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ABSTRACT: Recent studies indicate that global temperatures will rise substantially in the 
21st century, leading to the extinction of several plant species, as plant metabolism and 
germination are greatly affected by temperature. Melanoxylon brauna, a tree species native 
to the Atlantic Forest that occurs from northeastern to southeastern Brazil, is one of the many 
species threatened by global warming. Despite the economic and ecological importance 
of M. brauna, studies investigating the influence of heat stress on seed germination and 
biochemical responses are still incipient. This study aimed to evaluate enzyme activity in the 
micropylar region of M. brauna seeds during germination under heat stress conditions. Endo-
β-mannanase, α-galactosidase, polygalacturonase, pectin methylesterase, pectin lyase, total 
cellulase, 1,3-β-glucosidase, and 1,4-β-glucosidase activities were determined in micropyles of 
seeds imbibed for 24, 48 and 72 h at 25, 35 and 45 °C. Seed germination was highest at 25 °C. 
Endo-β-mannanase activity was not detected under any of the experimental conditions, but 
imbibition temperature had a significant effect on the activity of all other enzymes.

Index terms: cell wall, enzyme, germination, temperature.

Atividade enzimática na região micropilar de sementes de Melanoxylon 
brauna Schott durante a germinação sob estresse térmico

RESUMO: Estudos recentes indicam alta na temperatura global no decorrer desse século, 
fato que pode ocasionar a extinção de diversas espécies vegetais, visto que processos como a 
germinação são influenciados pela temperatura. Dentre as espécies com risco de extinção está 
a Melanoxylon brauna, árvore nativa da Mata Atlântica de ocorrência nas regiões Nordeste 
e Sudeste. Mesmo diante de sua importância econômica e ecológica, estudos referentes à 
germinação em condições de estresse térmico, bem como suas consequências bioquímicas 
nas diferentes partes das sementes, ainda são incipientes. Diante disso, objetivou-se avaliar a 
germinação e a atividade enzimática na região micropilar de sementes de M. brauna durante 
a germinação sob estresse térmico. Avaliou-se germinação nas temperaturas de 25, 35 e 
45 °C. As atividades das enzimas endo-β-mannanase, α- galactosidase, polygalacturonase, 
pectinametilesterase, pectinaliase, celulases totais, β-1,3- e β-1,4-glucosidases foram avaliadas 
em micrópilas embebidas por 0, 24, 48 e 72 h a 25, 35 e 45 °C. Houve maior germinação a 
25 °C. Não foi detectada atividade da enzima endo-β-mananase em nenhuma das condições 
avaliadas. A temperatura de embebição influenciou a atividade das demais enzimas. 

Termos para indexação: parede celular, enzima, germinação, temperatura.
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INTRODUCTION

Melanoxylon brauna Schott is a tree native to the Brazilian Atlantic Forest. It occurs mainly in the southeast and 
northeast regions of the country. The tree has excellent wood properties, and its bark and sap are widely used in 
traditional medicine (Lorenzi, 2008). However, because of the overexploitation of its timber, the species is currently 
classified as vulnerable in the official list of endangered flora of Brazil (Brasil, 2014). Information on seed germination 
may contribute to the development of conservation strategies for M. brauna.

A factor that may greatly affect the conservation status of M. brauna is climate change. Studies showed that global 
temperatures will rise by 1 to 5 °C over this century (PBMC, 2013). Will the species be able to adapt to the effects of 
global warming? What can be done to prevent M. brauna and other vulnerable tree species from becoming extinct? 
To answer these questions, it is fundamental to increase the knowledge about the influence of temperature on the 
different physiological processes involved in seed germination.

Germination is mediated by a series of complex physical, physiological and biochemical processes. To emerge, 
the radicle must pass through the micropyle. Radicle emergence is preceded by the weakening of the micropylar 
endosperm and elongation of the embryonic axis (Yan et al., 2014). Although an essential part of seed germination, 
the mechanisms involved in the rupture of the micropylar endosperm, especially tissue weakening, are still little 
understood (Nonogaki et al., 2010). Such process is known to involve the loss of cell wall integrity by the action 
of hydrolases, transglycosylases, cellulases, hemicellulases, and reactive oxygen species (Borges et al., 2015; 
Koen et al., 2017; Singh et al., 2017). Enzymes activated at the initial stages of imbibition, such as β-mannanase, 
α-galactosidase (α-Gal), polygalacturonase (PG), pectin methylesterase (PME), pectin lyase (PL) and cellulase, are 
responsible for the degradation of cell wall polysaccharides and, consequently, the weakening of the micropylar 
endosperm, contributing to radicle emergence (Betts et al., 2017; Mascher et al., 2017). 

