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ABSTRACT

The stability of  humans partially immersed in risky open water flows, resulting from urban flooding caused for example by dam breaks, 
or failures in drainage systems, or natural extreme events, is a topic of  increasing interest because it involves the human safety in an 
environment that is more and more subjected to extreme events of  hydraulic nature. The studies in this field of  the applied fluid 
mechanics generally present equations that handle the results through dimensional quantities. These results were generally obtained in 
specific experiments for the evaluation of  the stability of  models of  the human body. Intending to advance in the direction of  a more 
general formulation, a dimensional analysis for the problem of  human stability in open flows is presented here, showing dimensionless 
groups that represent the mentioned problem. Equations using these nondimensional groups were then developed using statistical 
analyses and approximations based on principles of  physics and on data of  the human body. The results obtained with the proposed 
methodology are of  very good quality, presenting high correlation coefficients and good agreement between measured and calculated data.
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RESUMO

A estabilidade de humanos imersos em escoamentos superficiais por exemplo resultantes de inundações urbanas provocadas por ruptura 
de barragens, falhas em sistemas de drenagem ou eventos extremos é um tema de elevado interesse quando se trata de segurança 
humana e hidráulica de eventos extremos. Os trabalhos propostos neste campo apresentam seus resultados através de grandezas 
dimensionais, resultados de origem experimental ou formulações aproximadas para avaliação da estabilidade de modelos para o corpo 
humano. Aqui é apresentada uma análise dimensional que mostra a obtenção dos grupos adimensionais que representam o referido 
problema. Formulações em termos desses grupos adimensionais foram então desenvolvidas com análise estatística e aproximações 
fundamentadas em princípios físicos e dados do corpo humano. Destaca-se a boa qualidade dos resultados obtidos com a metodologia 
proposta, baseada em adimensionais, com elevados coeficientes de correlação e boa concordância entre dados medidos e calculados.

Palavras-chave: Análise dimensional; Estabilidade do corpo humano; Formulação adimensional; Inundações.
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INTRODUCTION

Free surface flows occurring around partially submerged 
human beings can result in instabilities and fall, the drag of  the 
human beings, and serious injuries. Urban floods that occur due to 
extrapolations of  the capacity of  drainage systems, or the traveling 
of  flood waves of  dam breaks or extreme events are examples 
that illustrate the direct interaction between human beings and 
the kind of  flow mentioned.

The quantification of  the sort of  instabilities mentioned in 
the previous paragraph has as its basic purpose the preservation 
of  life and health of  people that may be at risk in unusual flows. 
Such modeling must thus be based on the knowledge of  mechanics 
and biology. Studies of  free surface flows around obstacles may be 
dated back to the fifteenth and sixteenth centuries, when Leonardo 
da Vinci (1452-1519) has drawn details of  such external flows, 
as illustrated in Figure 1. In his sketches it is possible to observe 
the elevation of  the free surface at the stagnation region, and 
downstream vortex streets with the today known low pressure 
zones. The combined effect of  the efforts due to the described flow 
pattern may cause oscillations or even may overturn the obstacle. 
However, there are additional effects that are not so apparent on 
general observations like the Leonardo’s drawings. For example, 
in a preliminary assessment of  the stability of  a submerged object, 
it is considered important to include the shear on the surface of  
the object into contact with the fluid, and the friction between 
its lower surface and the bottom of  the channel. The complexity 
of  the problem is increased when human biology is added as a 
relevant factor. Although this difficulty is readily recognized in 
analytical approaches, it is considered reasonable to establish the 
following general destabilization criteria:

1.	 Shear destabilization at the bottom surface:

The drag force exceeds the static friction force along the 
bottom surface. The static friction force depends on the force 
applied perpendicularly to the bottom surface (weight) and on the 
rheological characteristics of  the sludge supporting the human 

being (or the roughness of  the bottom, if  there is no sludge). 
This is recognized as the condition for the occurrence of  slippage.

