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ABSTRACT: Non-destructive and high throughput methods have been developed for seed 
quality evaluation. The aim of this study was to relate parameters obtained from the free and 
automated analysis of digital radiographs of hybrid melons’ seeds to their seeds’ physiological 
potential. Seeds of three hybrid melon (Cucumis melo L.) cultivars from commercial lot samples 
were used. Radiographic images of the seeds were obtained, from which area, perimeter, 
circularity, relative density, integrated density and seed filling measurements were generated 
by means of a macro (PhenoXray) developed for ImageJ® software. After the X-ray test, seed 
samples were submitted to the germination test, from which variables related to the physiological 
quality of the seeds were obtained. Variability between lots was observed for both physical and 
physiological characteristics. Results showed that the use of the PhenoXray macro allows large-
scale phenotyping of seed radiographs in a simple, fast, consistent and completely free way. The 
methodology is efficient in obtaining morphometric and tissue integrity data of melon seeds and 
the generated parameters are closely related to physiological attributes of seed quality.

Index terms: automated image analysis, Cucumis melo L., seed radiography, relative density.
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RESUMO: Métodos não-destrutivos e de alto desempenho têm sido desenvolvidos para avaliação 
da qualidade de sementes. O objetivo deste estudo foi relacionar parâmetros obtidos a partir 
da análise gratuita e automatizada de radiografias digitais de sementes de melão híbrido com 
o seu potencial fisiológico. Foram utilizadas amostras de sementes comerciais de três cultivares 
híbridas de melão (Cucumis melo L.), cada uma representada por três lotes. Foram obtidas 
imagens radiográficas das sementes, das quais foram geradas determinações de área, perímetro, 
circularidade, densidade relativa, densidade integrada e preenchimento da cavidade interna de 
sementes, por meio de uma macro (PhenoxXray) desenvolvida para o software ImageJ®. Após o 
teste de raios-X, as sementes foram submetidas ao teste de germinação, a partir do qual foram 
obtidas variáveis relacionadas à qualidade fisiológica. Observou-se variabilidade entre lotes 
para as características físicas e fisiológicas.  Os resultados demonstraram que o uso da macro 
PhenoXray permite a fenotipagem em larga escala das radiografias de sementes de maneira 
simples, rápida, consistente e totalmente gratuita. A metodologia é eficiente na obtenção de 
dados morfométricos e de integridade tecidual em sementes de melão, e os parâmetros gerados 
apresentam estreita relação com atributos fisiológicos da qualidade das sementes.

Termos para indexação: análise automática de imagens, Cucumis melo  L., radiografia de 
sementes, densidade relativa.
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INTRODUCTION

The introduction of modern and high-performance techniques capable of generating consistent and fast results, less 
subjectively and non-destructively, presents great potential for the safe evaluation of the quality of agricultural products 
(Mahajan et al., 2015).

Among the techniques that reach this proposal is the analysis based on electromagnetic X-ray radiation. This 
technique, predominantly used in medical applications, has been used in several areas, including seed quality inspection 
(Rahman and Cho, 2016). However, the visual analysis of the radiographic images is time-consuming and can generate 
reading errors due to subjective interpretations (Medeiros et al., 2018). The current challenge is to develop methods 
capable to produce relevant information from the radiographs of seeds, on a large scale in a fast and consistent manner. 

Recent advances in the field of computer-aided digital image processing have contributed to making feasible this 
type of approach. Public domain software such as ImageJ® has provided promising perspectives to address this purpose 
and provide automation of analyses related to seed radiographs.

ImageJ® is presented as the world’s fastest imaging software (Miart et al., 2018; Schindelin et al., 2012). Semi-automated 
applications with the use of this software in the analysis of radiographic images of seeds has demonstrated potential for 
seed analysis (Abud et al., 2018; Medeiros et al., 2018). However, while this type of analysis allows for greater interaction 
and autonomy of the analyst in the adjustments, it makes the process slow, time-consuming, and often compromises the 
standardization of analyses on a large scale. Recently, a macro for ImageJ®, called PhenoXray (Medeiros et al., 2019), was 
developed. This macro allowed large-scale phenotyping of brachiaria grass seeds radiographs, obtaining parameters 
related to their physiological quality.

The application of these technologies to high value-added seeds, such as hybrid melons, could be of interest to 
the seed industry, since it allows the evaluation of seed quality in a non-destructive, fast and standardized way. Also, 
it would be an alternative to be used in quality control programs during seed production, being important for the 
decision making regarding the approval or disposal of seed lots, which would mean saving time and resources.