Temperature is a major factor influencing enzyme activity during germination. It can decrease, enhance, or even 
inhibit enzymatic processes and, therefore, accelerate or slow down seed metabolism (Laghmouchi et al., 2017). It 
may also influence the imbibition rate, altering the speed of chemical reactions that promote the mobilization of 
reserves and synthesis of necessary compounds for seedling growth. Thus, temperature is a determining factor for the 
occurrence of a species at a given locality (Medina et al., 2016). 

Considering the importance of M. brauna, the predictions of climate change, the influence of temperature on 
germination, and the lack of information about biochemical processes occurring in the micropylar region, this 
study aimed to assess the activity of endo-β-mannanase, α-Gal, PG, PME, PL, total cellulase, 1,3-β-glucosidase and 
1,4-β-glucosidase in the micropylar endosperm of M. brauna seeds during germination under heat stress conditions.

MATERIAL AND METHODS

Sample harvesting and preparation

Fruits of M. brauna were harvested in Leopoldina (21°31’55”S 42°38’35”W), Minas Gerais, southeastern Brazil, 
in September 2015. The pods were sun dried, manually threshed, and the seeds cleaned. Empty or damaged seeds 
and debris were discarded. Healthy, intact seeds were selected and stored in a cold chamber at 5 °C and 60% relative 
humidity until use. The experiments were conducted between February and August 2016. A completely randomized 
design with five replications of twenty seeds per treatment was used.

Germination test

Seeds were placed between two sheets of germination paper in petri dishes, moistened with distilled water, 
and incubated for 24, 48 and 72 h at 25, 35 or 45 °C in BOD incubators. Seeds were considered germinated upon 
radicle emergence. 
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Determination of enzyme activity

Enzyme activity was determined in the micropylar region of dry seeds and seeds imbibed for 24, 48 and 72 h at 
25, 35 and 45 °C. Micropyles were extracted (Figure 1), subjected to the same conditions as described above, and 
analyzed for enzyme activity.

Endo-β-mannanase activity was determined by the gel-diffusion assay of Downie et al. (1994), with modifications. 
The gel was first washed with distilled water, then incubated with buffer solution for thirty minutes, and washed once 
more with distilled water. Congo red dye (0.5% w/v) was added, the gel was incubated for thirty minutes, washed with 
ethanol for ten minutes, and rinsed with distilled water. NaCl solution (1 M) was added until a white halo was observed 
where the samples were pipetted. 

α-Gal activity was quantified according to Borges et al., 2004. One unit of enzyme activity was defined as the 
amount of protein that releases 1 nmol of p‐nitrophenol per minute under the assay conditions.

PG activity was determined by the 3,5-dinitrosalicylic acid (DNS) method as adapted by Miller (1959). One unit of 
PG activity was defined as the amount of protein that produces 1 μmol of galacturonic acid per minute of reaction. 

PME was extracted according to Pinto et al. (2011), and its activity was quantified according to Grsic-Rausch 
and Rausch (2004). One unit of PME activity is equivalent to the amount of enzyme required to produce 1 μmol 
of NADPH per minute of reaction at 25 °C and pH 7.5.

PL activity was determined by the spectrophotometric method of Albersheim and Kilias (1962). Absorbance 
was read at 235 nm. Enzyme concentration was calculated using a molar absorption coefficient of 5550 L mol−1.cm−1 
(Albersheim et al., 1996).

Total cellulase activity was measured by the filter paper assay (Ghose, 1987). A 6 cm2 strip of filter paper was placed 
in a test tube containing 0.5 mL of sample (seed incubation solution) and 1.0 mL of 50 mM sodium acetate buffer pH 
5.0. The reaction was interrupted by the addition of 1 mL of DNS. The concentration of reducing sugars was determined 
spectrophotometrically at 540 nm.