2.	 Destabilization through impact:
The drag force is mainly quantified as proportional to 

ρV2A, establishing a strong influence of  the flow velocity, but 
also involving the blocking area. It can be different for individuals 
facing the flow and for individuals with its flank turned to the 
flow (that is, frontal or lateral impacts, respectively). The area of  
the impact region thus varies. A person can be simply overturned.

3.	 Destabilization by vortex shedding oscillation:

In this case, the geometric and dynamic conditions 
enable the formation of  vortexes downstream of  the person 
(this phenomenon is usually related to the Reynolds number and 
not to the Froude number). While the person is balancing for a 
vortex with a force component in one direction, the following 
vortex reverses the direction and impairs the balance, which may 
cause the fall of  the person.

4.	 Instability due to suspension:

A person in a flow may think that, to avoid its own fall, can 
hunker down with its back impacting the flow, possibly also leaning 
on its hands while trying to improve links with the background. 
In this condition, if  a wave or a rise in the water level occur, the 
person may be suspended due to pressure effects (such as sediment 
saltation - lower pressures on the upper part of  the sediments).

As can be seen, these criteria involve different causes for 
destabilization, allowing reasoning about the physics of  stability 
for human beings in risky flows.

Abt et al. (1989) presented one of  the first systematic studies 
related to the stability of  human beings subjected to the action 
of  risky flows. The mentioned authors conducted experiments 
in a rectangular channel with bottom slopes of  0.005 and 0.015, 
2.44 m wide, 61 m long and 1.22 m deep. The maximum flow rate 
employed in the tests was about 2.83 m3/s. Twenty individuals 
with age between 19 and 54 participated in the tests. They had 
good health, heights between 152 and 183 cm and masses between 
40.9 and 91.4 kg (ABT et al., 1989, p. 883). The authors point 
out that similar clothes were used, composed by jeans, sweater, 
and sneakers or boots. The authors analyzed the results of  the 
experimental study and furnished Equation 1.

wt x hthV exp[0.222( ) 1.088]
1000

= + 	 (1)

h [ft] is the flow depth, V [ft/s] is the mean flow velocity; wt is 
weight in pounds; and ht is the height in inches (of  the individuals). 
According to the authors, the equation has R2 = 0.48 (R = 0.6928), 
where R is the correlation coefficient. It is observed that the 
model does not include the roughness of  the surface and other 
parameters of  the channel, and does not address the characteristics 
of  the persons. Also no questions were presented about the flow 
conditions, for example if  it is gradually varied or uniform.

Karvonen et al. (2000) also conducted tests with human beings, 
using seven individuals with ages between 17 and 60, in a channel 
130 m long and 11 m wide. Jonkman and Penning‑Rowsell (2008) 
later analyzed the data from Abt et al. (1989) and Karvonen et al. 

Figure 1. Leonardo da Vinci’s drawing of  turbulent free surface 
flows around obstacles. Richter (1883, Part I, p. 200).
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(2000). The author proposed a block as a model for the human body 
and furnished a subsequent mathematical formulation considering 
the sum of  forces (translational instability), the sum of  moments 
(rotational instability), and the combination of  both effects.

Xia et al. (2014) conducted experiments in reduced scale 
using a physical model (a doll with similar garments than that 
of  a soldier) 0.3 m height and a mass of  0.334 kg. The model 
was positioned frontally and backwards to the flow direction. 
The authors modeled the problem according to the Newtonian 
mechanics considering destabilization mechanisms of  sliding and 
tipping. Similarly, Rotava (2014) and Milanesi et al. (2015) suggested 
formulations based on summation of  forces and moments for 
the condition of  imminent movement Chanson et al. (2015), in a 
discussion linked to the work of  Xia et al. (2014), mentioned that 
turbulence, velocity fluctuations, and flow depths are intervening 
factors that were not adequately represented by the small-scale 
model. As general characteristics, the aforementioned literature 
presents experimental results and proposes mathematical models 
represented accordingly the original dimensions of  the used 
variables. The purpose of  the present article is to review the previous 
information following a point of  view employing dimensionless 
variables. Anon-dimensional formulation is aimed, intending to 
extend the results of  the literature to eventual more general uses.