Considering that the rapid technological development indicates greater opportunities for X-ray inspection in the 
agricultural sector, especially in seed technology, this research had the aim to relate parameters obtained from the free 
and automated analysis of digital radiographs of hybrid melons’ seeds to their physiological potential.

MATERIAL AND METHODS

Plant material

Seeds of three hybrids of melon were used, Bazuca F1 (American cantaloupe, lots 1 to 10), Goldex F1 (Yellow, 
lots 11 to 20), and Pampa F1 (Italian cantaloupe, lots 21 to 30), from lot samples from the 2017 crop season, each 
represented by ten seed lots. The seeds were submitted to the following analyses: 

Physical analyses

Seed water content: the seeds were initially submitted to the determination of the water content by the oven 
method at 105 ± 3 °C for 24 hours, based on the Rules for Seed Testing (Brasil, 2009); for this purpose, two subsamples 
of 5 g of seeds were used for each lot. Results were expressed as a percentage (wet basis).

X-ray test: for the analysis of the internal morphology of the seeds, five replicates of twenty seeds each of each lot 
were used. Seed samples were positioned with the embryonic axis facing down and adhesive-tape fixed in an orderly 
manner on adhesive paper, to allow subsequent individual identification in the posterior analyses. Seeds were then 
placed inside the Faxitron digital X-ray equipment, model MX-20 (Faxitron X-ray Corp. Wheeling, IL, U.S.A). To generate 
the radiographic images, the equipment was configured with the radiation exposure time of ten seconds, 23 kV voltage, 
41.6 cm focal length and contrast of the calibrated image in 16383 (width) x 3124 (center). The digital images generated 
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were saved in computer in TIFF format, following their processing and analysis. 
Automated analysis of the radiographs: for the automated image analysis, the PhenoXray macro (https://sites.

google.com/ufv.br/phenoxray) (Medeiros et al., 2019) developed for ImageJ® software was used. The macro was 
developed to process images automatically, being necessary only to indicate the folder containing all the images, 
properly identified (lot and replication), in the ImageJ® software. The analysis started with the segmentation of the 
images using the ImageJ® Threshold mode. The threshold was automatically set using Yen’s automatic multilevel 
thresholding method to segment the images in the regions corresponding to the melon seeds. The regions of interest 
were then analyzed from the analyze particles command, which integrates the software ImageJ®. Only particles with a 
surface area between 594 and 2.376 pixels2 were considered, which was efficient to select the areas corresponding to 
the seeds and to ignore areas of noises in the images. 

The parameters obtained from the images were: area – selection area obtained in square pixels, and later converted 
into units of square millimeters (mm2); perimeter – the length in millimeters of the outer limit of the selection; circularity 
– obtained by the equation: C = 4π *

area
(perimeter)2 ; relative density (average gray) – defined as the sum of the gray values 

of all pixels in the selected area divided by the number of pixels in the selection, expressed in gray.pixel-1; integrated 
density – the sum of the pixel values ​​in the image or selection, that is equivalent to the product of area and relative 
density, expressed in gray.mm2.pixel-1; filling – percentage of seed area effectively filled by high density material.

After, the images were processed and the measurement results were automatically saved to a TXT file. In addition, 
files in the JPEG format corresponding to the images’ analysis were created in the same directory, which allowed to 
check the performance of the macro in the processing of the images.

Physiological analysis

Germination test: conducted on rolls of paper towel for germination humidified with water equivalent to 2.5 times 
the dry paper mass and kept in a germinator at a constant temperature of 25 °C (Brasil, 2009). The same seeds submitted 
to the X-ray test were used, maintaining the same seed arrangement originally used in the previous test. Daily counts 
of the number of seeds exhibiting primary root protrusion and germinated seeds (normal seedlings) were carried out 
until the eighth day after sowing. From these data, the speed of germination index (GSI), the speed of primary root 
protrusion (RPS) and the synchrony were calculated, according to the formulas described in Silva et al. (2019).  All 
the variables obtained based on the germination test were calculated using the Germcalc function, contained in the 
package SeedCalc of the R software.

Seedling analysis: after the final count of the germination test, the seedlings and non-germinated seeds of each 
replicate were scanned, and the generated images were evaluated in ImageJ® software. The images were used to 
measure the length of the shoot and the primary root of the seedlings, expressed in mm.seedling-1. The length data 
were processed with the package SeedCalc of the R software, through the Plantcalc function, and the parameters were 
calculated: seedling total length and uniformity indexes, vigor and corrected vigor.

