPrice 0.269 0.014 18.77 (3*11) 0.075 0.087 0.86
(8) Log_C-MPrice 0.492 0.015 32.07 (3*12) 0.006 0.011 0.61
(9) ACTechAge 0.005 0.012 0.41 (4*5) 1.048 0.089 11.78
(10) Log_FirmASMs 0.158 0.251 0.63 (4%6) 0.004 0.002 1.84
(11) Log_FirmPtsSrv -.640 0.362 -1.77 (4*7) 0.043 0.004 10.38
(12) YearCount -.053 0.030 -1.75 (4*8) -1.01 0.091 -11.04
(Log_ACMiles)? 0.122 0.006 19.57 (4%9) -0.007 0.004 -1.86
(Log_ACPointsSry? 0.266 0.021 12.57 (4*10) -0.106 0.056 -1.91
(LogACSeat)? 0.222 0.343 0.65 (4*11) -0.142 0.088 -1.61
(ACCabinAred? -0.269 | 0.279 -0.97 (4*12) -0.008 0.010 -0.88
(Log_ACFlightDist)? -0.051 0.044 -1.15 (5*6) -0.003 0.001 -0.34
(Log_ACPilotWagg® 0.049 0.001 70.83 (5*7) 0.021 0.002 12.64
(Log_FuelPrice)® 0.124 0.003 46.59 (5*8) 0.121 0.030 4.03
(Log_C-MPrice) -0.000 0.004 -0.06 (5*9) 0.004 0.001 3.45
(ACTechAge’ 0.000 0.000 0.23 (5*10) 0.008 0.021 0.40
(Log_FirmASMs)? -0.034 0.017 -2.04 (5*11) -0.148 0.037 -3.99
(Log_FirmPtsSry)* -0.017 0.034 -0.52 (5*12) -0.010 0.004 -2.49
(YearCoun)? -0.001 0.002 -0.57 (6*7) 0.002 0.001 1.67
(1*2) -0.162 0.011 -14.92 (6*8) -0.047 0.001 -40.66
(1*3) 0.275 0.045 6.13 (6*9) -0.000 0.000 -7.67
(1*4) -0.422 0.044 -9.65 (6*10) 0.002 0.001 3.56
(1*5) -0.062 0.015 -4.10 (6*11) -0.002 0.001 -2.03
(1*6) -0.006 0.001 -10.84 (6*12) -0.002 0.000 -13D0
(2*7) -0.006 0.001 -6.31 (7*8) -0.128 0.002 -64.45
(1*8) 0.012 0.000 11.98 (7*9) 0.001 0.000 20.49
(1*9) -0.002 0.001 -3.31 (7*10) 0.004 0.001 4.73
(1*10) 0.046 0.009 5.21 (7*11) 0.002 0.001 1.39
(1*11) 0.100 0.014 7.01 (7*12) -0.001 0.000 -3.19
(1*12) 0.006 0.002 2.97 (8*9) -0.001 0.001 -0.53
(2*3) -0.482 0.058 -8.34 (8*10) 0.022 0.005 4.69
(2*4) 0.650 0.057 11.39 (8*11) 0.139 0.022 6.44
(2*5) 0.112 0.023 4.85 (8*12) 0.004 0.005 0.76
(2*6) 0.006 0.001 6.98 (9*10) -0.001 0.001 -1.38
(2*7) 0.000 0.001 0.22 (9*11) -0.001 0.001 -0.76
(2*8) -0.150 0.014 -10.86 (9*12) -0.000 0.000 -2.84
(2*9) 0.002 0.001 2.54 (10*11) -0.023 0.022 -1.05
(2*10) -0.016 0.012 -1.33 (10*12) 0.001 0.003 0.43
(2*11) -0.100 0.022 -4.55 (11*12) 0.007 0.004 1.61
(2*12) -0.009 0.003 -2.79
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Table 9 Continued - Subfleet Translog Style TotaCost Regression, 2000-2007
(1997 dollars)