METHODOLOGY

The studies described in the preceding paragraphs and the 
analysis of  the problem addressed here led to the identification of  
the more relevant dimensional quantities linked to the study of  
human stability in flows (please see Figure 2 for the understanding 
of  the involved forces) and to the proposition of  Equation 2.

1 2 3 1

2 3 o h h

F( , ,g,V,h,F ,F ,F ,d ,...
...d ,d , , I ,H ,M , I,FH) 0,
ρ µ

ε =
	 (2)

where ρ = density of  the liquid; μ = dynamic viscosity; 
g = acceleration of  gravity; V = average flow velocity not disturbed 
by the obstacle; h = flow height not disturbed by the obstacle; 
d1 = vertical distance between the point of  application of  the 
weight of  the obstacle and its supporting point; d2 = vertical 
distance between the line passing through the application point 
of  F2 and the supporting point; d3 = characteristic distance 
between legs; Hh = obstacle height, ε = roughness of  the solid 
surface; Io = bottom slope; Mh = mass of  the obstacle; I = age 
of  the individual; FH = dimensionless factor related to health 

and momentary psychological factors. The insertion of  FH as a 
relevant variable is justified by the existence of  variations in the 
level of  knowledge of  different individuals, knowledge built for 
example by personal experiences, specific training for survival in 
adverse conditions, among others. There is a natural relationship 
between age, physical ability and level of  knowledge.

The forces on the submerged surface of  the human body are 
illustrated in Figure 2 and defined as: F1 force due to the pressure 
distribution and shear stresses caused by the fluid; F2 = vertical 
force on the bottom of  the foot or shoe and F3 = force due to 
the friction with the ground.

The dimensionless parameters were defined by applying 
the theorem of  Vaschy-Buckingham, using the pro-basic system 
formed by ρ, V and h, resulting in Equation 3.

1 2
1 2 3

3 h h
o 3

d d(Re,Fr,C ,C ,C , , ,...
h h

d H M VI... , , , I , , , FH) 0,
h h h hh

Φ

ε
=

ρ

	 (3)

where Re = ρVh/μ (Reynolds Number); Fr = V/(gh)1/2 (Froude 
Number); Ci = Fi/(0.5ρV2h2), with i=1,2,3.

Model based on data from Abt et al. (1989)

The data published by Abt et al. (1989) enabled to study 
the relationship between some of  the dimensionless parameters 
present in Equation 3, explicitly shown in Equation 4.

2 oM* Re,Fr,H*, , I , I*
h
ε = Φ  

 
	 (4)

where h
3

MM*
h

=
ρ

, hHH*
h

=  e VII*
h

= .

It should be emphasized that all data correspond to critical 
values, i.e. the values of  the dimensionless parameters were 
calculated using the data corresponding to the unstable condition 
of  the people who participated in the experiments.

RESULTS AND DISCUSSION

The first step consisted here in seeking more clear links 
between pairs of  dimensionless parameters, that is, in looking for 
the most evident correlations between pairs of  variables. Further, 
as second step, these primary relationships were used as a basis 
for correlations using three or more dimensionless parameters. 
The graphs of  Figure 3 summarize the initial exploratory test. 
It is observed, for instance, that M* has virtually no correlation 
with Re. However, the figure also shows that there are positive 
correlations between other pair of  variables, allowing inferring 
approximately linear or power laws behaviors. Although correlations 
with the dimensionless parameter that involves the roughness of  
the bottom were performed in the present sutdy, the absolute 
experimental roughnesses were not informed by Abt et al. (1989). 
The equivalent roughnesses were estimated based on the materials 
described by the authors, namely, concrete (0.00085 m), grass 
(0.06938 m), gravel (0.522 m), and steel (0.0004 m) (PORTO, 
2006, p. 49, 246, 273-274).Figure 2. Forces on part of  the human body.
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Figure  3 allowed performing empirical exploratory 
analyses using Φ2 (see Equation 4) as the product of  powers of  
six dimensionless parameters:

5
3 6 72 4

c
c c cc c

1 oM* c Re Fr H * I I*
h
ε =  

 
	 (5)

where c1, c2, c3, c4, c5, c6 and c7 are constant dimensionless numeric 
values to be adjusted. Applying a nonlinear regression to the data of  
Abt et al. (1989) produced the values for c1 to c7 presented in Table 1.