1,3-β-Glucosidase activity was determined using p-nitrophenyl β-d-glucopyranoside as substrate, and 
1,4-β-glucosidase activity was determined using carboxymethyl cellulose as substrate. Reactions were conducted 
in 50 mM phosphate-buffered saline pH 6.0 (Singhania et al., 2013). Enzyme activity was expressed as units per 
gram of substrate. 

Proteins were quantified by the Bradford method (1976) using a standard curve (2.5–50 µg) of bovine serum albumin.

Figure 1. Representative photograph of a Melanoxylon brauna seed (A) and its micropylar region (B).
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Statistical analysis

Data were subjected to analysis of variance followed by Tukey’s test at p < 0.05. Relationships between enzyme 
activity and germination conditions were investigated by regression analysis. Statistical analyses were performed using 
SAS version 9.2 (SAS Institute Inc., Cary, NC, USA).

RESULTS AND DISCUSSION

Radicle emergence was observed in seeds imbibed for 72 h. Germination was highest (83%) at 25 °C, decreasing to 
about 55% at 35 °C. Imbibition for 72 h at 45 °C led to complete loss of seed viability (Table 1). Temperature exerts a 
great influence on germination, as it regulates water absorption and biochemical reactions involved in seed metabolism 
(Bewley et al., 2013; Graeber et al., 2014). 

In general, seeds of subtropical and tropical species germinate at 20–30 °C (Oliveira et al., 2016; Silva et al., 2016). 
The germination behavior of M. brauna seeds observed in the current study agrees with that reported in the literature. 
Flores et al. (2014) found that M. brauna seeds were able to germinate between 12.3 and 42.5 °C, but not at 45 °C; 
the optimum temperature was 27 °C. Imbibition at 45 °C for 72 h was shown to cause irreversible damage to M. 
brauna seeds, impairing their germination, even when seeds were later transferred to 25 °C (Santos et al., 2017). 
Radicle emergence depends not only on the growth potential of the embryo, but also on the reduction in mechanical 
resistance in the micropylar region (Bewley et al., 2013). Although the physical and biochemical aspects involved in this 
process are not fully understood, it is known that hydrogen peroxide production, hydrolases, and cellulases have an 
important role in weakening the cell wall (Zhang et al., 2014; Santos et al., 2017).

Enzyme activity was not observed in isolated micropyles imbibed for up to 72 h. These results suggest that hydrolases 
and cellulases are produced in the embryonic axis and transferred to the micropylar region during germination, which 
reinforces the hypothesis that these enzymes contribute to radicle emergence by weakening the micropylar region.

Endo-β-mannanase activity was not detected under any of the evaluated conditions. Previous reports showed that 
its activity is intensified at the end of the germination process, mainly during seedling formation (Ferreira et al., 2018). 
The activity of all other enzymes differed significantly with temperature. α-Gal activity was highest at 25 and 35 °C 
(Figure 2A). PG, PME and PL showed higher activities after 72 h of imbibition at 45 °C (Figures 2B, 2C and 2D). These 
enzymes are crucial for cell wall degradation and radicle emergence (Borges et al., 2015; Bicalho et al., 2016).

α-Gal activity depends on environmental conditions, including temperature (Coffigniez et al., 2018). In M. brauna 
seeds, the highest activity occurred at the optimal germination temperature (25 °C). In addition to metabolizing 
carbohydrate reserves, α-Gal hydrolyzes cell wall polysaccharides and raffinose family oligosaccharides, thereby 
providing energy for germination (Bicalho et al., 2016; Farias et al., 2015). The low enzyme activity found at 45 °C shows 
that α-Gal is sensitive to heat stress. Similar to the observed in the current study, α-Gal activity was highest at 25 °C in 
Dalbergia nigra seeds (Ataíde et al., 2016). 

PG is essential for the germination of Schizolobium parahyba and Arabidopsis sp. seeds (Magalhães et al., 2009; 
Han and Yang, 2015; Scheler et al., 2015). The enzyme catalyzes the hydrolysis of 1,4-α-glycosidic bonds between 
galacturonic acid residues in the pectin chain. In the present study, PG activity was higher at 45 °C for all imbibition 

Temperature (ºC) Germination (%)
25 83 a
35 55 b
45   0 c

Table 1. Germination percentage of Melanoxylon brauna seeds at different temperatures.