Experimental design and statistical analysis

The experiment was conducted in a completely randomized experimental design, with four replications. Data were 
submitted to analysis of variance (ANOVA). After confirming the normal distribution of errors by the Shapiro-Wilk 
test and the homogeneity of variances by the Bartlett test, the averages were grouped by the Scott-Knott test (p ≤ 
0.05). Subsequently, the Pearson (r) linear correlation coefficients were calculated for all combinations between the 
physiological and physical quality tests of the seeds, where the significance of the r values was determined by the t 
test (p ≤ 0.05). Principal component analysis was also performed. The software used in the statistical analysis was R, 
version 3.5.1.
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RESULTS AND DISCUSSION

The X-ray equipment configurations adopted in this study, combined with the low variation of water content among 
the evaluated seed lots of each cultivar (cv. Bazuca F1: 8.1 to 8.8 %; cv. Goldex F1: 8.0 to 8.9 %; cv. Pampa F1: 7.8 to 8.7 
%), allowed a clear visualization of the main internal structure of the seeds, as well as the identification of embryonic 
malformation and physical damages (Figure 1).

The water content of the seeds has a high relation with the optical density of the radiography (Simak, 1991). 
Therefore, the uniformity of seed water content between seed lots is necessary to compare parameters related to 
tissue density, as gray levels of the radiographs. Studies carried out with X-ray analysis on pumpkin seeds (Silva et al., 
2014), watermelon and melon (Gomes-Junior et al., 2012) demonstrated the possibility of adequate visualization of 
the internal morphology of seeds under water contents between 6.5% and 12%. 

Besides the water content, the level of detail of the internal seed parts of the radiographic image can be affected 
by other intrinsic factors of each species, such as its chemical composition (Simak, 1991).  In sesame seeds, the X-ray 
test did not allow the determination of the level of development of internal seed structure, which according to the 
authors was due to its high oil content, typical of oilseeds (Nogueira-Filho et al., 2017). However, as shown in Figure 
1, in melon seeds, whose oil content is within the range of 25.2 to 44.8% (Ibeto et al., 2012), it was possible the 
visualization with a high degree of detail of the internal seed morphology, with easy visual identification of seeds 
with incomplete filling and embryonic malformation (Figure 1B), as well as physical damage caused by predation of 
insects and cracks, possibly during  handling or drying processes (Figure 1C). Thus, it is possible to verify that the 
X-ray test itself, i.e, the visual analysis of the radiographs, is a suitable tool for studies with oilseeds, such as melon, 
allowing an accurate analysis of the seed physical quality by simple visual evaluation. Although the evaluation of the 
X-ray by the analyst is the simplest and most sensitive approach, it is a laborious, time-consuming process as well as 
subject to errors inherent in its subjectivity.

Figure 1.	 Radiographic images of melon seeds with indications of the internal parts of a well-formed seed (a), seeds 
with visible embryonic malformation (b) and with physical damages (c).
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Table 1 shows the variables obtained with the use of the PhenoXray macro from ImageJ®, which allowed the 
complete automation of the analysis of seed radiographs of the thirty seed lots of hybrid melon. Statistical differences 
were observed for most of the analyzed variables, except for relative density and perimeter, between the seed lots of 
the cultivars Goldex F1 and Pampa F1, respectively.

From the analysis of the size and shape (area, perimeter and circularity), it was evident the different characteristics 
observed between seed lots of the same cultivar, which was confirmed by the significant difference between the values 
obtained. For the cultivar Bazuca F1, the values of area, perimeter and circularity ranged from 30.2 to 39.5 mm2, 29.7 
to 42.4 mm and 0.30 to 0.50, respectively. Seeds of “Goldex F1” showed larger areas in absolute value in relation to 
the other cultivars, with variation observed from 41.7 to 43.9 mm2; the perimeter and circularity, in turn, ranged from 
35.8 to 53.6 mm2, 0.23 to 0.45, respectively. Finally, the cultivar Pampa F1 showed a variation of 29.2 to 38.0 mm2 of 
area, 34.4 to 40.6 mm of perimeter (the lots did not differ in relation to this parameter) and 0.29 to 0.41 of circularity.