This solution has a correlation coefficient R = 0.9335 
between experimental and calculated data. The distribution of  
points around the ideal line (inclined at 45 degrees) can be seen 

Figure 3. Observed correlations between pairs of  variables. Definitions: ρ = density of  the liquid; μ = dynamic viscosity; g = acceleration 
of  gravity; V = average flow velocity not disturbed by the obstacle; h = flow height not disturbed by the obstacle; Hh = obstacle height, 
ε = roughness of  the solid surface; Io = bottom slope; Mh = mass of  the obstacle; I = age of  the individual. The correlation coefficients 
between M* and the dimensionless parameters of  graphs 3a-f, are, respectively: 0.1266; 0.86522; 0.93485; 0.1093; 0.29059; 0.8696.

Table 1. Parameters of  Equation 5 calculated with data of  
Abt et al. (1989).

c1 c2 c3 c4 c5 c6 c7

3.189E-06 -1.017 0.00118 0.00115 -0.0208 0.275 1.226
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in Figure 4a, together with the respective distributions of  points 
of  M*  along the two axes. Figure  4b shows the distribution 
of  residuals relative to the standard distribution of  residuals. 
A reasonable good adjustment in relation to the Normal 

distribution is observed. The chart of  Figure 4c intends to show 
that outliers set to the statistical criterion of  boxes diagram 
cannot retain this concept due to the nature of  the problem, 
that includes the human factor.

Figure 4. Analysis of  Equation 5 using the values given in 
Table 1. Definitions: M* = Mh/(ph³), dimensionless parameter; 
dimensionless residuals = (M*e – M*c)/р, M*e = experimental 
data, M*c = calculated data, σ = standard deviation. (a) Ideal line; 
(b) normal probability plot of  the dimensionless residuals; (c) box 
plot for dimensionless residuals.

Figure 5. Analysis of  Equation 5 using the values given in 
Table 2. Definitions: M* = Mh/(рh³), dimensionless parameter; 
dimensionless residuals = (M*e – M*c)/σ, M*e = experimental 
data, M*c = calculated data, σ = standard deviation. (a) Ideal line; 
(b) normal probability plot of  the dimensionless residuals; (c) box 
plot for dimensionless residuals.
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Model with c2 = 0 (Re0 = 1)

The previous comment of  the possible independence between 
M* and the Reynolds number shown in Figure 3a suggested the exclusion 
of  Re from the original model, generating a new function (Equation 
5 with the new parameters of  Table 2) with a correlation coefficient 
R = 0.98739 (see Figure 5). It is known that R tends to increase with 
the addition of  variables to a model, being an insufficient measure 
of  the quality of  the desired adjustment (if  considered as the only 
criterion). However, in the present case R increases when excluding 
Re, a condition that reinforces the idea of  the independence between 
M * and Re. This fact is presented here for the set of  analyzed data, 
not being found in literature texts. It is worth noting that the Reynolds 
number in question is the one linked to the water depth. For other 
analyses, like the vortex shedding, the Reynolds number considers 
the obstacle diameter, being necessary to have information of  leg 
and stem diameters of  the individuals involved in the tests. These 
information were not provided by the consulted texts. In addition, 
also instability due to suspension was not considered in this analysis.

Model with c2 = 0 and c7 = 0 (exclusion of  Re  
and I*)

Without the knowledge of  FH, the influence of  the 
dimensionless parameter I* may be ambiguous, because an 
increase of  I* by increasing I (age) can be either unfavorable or 
favorable to stability. This eventual “two fold” trend was avoided 
here by imposing c7 = c2 = 0 in Equation 5, as shown in Table 3. 
The adjustment of  the remaining coefficients resulted in a value 
of  R = 0.98508 (see Figure 6), only slighter lower than the value 
obtained for Table  2, suggesting that I* does not represent a 
relevant variable for the present set of  data.