Means followed by different letters differ significantly by Tukey’s test at p < 0.05.
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Asterisks (*) indicate statistically significant differences between means. Vertical bars represent the standard error of the mean (n = 5).

Figure 2. α-Galactosidase (A), polygalacturonase (B), pectin methylesterase (C) and pectin lyase (D) activities in the 
micropylar region of Melanoxylon brauna seeds during imbibition at 25, 35 and 45 °C.

times. The optimum germination temperature does not always coincide with the optimum temperature for enzyme 
activity. In D. nigra seeds, PG activity peaked at 40, 45 and 60 °C, but germination percentage was highest at 25 °C 
(Ataíde et al., 2016). In fruits of Uapaca kirkiana, Ziziphus mauritiana, Tamarindus indica and Berchemia, the optimum 
temperature range for PG activity was shown to be 25 to 37 °C (Muchuweti et al., 2005). In Prunus persica fruits, PG 
activity was highest during imbibition at 35 °C (Sainz and Vendrusculo, 2015). 

PME and PG have related functions. PME catalyzes the de-esterification of pectic substances by hydrolyzing 
methyl ester groups, producing pectin with a lower degree of methylation, which is then used as a substrate by PG 
(Sainz and Vendrusculo, 2015). PME activity increased after 24 h of imbibition at 25, 35 and 45 °C, but decreased 
after 48 h at 35 °C. At the basis of these results, it is possible to infer that the enzyme is produced before germination 
and is associated with the weakening of the seed coat and the degradation of the micropylar endosperm. These 
results agree with those obtained by Borges et al. (2015). The authors reported an increase in PME activity during 
imbibition of M. brauna seeds at 30 °C. PME activity was detected in Lepidium sativum seeds, suggesting that the 
enzyme plays an important role in testa rupture during radicle emergence (Scheler et al., 2015). 

PL activity was highest at 45 °C and increased with imbibition time at all temperatures. PL breaks down 
oligogalacturonides of the cell wall, deteriorating the lateral endosperm. The enzyme also induces the synthesis of 
expansins, which are mediators of the germination process (Zhao et al., 2008; Cao, 2012; Sainz and Vendrusculo, 2015). 
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Although hydrolases play a fundamental role in M. brauna seed germination, under heat stress (45 °C), high PG, 
PME and PL activities may contribute to seed deterioration. It is possible that an excessive increase in enzyme activity 
enhanced reserve degradation, accelerating the loss of cell wall integrity and increasing damage to cell membranes 
(Santos et al., 2017).

Total cellulase and 1,4-β-glucosidase activities were highest at 35 °C after 48 h of imbibition (Figures 3A and 3C). 
This temperature also favored 1,3-β-glucosidase activity, which was found to increase with imbibition time (Figure 3B). 
At 45 °C, 1,3-β- and 1,4-β-glucosidase activities were lowest after 72 h of imbibition. This result is likely due to the loss 

Asterisks (*) indicate statistically significant differences between means. 
Vertical bars represent the standard error of the mean (n = 5). 

Figure 3. Total cellulase (A), 1,3-β-glucosidase (B) and 1,4-β-glucosidase (C) activities in the micropylar region of 
Melanoxylon brauna seeds during imbibition at 25, 35 and 45 °C. 
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of seed vigor caused by heat stress, resulting in protein denaturation and loss of enzyme activity (Santos et al., 2017). 
Cellulases are responsible for the degradation of cellulose, a major component of the plant cell wall. β-Glucosidases 
break the chemical bond between the glucose units of cellobiose, releasing free glucose. By doing so, they contribute to 
the weakening of the micropylar endosperm and provide energy for radicle emergence, as observed in seeds of Coffea 
arabica (Castro and Pereira, 2010), Lactuca sativa (Chen et al., 2016) and L. sativum (Ogórek, 2016). 