According to Tanabata et al. (2012), information on the quantitative evaluation of seeds’ shape and size, when 
obtained by reliable and high throughput methodology, can benefit several fields of plant research, such as plant 
breeding programs, acting together with functional analysis studies and improvement of genomic assisted crops. 
Moreover, studies have shown a close relationship between these characteristics and seedling vigor (Abud et al., 
2018; Javorski et al., 2018; Medeiros et al., 2018), since the variability of seed size and shape may be related to 
the environment during the maturation process.

The variables relative density, integrated density and filling allowed to stratify from two to four groups the ten 
seed lots of each cultivar. The relative and integrated densities are variables only recently reported in seed research, 
and with great potential for seed lots’ evaluation (Abud et al., 2018; Medeiros et al. 2018). On the other hand, the 
filling variable has already been evaluated in a larger number of studies (Gomes-Junior et al., 2013), but not fully 
automated using ImageJ® software. These variables, calculated by means of the gray values of each pixel in the 
image, give an idea of the resistance that a given tissue presents to the passage of X-rays, since the photons in an 
X-ray beam can be transmitted, scattered (Compton dispersion) or absorbed (photoelectric collision) when they 
collide with an object (Kotwaliwale et al., 2014). Thus, higher gray densities indicate denser tissues, that is, there is 
greater impediment to X-ray passages.

Several authors pointed out that the evaluation of aspects such as the internal cavity occupied by the embryo, the 
presence of mechanical damages, stains that indicate tissue deterioration or seed malformations is necessary in studies 
with X-rays in seeds (Borges et al., 2019; Gomes-Junior et al., 2013). However, according to Medeiros et al. (2018), all 
these characteristics are in a way represented by the relative density, since seeds deteriorated or with less filling show 
lower gray levels in the radiographic image. Thus, the image presents lower levels of radiopacity (light) and higher 
levels of radioluminescence (dark), which can be quantified by means of relative density.

It is important to emphasize that for a comparison between seed relative densities from different radiographs, the 
contrast used by the equipment in calibrating the image (width and center adjustment) must be standardized in all 
of them. In addition, the relative density is influenced by other objects with higher density that are inserted with the 
seeds in the acquisition of the image, such as fruit remnants, stones and other types of impurities. Another important 
point is that different X-ray systems, even using analogous configurations of energy and electrical current may not 
produce similar results, because of the types of X-ray detectors used (Kotwaliwale et al., 2014).

With the filling variable, which represents the percentage of area of the seed effectively filled by high density 
material, we noticed that the lowest observed averages value was 93.6%, which indicates high uniformity of embryonic 
filling perceived in the seed lots studied. Borges et al. (2019) also used the filling variable to quantify the empty seed 
area of tomato, and observed a close relationship between seed empty space and its physiological quality. 

Although the physical parameters generated from X-ray image analysis are initially interesting and efficient in 
differentiating seed lots, it is necessary to check the physiological quality data from the seeds of the respective lots to 
make a precise inference about a possible relation of these variables with the seed physiological potential. 
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Seed lot

Area Per.
Circ.