Fixed Effects Firm Dummies
Firm B t Firm B t Firm B t
AA 0.134 2.36 TZ 0.100 3.37 W -0.142 -2.38
DL 0.149 2.83 FL -0.019 -0.63 OH 0.284 5.31
UsS 0.141 3.90 F9 0.009 0.14 MQ -0.088 -1.49
UA 0.177 3.34 YV -0.110 -2.38 AS 0.013 0.43
CcO 0.128 2.92 XE -0.108 -1.93 YX -0.175 -4.27
HP 0.034 1.19 XJ -0.422 -5.48 NW 0.116 2.54
B6 (base) 0 00 -0.224 -4.85 WN -0.096) -2.37

Full Translog Cost Function: Residuals

Residual

Pred Dbj Value

Figure 3 - Unrestricted Translog Style RegressiorResiduals

Translog style regression results (in Table 9) lmart first difficult to interpret since second-
order effects (particularly with output) may obsetine first-order effects of the coefficients.
For example, the inclusion of quadratics decomptsedirst order interpretability we had in
the first-order translog function. While CCT repattnear-exact matches between first-order

translog and first-order coefficients from the finlinslog regressions, it does not occur here.

The most interesting aspects of the translog resaticur in observing the sign and

interpretation of cross-elasticities in Table 9.or Fexample, the cost share of fuel was
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positively correlated with older aircraft design&nowing this can lead to more realistic

analysis and simulation.

The interaction of outputAC Mileg with inputs or characteristics also yielded iesting
information. For bigger fleet outputs, the cosicefncy has been improving over time. With
a coefficient of .006 (.002), as each year will &dgassed, growth &C Mileswill have had
had a cost elasticity closer to unity. The cosineeny available from growing a fleet has

diminished over time.
4.3 Returns to Scope, Scale
4.3.1 Fleets

The initial first-order translog total cost modeiggests that fleets have constant returns to
fleet scale AircraftMi), with cost elasticity of density (SE) of 0.860(7), and cost elasticity
of fleet network size [scope] .156 (.010). Cosisétity of total scale may be unity, and CRS
cannot be rejected. The interpretation is, it app¢hat most firms operate their fleet at sizes
large enough that further cost economies of saaléayond reach.

As expected, the coefficient on mealight Distanceis negative; as a flight distance doubles,
costs will fall by 7.6%. This is becaugércraft Miles have remained fixed, and as such,
longer flights will be cheaper, with fewer depaetsir higher average speeds, and better
productivity, as this model understands it.

Evidently, costs also increase with the designadgbie fleets. Total costs rise by 0.43% (SE
.0004) for each year older an aircraft fleet's nsubal design may be (these data were
compiled by the author). Th&earCountdummy (measuring annual changes in cost

efficiency) is insignificant in itself in the TL @ model, ignoring the issue of fleet design

aging.
43.2 Firms

In the context of the fleet costs, the model dagsstjon whether firm total output quantity
(ASMg or firm geographic scopd”0intsSry for the whole company) affect fleet costs. It
appears that firm output quantity has no impacha fleet’s costs.
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The economy of scope (additional airports servenbgssts it is quite cheap for firms to
expand a given fleet's geographical “footprint,thiven elasticity of only 0.156 (SE .01) for
adding new network points while maintaining sendcentity. This suggests an existing fleet
could serve an additional city, or group of citieather cheaply. This, in turn, aids the

argument that the overall market is contestable.
4.3.3Aircraft

With respect to physical aircraft size, IRS arenseeThe coefficient onPACCabinArea
suggests that as we double aircraft interior spemsts rise by 59%. This suggests positive

economies of scale.

While the coefficient onACSeatsappears to suggest more seats result in actusdper
flying, this is only an artifact of the context bked cabin size This is probably because
higher density seating configurations may be cateel with generally lower-cost firms,
somehow missed despite our control for firm idesdit Correspondingly, if a fleet within a
firm were higher density, there may be unobservadst about such a fleet that make it
cheaper to operate (perhaps being an experimeautialdsary airline such as Metrojet, Song
or TED, whose operations are included in this studger their corporate parents). This
might explain, in part, why we see costs appardatling as seat counts rise. An alternative
model, with seatinglensityin place ofcount also produced this.