Enzyme activity was related to germination percentage, but was less affected by high temperatures. The increase 
in enzyme activity in heat-stressed seeds probably contributed to cell wall degradation, leading to the accumulation of 
reactive oxygen species and membrane damage (Santos et al., 2017). The results show that PG, PME, PL, total cellulase, 
1,3-β-glucosidase and 1,4-β-glucosidase activities can be used to assess the physiological quality of M. brauna seeds.

CONCLUSIONS

M. brauna seeds showed optimal germination at 25 °C. Imbibition at 45 °C for 72 h resulted in the death of all 
seeds. Endo-β-mannanase activity was not detected after 72 h of imbibition at any of the tested temperatures. α-Gal 
activity was highest after 48 h of imbibition at 25 °C and lowest after 24 h at 45 °C. PG activity was highest after 48 h 
of imbibition at 45 °C and lowest after imbibition at 25 °C. PME and PL activities increased during 72 h of imbibition 
at 45 °C, but decreased during imbibition at 25 °C. Total cellulase, 1,3-β-glucosidase, and 1,4-β-glucosidase activities 
where highest during the first hours of imbibition at 45 °C, but decreased markedly after 48 h. High PG, PME, PL, total 
cellulase, 1,3-β-glucosidase and 1,4-β-glucosidase activities during imbibition indicate the occurrence of heat stress in 
M. brauna seeds.

ACKNOWLEDGMENTS

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Pró-Amazonas 
Project, nº 52), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de 
Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for their financial support.

REFERENCES

ALBERSHEIM, P.; DARVILL, A.G.; O’NEILL, M.A.; SCHOLS, H.A.; VORAGEN, A.G.J. An hypothesis: the same six polysaccharides are 
components of the primary cell walls of all higher plants. Progress in Biotechnology, v.14, p.47-55, 1996. https://doi.org/10.1016/
S0921-0423(96)80245-0

ALBERSHEIM, P.; KILIAS, U. Studies relating to the purification and properties of pectin transeliminase. Archives of Biochemistry and 
Biophysics, v.97, n.1, p.107-115, 1962. https://www.sciencedirect.com/science/article/pii/0003986162900504

ATAÍDE, G.M.; BORGES, E.E.L.; GONÇALVES, J.F.C.; GUIMARÃES, V.M.; FLORES, A.V. Alterações fisiológicas durante a hidratação 
de sementes de Dalbergia nigra ((Vell.) Fr. All. ex Benth.). Ciência Florestal, v.26, n.2, p.615-625, 2016.  http://www.redalyc.org/
articulo.oa?id=53446151024

BETTS, N.S.; WILKINSON, L.G.; KHOR, S.F.; SHIRLEY, N.J.; LOK, F.; SKADHAUGE, B.  Morphology, carbohydrate distribution, gene 
expression and enzymatic activities related to cell wall hydrolysis in four barley varieties during simulated malting. Frontiers in Plant 
Science, v.8, n.1872, 2017. https://www.frontiersin.org/articles/10.3389/fpls.2017.01872/full

BEWLEY, J.D.; BRADFORD, K.J.; HILHORST, H.W.M.; NONOGAKI, H. Seeds: physiology of development, germination and dormancy. 
New York: Springer, 2013. 

BICALHO, E.M.; MOTOIKE, S.Y.; BORGES, E.E.L.; ATAÍDE, G.M.; GUIMARÃES, V.M. Enzyme activity and reserve mobilization 
during Macaw palm (Acrocomia aculeata) seed germination. Acta Botanica Brasilica, v.30, n.3, p.438-444, 2016. http://dx.doi.
org/10.1590/0102-33062016abb0181 

Journal of Seed Science, v.42, e202042009, 2020

7Enzymatic activity in of Melanoxylon brauna seeds



BORGES, E.E.L.; ATAÍDE, G.M.; MATOS, A.C.B. Micropilar and embryonic events during hydration of Melanoxylon brauna Schott 
seeds. Journal of Seed Science, v.37, n.3, p.192-201, 2015. http://dx.doi.org/10.1590/2317-1545v37n3147846