Rel. dens. Int. dens. Filling

mm2 mm gray.pixel-1 gray.mm2.pixel-1 %

Cultivar Bazuca F1

1 34.56 b 29.69 d 0.496 a 94.29 a 3261 b 99 a

2 35.29 b 31.28 c 0.460 b 92.15 a 3254 b 98 a

3 30.18 c 31.92 c 0.401 c 88.63 b 2678 c 98 a

4 30.79 c 39.14 b 0.295 d 85.73 b 2637 c 96 b

5 39.50 a 32.50 c 0.474 b 97.04 a 3833 a 98 a

6 38.12 a 41.35 a 0.309 d 87.27 b 3328 b 95 c

7 38.05 a 42.38 a 0.302 d 85.72 b 3263 b 95 c

8 37.34 a 40.07 b 0.317 d 89.58 b 3344 b 95 c

9 38.35 a 41.05 a 0.314 d 88.61 b 3399 b 95 c

10 30.97 c 33.11 c 0.389 c 80.00 c 2479 c 94 d

Fc  46.60* 52.08* 65.51* 10.01* 28.60*    78.53*

CV (%)   3.28  4.23   5.78  3.83   5.55      0.49 

  Cultivar Goldex F1

12 43.11 a 37.04 c 0.408 a 95.1 4102 a 98 a

12 41.67 b 38.18 c 0.395 a 88.76 3706 b 97 a

13 43.50 a 36.67 c 0.420 a 91.19 3970 a 97 a

14 43.37 a 35.84 c 0.441 a 93.69 4062 a 98 a

15 43.80 a 36.07 c 0.445 a 89.28 3914 a 98 a

16 42.50 b 49.80 b 0.254 b 88.31 3762 b 94 c

17 41.93 b 50.32 b 0.243 b 86.32 3622 b 93 c

18 42.46 b 49.88 b 0.266 b 87.01 3707 b 93 c

19 43.89 a 46.89 b 0.287 b 92.89 4081 a 96 b

20 42.51 b 53.60 a 0.234 b 84.54 3603 b 93 c

Fc 4.11*        30.40*  25.24*     1.50ns 2.27* 84.26* 

CV (%) 1.99          6.76 11.71    6.95               7.5   0.52

  Cultivar Pampa F1

21 29.19 d 37.17 0.349 b 90.78 b 2665 b 95 a

22 34.26 b 37.38 0.333 b 91.43 b 3136 a 94 b

23 32.52 c 34.67 0.356 b 97.97 a 3195 a 95 a

24 34.25 b 34.4 0.376 a 102.15 a 3502 a 96 a

25 35.17 b 35.03 0.382 a 99.89 a 3531 a 96 a

26 37.31 a 35.5 0.399 a 88.69 b 3313 a 96 a

27 36.67 a 34.59 0.409 a 89.66 b 3291 a 96 a

28 37.27 a 35.13 0.403 a 89.01 b 3324 a 96 a

29 38.00 a 35.9 0.399 a 89.40 b 3402 a 96 a

30 32.10 c 40.6 0.288 b 78.80 c 2532 b 95 b

Fc 42.50*       1.04ns         3.69*  4.54*  9.54*  5.39*

CV (%)  2.77   11.58       12.06               7.7 7.62 0.82

Table 1.	 Average values of the physical parameters obtained through the automated analysis of radiographic images 
of 30 lots of hybrid melon seeds using the PhenoXray macro. 

Lower case = comparison within each column for each evaluation by the Scott-Knott test (p < 0.05); *, ns = significant and not significant by the 
F test (p < 0.05), respectively; Fc = F calculated; CV = coefficient of variation; Per. = perimeter; Circ. = circularity; Rel. dens. = relative density; Int. 
dens. = integrated density.
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Table 2 presents the variables obtained through the evaluation of the physiological potential of melon seeds. 
Statistical differences were detected for most of the variables, except for the germination synchrony variable, among 
the lots of the cultivar Pampa F1.

Percentage of germination representing the percentage of normal seedlings at eight days after sowing, showed that 
all seed lots, except lot 10, produced values greater than 80% of germination, which is the minimum value established 
for the marketing of melon seeds in Brazil, indicating high viability of the seeds. For the primary root protrusion, 
the same pattern was observed for the germination data; however, the values were generally higher because of the 
evaluation considering only the emission of the primary root (> 2 mm), not necessarily culminating in the formation of 
a normal seedling.

From the data of the speed of germination index (GSI), speed of primary root protrusion (RPS) and synchrony, it 
can be observed grouping in up to four levels for cultivar Bazuca F1, five levels for Goldex F1 and four levels for Pampa 
F1. These results indicate significant differences in germination timing and in the rates of germination and primary root 
protrusion between the seed lots. According to Finch-Savage and Bassel (2016), this is an important information, since 
the irregular seedling emergence of seedlings can lead to phenological delays and variations in plant growth in further 
phenological stages, also affecting harvesting.

Seedling image analysis using ImageJ® software allowed the identification of differences in seedling growth and 
uniformity of the different seed lots, expressed by means of seedling length and uniformity, vigor and corrected vigor 
indexes (Table 2). For the cultivars Bazuca F1 and Pampa F1, the variable length of seedling was more sensitive than the 
germination test to detect differences between the lots. It was also observed that for some seed lots that presented a 
high percentage of germination (for example, lots 1, 2, 3, 5), smaller values of average seedling length were observed, 
which shows a high viability of the seeds, however this lower growth can be an indication of low vigor.

By means of the seedling uniformity index (Table 2), some lots with lower performance in the average seedling 
length showed high uniformity in their development, or vice versa, that is, Lot 1 and Lot 6, respectively. Other authors 
have pointed out that the uniformity of seedling development is an index that should be taken into account in the 
evaluation of seed lots, since it can provide useful information on the degree of deterioration, initial growth potential 
and seedling emergence uniformity (Leão-Araújo et al., 2019).