4.4  Energy Cost Share and Response to Perturbation

The sum of cost shares Bilot Wages, Oiand Capital-Materialswere constrained to unity in
the regression using SUR in PROC SYSLIN (for thetrireted model), and later in PROC
MODEL (for the full TL style model). Their computecost shares are 5.8%, 20.4% and
73.9% respectively. It should be noted again tihaffirst-order translog functional form does
not allow these cost shares to vary across thegliyeof our sample, or even across time. A

more flexible cost function specification allow theo move within their constraints.

The unrestricted translog style results show thmrgy cost share varies negatively with
output scope and density; negatively with cabimaaad positively with flight distance. This

suggests that larger aircraft have lower energy stweres, which seems logical.
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In an unexpected energy shock, the returns to fgteehnology” rise would more steeply
than anticipated, providing a windfall for thoseasmimvested in efficient machinery vs. their
own forecasts. Conversely, those with the oldeshrology will face an unexpected
competitive problem. Typically, in a clearing merkwith risk neutral entities, we would

expect that:
>(costs new / green technolggyZ(costs of old technologyy (13)
E[marginal rent on new aircrafft= E[added fuel cost in old aircrgft

Yet, we can see from our translog style results dpaarently old machinery does not unduly
penalize their operators. As oil prices rise, ¢hefficient on the interaction between |agil(
Price) and Tech Agewas not significant in this study. Total coststbé airline are not
exacerbated by the presence of older equipmemhirimized by the use of new equipment.
Unexpected shifts in fuel cost seem to maintainptine cost equivalence | assumed between
new and old aircraft. However, it is worth rememihg that older aircraft are more costly to

run, according to the unrestricted moddlechAgecoefficient.

The movements of oil prices are exogenous to tti@aindustry. But rolling expectations of
oil prices may guide fleet procurement. From théadand the cost function measured here,
we can describe what total cost®uld have beeffor the sample group of firms, between
2000-2007, at various fuel prices. This does notuide feasibility conditions or capacity
readjustments. A trend toward energy efficiency ¢@ seen, as, although output has
remained relatively constant, fuel burn has faled, hence, the industry is more robust to an
oil price spike in 2007 than it was in 2000. Thestcfunction is undefined at oil price = $0,
which is why the curve appears to join the origirhis graphic (Fig. 4) uses the translog style
cost function from this project to extrapolate was costs for each observation in the data.
The projected costs are then summed across thetigda get a total.

Similar to literature such as Thompson (2006), &e find energy cost share by Shephard’s
Lemma:

d(TOTAL _COST)

FUEL =
v d(FUEL _PRICE)’
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din(Total Cost) _ dTC FP
din(Fuel Price) " dFP TC

= £(Cost : Fuel Price);

It follows that:

_ dIn(TOTAL _COST)
dIn(FUEL _PRICE)

Share_ Energy (14)

For the first-order translog result in V.A, thedik effects model result gives a cost / fuel price
elasticity of 0.2037 (SE .0128). If oil prices iaase 10%, we would expect overall operating

costs to increase by 2.04%, for each fleet.

For the translog style function in 4.2, fuel sheoeld be computed as follows:

dinC —,5;+2,/3,i(|nwi)+i/5;j Inw,. (15)

dinw,

Using (14), we can plug in the estimated translogfftcients (5% sig. threshold),

JinTC

dInW, =% =

113 +.113 « (InOilSpo) - .005 ¢ (In ACMileg + -.046 « (In PointsSry +

0« (In_Seat$-0.228 « (In CabinAreg +.104 « (In Stage + (16)
-.007 ¢ (In_ CockpitWagg- .027 « (InCM_TPrice + 0 « (TechAgg +
0 ¢ (In_FirmASMS3 + 0 ¢ (In_FirmPointg - 0 ¢ (YearCounk

As has been noted by other authors, in the fulislicg model, each fleet of each firm had its
own factor price elasticity. These could be aggted by common outpuAEMg and then
reported as industry-wide metrics (or as empingains). This is done in Table 10.

Empirical means are reported as compared to fidgrorestricted translog results. Here,
“empirical mean” of the full translog is meant &g ttost elasticity of the input price, output

level, or state of nature variable.