BORGES, E.E.L.; REZENDE, S.T.; BORGES, R.C.G.; PEREZ, S.C.J.G.A. Caracterização de alfa-galactosidase em embrião e cotilédones 
de sementes de Platymiscium pubescens Micheli, var. pubecens (tamboril-da-mata).  Revista Brasileira de Sementes, v.26, n.2, 
2004. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-31222004000200012&lng=pt&tlng=pt

BRADFORD, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of 
protein-dye binding. Analytical Biochemistry, v.72, n.1-2, p.248-254, 1976. https://doi.org/10.1016/0003-2697(76)90527-3

BRASIL. Ministério do Meio Ambiente. Instrução Normativa nº 443, de 18 de setembro de 2014. Lista oficial das espécies da flora brasileira 
ameaçadas de extinção.  <https://www.mma.gov.br/biodiversidade/conservacao-de-especies/fauna-ameacada/flora.html>.

CAO, J. The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. Plos One, v.7, n.10, 2012. https://doi.
org/10.1371/journal.pone.0046944

CASTRO, A.M.; PEREIRA, J.R.N. Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Química 
Nova, v.33, n.1, p.181-188, 2010. http://submission.quimicanova.sbq.org.br/qn/qnol/2010/vol33n1/30-RV09352.pdf

CHEN, B.; MA, J.; XU, Z.; WANG, X. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during 
lettuce seed germination. Journal of Integrative Plant Biology, v.58, n.10, p.859-869, 2016. https://onlinelibrary.wiley.com/doi/
epdf/10.1111/jipb.12479

COFFIGNIEZ, F.; BRIFFAZ, A.; MESTRES, C.; RICCI, J.; ALTER, P.; DURAND, N.; BOHUON, P. Kinetic study of enzymatic α-galactoside 
hydrolysis in cowpea seeds. Food Research International, v.113, p.443-451, 2018.  DOI10.1016/j.foodres.2018.07.030 

DOWNIE, B.; HILHORST, H.; BEWLEY, J.D. A new assay for quantifying endo-β-mananase activity using congo red dye. Phytochemistry, 
v.36, n.4, p.829-835, 1994. https://www.sciencedirect.com/science/article/pii/S0031942200904461 

FARIAS, E.T; SILVA, E.A.A.; TOOROP, P.E.; BEWLEY, J.D.; HILHORST, H.M. Expression studies in the embryo and in the micropylar 
endosperm of germinating coffee (Coffea arabica cv. Rubi) seeds. Plant Growth Regulation, v.75, n.2, p.575-581, 2015. https://
link.springer.com/article/10.1007/s10725-014-9960-6

FERREIRA, V.F.; RICALDONI, M.A.; ROSA, S.V.B.; FANTASINI, T.B. Endo-β-mannanase enzyme activity in the structures of Coffea 
arabica L. seeds under different types of processing and drying. Ciência Rural, v.48, n.12, 2018. https://dx.doi.org/10.1590/0103-
8478cr20170839 

FLORES, A.V.; BORGES, E.E.L.; GUIMARÃES, V.M.; ATAÍDE, G.M.; CASTRO, R.V.O. Germinação de sementes de Melanoxylon brauna 
Schott em diferentes temperaturas. Revista Árvore, v.38, n.6, p.1147-1154. 2014. http://www.scielo.br/scielo.php?script=sci_
arttext&pid=S0100-67622014000600019

GHOSE, T.K. Measurement of cellulase activities. Pure and Applied Chemistry, v.59, n.2, p.257-268, 1987. https://doi.org/10.1351/
pac198759020257

GRAEBER, K.; LINKIES, A.; STEINBRECHER, T.; MUMMENHOFF, K.; TARKOWSKA, D.; TURECKOVA, V.; IGNATZ, M.; SPERBER, K.; 
VEOGELE, A.; JONG; H.; URBANOVÁ, T.; STRNAD, M.; LEUBNER-METZGER, G. Delay of germination mediates a conserved coat-
dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proceedings of the National 
Academy of Sciences, v.111, n.34, p.3571-3580, 2014.  https://doi.org/10.1073/pnas.1403851111

GRSIC-RAUCH, S.; RAUSCH, T. A coupled spectrophotometric enzyme assay for the determination of pectin methylesterase activity 
and its inhibition by proteinaceous inhibitors. Analytical Biochemistry, v.333, n.1, p.14-18, 2004. https://doi.org/10.1016/j.
ab.2004.04.042