For the vigor index, which considers the growth rate and seedling uniformity, the previous results were confirmed, 
highlighting differences of physiological potential in at least two levels to cultivar Goldex F1 and in three levels 
for the other cultivars. The corrected vigor index, which consists of the vigor index product with the germination 
percentage, was efficient to detect differences in at least four vigor levels among the seed lots of the three cultivars. 
For Medeiros and Pereira (2018), the corrected vigor index makes a more efficient beaconing of the results of the 
vigor index, since it performs an adjustment based on germination, offering a more representative result of the 
physiological potential of the seeds. 

In general, the data obtained for the different seed lots and cultivars indicate differences in seed physiological quality 
(Table 2). Significant differences were also observed between the lots of the three cultivars when considering the physical 
parameters obtained from the X-ray images, such as relative density, integrated density and filling (Table 1). However, to 
verify possible relationships between the physical variables, obtained by the automated analysis of radiographs, with the 
variables of physiological potencial, obtained through the test of germination and seedling growth, a correlation analysis 
was performed (Figure 2). 

Significant correlations (p < 0.05) of some descriptors of size and shape with physiological quality were observed. 
For the cultivar Bazuca F1, the seed area showed correlation with seedling length (r = 0.71), vigor index (r = 0.77) and 
corrected vigor (r = 0.67). The perimeter and the circularity were correlated only with the germination synchrony (r = -0.65 
and r = 0.67, respectively). For the cultivar Goldex F1, only the perimeter and the circularity presented correlations with 
the variables of physiological quality (for example, germination: r = -0.92 and r = 0.87; GSI: r = -0.82 and r = 0.75; RPS: r = 
-0.91 and r = 0.88; uniformity: r = -0.86 and r = 0.80; vigor: r = -0.81 and r = 0.76; corrected vigor: r = -0.89 and r = 0.85, 
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Seed lot