The derivative of log_TotalCost with respect to lrea@riable can be seen by re-using
equation (16) and weighting the resulting costteldg by the ASM production in that fleet,
to get an aggregate industry statistic (an empinean). Figure 4 shows a useful projection

of total industry costs as a function of oil pricasing the empirical model.
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Table 10 - Subfleet Translog Tot Cost Model vs. Ragcted Model, 2000-2007
(1997 dollars)

First-Order, Restricted | Full TL Style Full TL Style

Model Sample Mean | Empirical,

(coeff) (SE) Elasticities ASMweighted
Elasticities
Log_ACMiles 0.861 0.007 0.972 1.018
Log_ACPointsSrv 0.156 0.010 0.040 0.006
LogACSeats -0.513 0.037 -0.338 -0.236
Log_ACCabinArea 0.594 0.033 0.524 0.370
Log_ACFlightDist -0.099 0.013 -0.231 -0.232
Log_ACPilotWage 0.058 0.008 0.020 0.012
Log_OilSpot 0.204 0.013 0.158 0.134
Log_C-MPrice 0.739 0.015 0.571 0.532
ACTechAge 0.004 0.000 -0.027 -0.029
Log_FirmASMs 0.017 0.019 -0.008 0.001
Log_FirmPointsSrv 0.001 0.019 -0.102 -0.088
YearCount -0.001 0.002 0.003 0.006

Translog Industry Cost Extrapolation:
Oil Price Shock
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Figure 4 - Sample Group Simulated Total Costs, Vating with Oil Price / Bbl
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Conclusion

This paper has framed and measured a fleet-lewtlngodel of production machines, as used
by firms in the US airline industry. This projdocuses primarily on the benefits of careful
treatment of aggregation. Whereas other studies hsed firm-level data only, or fleet-level
data with indirect costs only, this work uses enjdiget-level data in a total-cost context,
partially thanks to a synthetic disaggregation ireit This could be convenient for industrial

simulation, because consumers pay total costs.

By placing all production (large and small aircratbmpanies, and/or fleet sizes) over a panel
of time periods, and putting them in one unifiedd®lp this project deploys the available
analytical tools to model the industry’s costs lasytare affected by operational decisions.
These decisions have effects across three levelggregation: (1) growth or shrinkage of an
individual fleet, (2) the total firm as a whole; (8) the nature of aircraft themselves, with
respect to size, number of seats, and design ddeese issues were all specified in the

restricted and flexible TL models, and results wabv&ined.

In summary, the study finds that fleet economiesaafle are not demonstrably different from
CRS. However, there are economies of density, whas implications for regulators. Firm
size, given the magnitude of fleet production, hascost impact. Finally, bigger aircraft
enjoy economies of scale, while increased denditgeating is apparently associated with

lower-cost producers, even while controlling fanfiidentity.

This paper examines economies of scale across Hiune@taneous levels of aggregation.
Regarding fleets, each airline company uses a nuwofbaifferent aircraft types, as reported
in the data. By modeling fleets (squads of likecraift) as decision-management units
(DMUs), aggregation bias is reduced. The practieldvance is also improved; a company
manager or regulator, rather than contemplatingifoum expansion of overall output, will

more often consider increasing or decreasing daekid activities independently.
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The cost function being modeled describes a hypioHiefleet of aircraft with parameters
allowing typical situations — numbers of seatsalt@ircraft miles, number of airports, etc.
The results should therefore be a forecast of totasts given reasonable inputs that are
readily known at the outset of any planning procesthese are used for a preliminary

industry cost projection across fuel cost pertudoet (Fig. 4).

When allowing flexibility of network size, CRS apmped to prevail at the fleet level.
However, holding network size constant, economiésdensity were seen, in terms of
additional aircraft miles. The fact this coeffioieis being mitigated over time suggests
economies of density may be fading away. Howeaethe aircraft-size level, continuing
economies of airframe size were seen, as aircetflagger. Firm-level returns to scale or
density, often the subject of studies such as typeared largely irrelevant, after first

accounting for the fleets.

Future research might find a compatible revenuetian that can interface and provide a
more complete industrial model with an economdiesis, to engage in further energy shock

simulations.
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