HAN, C.; YANG, P. Studies on the molecular mechanisms of seed germination. Proteomics, v.15, p.1671-1679, 2015. https://
onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.201400375

KOEN, J.; SLABBERT, M.M.; BESTER, C.; BIERMAN, F. Germination characteristics of dimorphic honeybush (Cyclopia spp.) seed. 
South African Journal of Botany, v.110, p.68-74, 2017. https://doi.org/10.1016/j.sajb.2016.03.006

LAGHMOUCHI, Y.; BELMEHDI, O.; BOUYAHYA, A.; SENHAJI, N.S.; ABRIN, J. Effect of temperature, salt stress and pH on seed 
germination of medicinal plant Origanum compactum. Biocatalysis and Agricultural Biotechnology, v.10, p.156-160, 2017. https://
doi.org/10.1016/j.bcab.2017.03.002

Journal of Seed Science, v.42, e202042009, 2020

8 M. M. Santos et al.



LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Instituto 
Platarum, 2008. 

MAGALHÃES, S.M.; BORGES, E.E.L.; BERGER, A.P. Alterações nas atividades das enzimas alfa-galactosidade e poligalacturonase 
e nas reservas de carboidratos de sementes de Schizolobium parahyba (vell.) Blake (guapuruvú) durante a germinação. Revista 
Brasileira de Sementes, v.31, n.2, p.253-261, 2009. http://www.scielo.br/scielo.php?pid=S0101-31222009000200030&script=sci_
abstract&tlng=pt

MASCHER, M.; GUNDLACH, H.; HIMMELBACH, A.; BEIER, S.; TWARDZIOK, S.; WICKER, T. A chromosome conformation capture 
ordered sequence of the barley genome. Nature, v.544, p.427-433, 2017. https://www.nature.com/articles/nature22043

MEDINA, C.V.; RODRIGUEZ, E.A.G.; BAGANTIM, A.G.; ANDRADE, R.A. Temperatura e armazenamento na germinação de sementes 
de Mabolo (Diospyros blancoi Willd). Nucleus, v.13, n.1, 2016. http://dx.doi.org/10.3738/1982.2278.1538

MILLER G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, v.31, n.3, p.426-428, 
1959. https://pubs.acs.org/doi/abs/10.1021/ac60147a030

MUCHUWETI, M.; MOYO, E.; MUSHIPE, S. Some properties of the polygalacturonase from four Zimbabwean wild fruits (Uapaca 
kirkiana, Ziziphus mauritiana, Tamarindus indica and Berchemia discolor fruits). Food Chemistry, v.90, n.4, p.655-661, 2005. https://
www.sciencedirect.com/science/article/pii/S0308814604003784?via%3Dihub

NONOGAKI, H.; BASSEL, G.W.; BEWLEY, J.D. Germination: still a mystery. Plant Science, v.179, n.6, p.574-581, 2010. https://doi.
org/10.1016/j.plantsci.2010.02.010

OGÓREK, R. Enzymatic activity of potential fungal plant pathogens and the effect of their culture filtrates on seed germination and 
seedling growth of garden cress (Lepidium sativum L.). European Journal of Plant Pathology, v.145, n.2, p.469-481, 2016. https://
link.springer.com/article/10.1007/s10658-016-0860-7

OLIVEIRA, F.N.; FRANÇA, F.D.; TORRES, S.B.; NOGUEIRA, N.W.; FREITAS, R.M.O. Temperaturas e substratos na germinação de 
sementes de pereiro-vermelho (Simira gardneriana M.R. Barbosa & Peixoto). Revista Ciência Agronômica, v.47, n.4, p.658-666, 
2016. http://dx.doi.org/10.5935/1806-6690.20160079

PINTO, L.K.A.; MARTINS, M.L.L.; RESENDE, E.D.; THIEBAUT, J.T.L. Atividade de pectina metilesterase e da β-galactosidase durante o 
amadurecimento do mamão cv. Golden. Revista Brasileira de Fruticultura, v.33, n.3, p.713-722, 2011. http://www.scielo.br/scielo.
php?pid=S0100-29452011000300004&script=sci_abstract&tlng=pt