Germ. Rad. pro.
GSI  RPS  Sync 

SL Unif. Vigor Corr. vigor

% mm Index

Cultivar Bazuca F1

1 95 a 100 a 6.33 a 11.8 b 1.00 a 9.24 c 892 a 770 b 731 b

2 94 a 100 a 6.27 a 14.2 a 1.00 a 9.50 c 871 a 768 b 722 b

3 95 a 97 a 6.18 a 12.0 b 0.90 b 9.41 c 868 a 763 b 725 b

4 86 b 90 b 5.54 b 10.9 b 0.84 b 8.08 d 790 b 678 c 583 c

5 97 a 98 a 6.30 a 11.4 b 0.88 b 9.47 c 882 a 772 b 749 b

6 94 a 99 a 5.97 a 11.2 b 0.69 c 12.56 a 835 b 857 a 806 a

7 85 b 100 a 5.23 b 10.6 b 0.60 c 11.45 b 817 b 809 b 688 b

8 95 a 99 a 5.90 a 10.0 b 0.61 c 12.35 b 856 a 860 a 817 a

9 93 a 99 a 5.57 a 11.0 b 0.54 d 11.86 a 866 a 848 a 789 a

10 64 c 76 c 3.75 c 7.4 c 0.47 d 8.96 c 660 c 644 c 412 d

Fc 9.15* 23.38* 16.44* 13.73* 17.67* 28.30* 12.46* 14.05* 52.51*

CV (%) 8.15 3.65 7.55 9.3 13.8 6.53 5.2 5.58 5.36

  Cultivar Goldex F1

11 98 a 100 a 6.45 a 19.3 a 0.91 a 13.36 a 864 a 899 a 881 a

12 98 a 99 a 6.14 a 18.5 a 0.67 b 10.83 b 864 a 811 b 795 b

13 96 a 100 a 6.19 a 17.4 b 0.82 a 12.41 a 857 a 863 a 828 b

14 99 a 100 a 6.26 a 18.2 a 0.69 b 12.66 a 874 a 880 a 871 a

15 93 a 98 a 5.77 b 17.4 b 0.60 b 12.00 b 816 b 828 b 770 b

16 89 b 99 a 5.62 b 14.1 c 0.65 b 11.36 b 795 b 795 b 708 c

17 89 b 98 a 5.75 b 12.4 d 0.79 a 11.79 b 813 b 819 b 729 c

18 85 b 100 a 5.47 b 14.6 c 0.75 b 11.23 b 748 c 767 b 652 d

19 91 b 97 a 6.02 a 12.0 d 0.94 a 11.93 b 806 b 820 b 747 c

20 84 b 93 b 5.30 b 9.1 e 0.65 b 10.84 b 747 c 753 b 633 d

Fc  4.18* 3.89*   4.48*  57.22*  4.88*  3.45* 4.66*   3.87*  15.54*

CV (%)  7.11  2.26  7.31  6.51  15.49  8.28  5.86  6.44 6.32 

  Cultivar Pampa F1

21 96 a 100 a 6.24 a 19.4 a 0.88 11.77 c 849 b 836 b 803 b

22 94 a 97 b 5.98 b 18.4 b 0.78 11.50 d 809 b 807 c 759 c

23 97 a 100 a 6.29 a 19.7 a 0.86 12.96 b 816 b 861 b 836 b

24 100 a 100 a 6.61 a 20.0 a 0.94 14.54 a 917 a 967 a 967 a

25 98 a 100 a 6.44 a 18.0 b 0.92 13.93 a 898 a 936 a 918 a

26 91 b 99 a 5.88 b 19.0 a 0.78 12.11 c 778 c 813 c 740 c

27 87 b 99 a 5.55 b 19.2 a 0.71 11.41 d 758 c 778 c 677 d

28 97 a 100 a 6.28 a 18.8 a 0.79 12.43 c 825 b 848 b 822 b

29 97 a 100 a 6.35 a 17.6 b 0.87 12.25 c 840 b 849 b 823 b

30 92.5 b 100 a 6.00 b 10.7 c 0.81 10.70 d 815 b 782 c 719 c

Fc 4.05* 2.69* 4.93*   62.49*  1.83ns 11.93*  6.40*  9.32*  21.18*

CV (%)  4.51  1.33  5.05  4.22  14.07  6.14  5.2  5.35  5.34

Table 2.	 Average values of the data obtained in the evaluation of the physiological potential of thirty lots of hybrid 
melon seeds. 

Lowercase = comparison within each column for each evaluation by the Scott-Knott test (p < 0.05); *, ns = significant and not significant by the F 
test (p < 0.05); Fc = F calculated; CV = coefficient of variation; Germ. = germination; Rad. pro. = radicle protrusion; GSI = germination speed index; 
RPS = root protrusion speed; sync = synchrony; SL = seedlings length; Unif = Uniformity; Corr. vigor = corrected vigor.
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Figure 2.	 Pearson correlation represented by heatmap (a) and by curves (b) between the generated variables of the 
automated analysis of the radiographs and the evaluation of germination and seedling length for each hybrid 
melon cultivar.

respectively). Finally, for the cultivar Pampa F1, there was a significant correlation only of the RPS with the perimeter 
and the circularity (r = -0.86 and r = 0.68, respectively).

There are also strong and significant correlations between the variables related to tissue density and filling of the 
seeds with the variables of physiological quality (Figure 2). In general, the responses of the cultivars did not follow 
the same trend, which can be explained by the history of the lots and the different characteristics of the seed of each 
cultivar. For the cultivar Pampa F1, for example, the lots showed narrow variation in the percentage of germination and 
a wide variation in vigor, observed by more evident differences in the length of seedlings, which may have led to a lower 
correlation of X-ray variables with germination (r < 0.60) and higher correlations with variables related to seedling 
length (for example, relative density: r = 0.90).

The high correlations observed for the parameters: relative density, integrated density and filling with the 
physiological variables are important indicators for the validation of the methodology of automated analysis of X-ray 
images to evaluate seed quality. Abud et al. (2018) and Medeiros et al. (2018) also observed high correlations between 
the relative density variable, obtained from radiographs of broccoli and leucena seeds, respectively, with variables of 
physiological quality, especially the seedling length. This indicate that the relative density parameter is promising to 
estimate the physiological potential of these seeds.

In Figure 3 it is possible to identify the association between physical characteristics and the physiological quality of 
seeds. It was observed that tissues with high integrity generated more opaque images, with zones of high density (shown 
in green, yellow and red), as the resistance to the passage of X-rays was greater. When these high-density zones were 
uniform throughout the seed, the relative density remained high and culminated in the emergence of more vigorous 

Journal of Seed Science, v.42, e202042005, 2020

9X-ray analysis of melon seeds



seedlings (Figure 3A). On the other hand, seeds with low integrity tissues possessed lower relative densities, due to the 
low resistance to X-rays, which generated more translucent or darkened zones in the radiography (represented in the 
colors blue and purple), and that may be related to the seedlings less developed (Figure 3B). In other cases, it is possible 
to detect physical damages, such as cracks or predation by insects, represented by bands or centers of low density that 
lead to the fall in the values of relative density. However, since this damage does not compromise the embryonic axis, 
germination can occur and lead to the development of normal seedlings (Figures 3C and 3D). 