PBMC. Painel Brasileiro de Mudanças Climáticas. Contribuição do grupo de trabalho 2 ao primeiro relatório de avaliação nacional 
do painel brasileiro de mudanças climáticas: sumário executivo. Rio de Janeiro, RJ, Brasil: PBMC, 2013. 28p. http://www.pbmc.
coppe.ufrj.br/documentos/MCTI_PBMC_sumario_executivo_impactos_vulnerabilidades_e_adaptacao_WEB_3.pdf

SAINZ, R.L.; VENDRUSCULO, J.L.S. Propriedade da poligalacturonase e pectinametilesterase em pêssego (Prunus persica (L.) Batsch) de 
cultivares brasileiras. Revista Brasileira de Tecnologia Agroindustrial, v.9, n.1, p.1724-1743, 2015. https://periodicos.utfpr.edu.br/rbta/
article/view/2403

SANTOS, M.M.; BORGES, E.E.L.; ATAÍDE, M.M.; SOUZA, G.A. Germination of seeds of Melanoxylon brauna Schott. under heat 
stress: production of reactive oxygen species and antioxidant activity. Forests, v.8, n.11, p.405, 2017. https://www.mdpi.com/1999-
4907/8/11/405

SCHELER, C.; WEITBRECTHT, K.; PEARCE, S.P.; HAMPSTEAD, A.; BUTTNER-MAINIK, A.; LEE, K.J.D.; VOEGELE, A.; ORACZ, K.; BAS, 
J.W.; WANG, X.F.; WOOD, A.T.A.; BENTSINK, L.; KING, J.R.; KNOX, P.; HOLDSWORTH, M.J.; MULLER, K.; LEUBNER-METZGER, G. 
Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin 
methylesterase. Plant Physiology, v.167, p.200-215, 2015. http://www.plantphysiol.org/content/plantphysiol/167/1/200.full.pdf

SILVA, M.L.M.; ALVES, E.U.; BRUNO, R.L.L.; SANTOS-MOURA, S.S.; SANTOS-NETO, A.P. Germinação de sementes de Chorisia glaziovii 
O. Kuntze submetidas ao estresse hídrico sob diferentes temperaturas. Ciência Florestal, v.26, n.3, p.999-1007, 2016. https://www.
redalyc.org/pdf/534/53447685028.pdf

SINGH, V.P.; SINGH, S.; TRIPATHI, D.K.; PRASAD, S.M.; CHAUHAN, D.K. Reactive oxygen species in plants. John Wiley & Sons: Nova 
Jersey, 2017.

SINGHANIA, R.R.; PATEL, A.K.; SUKUMARAN, R.K.; LARROCHE, C.; PANDEY, A. Role and significance of beta-glucosidases in the 

Journal of Seed Science, v.42, e202042009, 2020

9Enzymatic activity in of Melanoxylon brauna seeds



hydrolysis of cellulose for bioethanol production. Bioresource Technology, v.127, p.500-507, 2013. https://doi.org/10.1016/j.
biortech.2012.09.012

YAN, D.; DUERMEYER, L.; LEOVEANU, C.; NAMBARA, E. The functions of the endosperm during seed germination. Plant and Cell 
Physiology, v.55, n.9, p.1521-1533, 2014. https://doi.org/10.1093/pcp/pcu089

ZHANG, Y.; CHEN, B.; XU, Z.; SHI, Z.; CHEN, S.; HUANG, X.; CHEN, J.; WANG, X.F. Involvement of reactive oxygen species in endosperm 
cap weakening and embryo elongation growth during lettuce seed germination. Journal of Experimental Botany, v.65, n.12, p.3189-
3200, 2014. https://doi.org/10.1093/jxb/eru167

ZHAO, Q.; YUAN, S.; WANG, X.; ZHANG, Y.; ZHU, H. Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility 
to expansin by pretreatment with fungal pectinases and EGTA in vitro. Plant Physiology, v.147, p.1874-1885, 2008. http://www.
plantphysiol.org/content/plantphysiol/147/4/1874.full.pdf

Journal of Seed Science, v.42, e202042009, 2020

10 M. M. Santos et al.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.


	_GoBack