According to some authors, such as Silva et al. (2014), this relationship observed in Figure 3 is not always 
true, since seeds classified as well formed by the X-ray technique can give rise to abnormal seedlings  or 
dead seeds, and since the radiography allows to verify if there are or not tissue malformation, but does not 
necessarily establish a direct relationship with physiological processes. However, in this work, it was possible to 
suppose that even if the physical and physiological variables are not 100% correlated; there might be a strong 
association between them, which can lead to advances in procedures of pre-selection of seed lots by farmers 
and by the seed industry. 

It is important to note that the time spent in the analysis of a radiograph from twenty-seed samples each using 
the PhenoXray macro was only 0.5 seconds (using an Intel Core i5-4200U CPU 1.60GHz processor). Thus, it is a fast, 
reproducible, standardized, easy and inexpensive method to measure the physical characteristics of the seeds, which, 
according to Huang et al. (2015), contributes to guarantee quality seeds for sowing.

Figure 3.	 Radiographic images of melon seeds, combined with color representations (2D and 3D) of the density along 
the seed and its respective seedlings.
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From the multivariate principal component analysis (PCA), using the set of data obtained for the three cultivars 
and the fifteen characteristics evaluated, it can be noticed that the first two components (PC1 and PC2) accounted 
for 71.2% of the variability of the data. Thus, by means of several linear combinations, it was possible to reduce from 
fifteen dimensions to only two, which explained a significant percentage of the observations (Figure 4).

It was observed that there was a greater dispersion of the seed lots of the cultivar Bazuca F1 by the central ordering 
diagram, indicating the high variability among the lots for the characteristics that constituted the PCA. In contrast, a 
larger grouping of the lots of the cultivar Pampa F1 was observed, confirming previous results related to the uniformity 
of the lots of this hybrid, as observed for the data obtained in the physical and physiological analyses (Tables 1 and 2). 
In general, the seed lots that were distant and opposite to the vectors of physical and physiological quality (represented 
in the circle of correlations centered on the right side of the central ordering diagram) were the ones that presented 
the lowest values for these characteristics.

In the circle of correlations (Figure 4), the vectors that comprise the variables obtained from the automated 
analysis of the radiographs were close to the vectors of physiological quality, presenting, in turn, factorial loads with 
similar distribution in the components. These results indicate a high correlation between the characteristics, as already 
demonstrated in the correlation matrix (Figure 3). Thus, these variables were efficient to determine the level of physical 
integrity of the seeds, besides being associated to the physiological quality, such as viability and vigor. 

Therefore, the use of the PhenoXray macro, developed in ImageJ® for the automated analysis of seed radiographs, 
allows the large-scale analysis, in a fast and consistent way, with promising parameters related to the physical integrity of 
the seed and related to its physiological potential. The use of ImageJ® for algorithm development and subsequent creation 
of customizable macros has been successfully reported in other studies (Legland et al., 2017; Miart et al., 2018; Tello et al., 
2018; Vasseur et al., 2018) and represents a significant advance for both the automation of analysis and the free diffusion 
of technologies at the global level, by the opensource nature of the software.

Figure 4.	 Biplot obtained by the linear combination of the variables related to the physical and physiological 
characteristics of thirty lots of hybrid melon seeds of three cultivars.

Journal of Seed Science, v.42, e202042005, 2020

11X-ray analysis of melon seeds



Moreover, the parameters: relative density, integrated density and filling, obtained from the automated analysis 
of radiographs of melon seeds, are promising to infer the physiological quality of the seeds and can be recommended 
for the preliminary evaluation and decision making regarding the disposal of seed lots, optimizing this process and 
reducing production costs.

CONCLUSIONS

The automated analysis of radiographic images allows a simple and fast way to obtain reliable information about 
the physical characteristics of the seeds and to generate parameters related to the physiological quality. The relative 
and integrated densities were, among the variables obtained from X-ray images, those that stood out to estimate the 
physiological potential of the seeds. 
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