Inclusion of  data from Karvonen et al. (2000)

Therefore, the analyzed data set allowed to obtain a 
predictive equation quite adequate, expressed by Equation 5 
and the coefficients furnished in Table 3. Considering that other 
experiments do not show the number of  variables used here, 
some further simplifications were tested. Figure 3 shows that the 
bottom slope has little influence on the analyzed correlation, with 
changes of  0.8% and 0.6% in the average predictions for Io = 0.005 
and Io = 0.015, respectively. The same comparative procedure of  
including and excluding the relative roughness showed that its 
exclusion does not imply significant changes in the calculated 
values, although the exponent -0.0139 is not necessarily negligible. 
The two simplifications were applied here (c5=c6=0) in order to 
insert the data of  Karvonen et al. (2000) in this proposal. Equation 6 
represents the solution obtained from the joint analysis of  the 
data of  Abt et al. (1989) and Karvonen et al. (2000), furnishing 
R = 0.9916 between measured and calculated data. The graphs in 
Figure 7 summarize the statistical analysis of  these data.

Table 3. Parameters for the Equation 5 (c2 = 0 and c7 = 0).
c1 c2 c3 c4 c5 c6 c7

2.500E-02 0 0.442 2.366 -0.0139 -0.001512 0

Table 2. Parameters for the Equation 5 (with c2=0).
c1 c2 c3 c4 c5 c6 c7

1.524E-04 0 0.1447 2.262 -0.0151 0.0282 0.2422

Figure 6. Analysis of  Equation 5 using the values given in 
Table 3. Definitions: M* = Mh/(ph³), dimensionless parameter; 
dimensionless residuals = (M*e – M*c)/σ, M*e = experimental 
data, M*c = calculated data, σ = standard deviation. (a) Ideal line; 
(b) normal probability plot of  the dimensionless residuals; (c) box 
plot for dimensionless residuals.
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2.898
0.165h h

3
M H0.01538Fr

hh
 =  

ρ  
	 (6)

The equations is valid for 0.187 ≤ Fr ≤ 1.491; 1.471 ≤ H* ≤ 4.887. 
The experiments that resulted in the data used here included 
individuals facing frontally the flow and a gradual increase of  the 
flow rates to prevent the formation of  billows. The individuals 
were periodically asked about the conditions of  stability. Details 

about destabilization that would imply lateral forces (suggesting 
vortex shedding), or suspension during submersion (untested 
condition) are not included in the cited literature. The formulation 
obtained in the present study thus suggests instability due to 
impact (drag) or sliding.

Adaptation and adimensionalization of  the model 
proposed by Xia et al. (2014)

Xia et al. (2014) modeled the critical condition of  stability 
through a balance of  drag and friction forces. Following the 
mentioned authors and modeling the volume of  the human 
body as, 3

human
h h

mVol M * hρ
= =
ρ ρ

 , where ρh is the specific mass 

of  the human body containing the mass “m”, derived from the 
following formulation:

22
1
2

1 1

Fr H *M*
H * b H * a

ψψ
=

− −
	 (7)

in which 
2 2

D d p b
1

a

0.5C a a a (1 )
c

β +β
ψ = ; ca= friction coefficient (dimensionless); 

2 2 3ψ = β + ; CD = drag coefficient, ad = correction factor to calculate 
the area corresponding to dragging; ap = dimensionless ratio 
related to the human body, specifically the relationship between 
average width and height; β = empirical coefficient, normally 
around 1/7 or 1/6, the employed power law for the distribution 
of  velocities; ab = coefficient used to adapt the distribution of  
velocities near the bottom and the human body (XIA et al., 2014, 
p. 97). The dimensionless a1 and b1 are present in the equation 

submerged 1 1
2

human

Vol a b
Vol H *H *

= + . If  H*=1 (which corresponds to a fully 

submerged human body, h=Hh), Volsubmerged =Volhuman, therefore, 
a1+b1 = 1. According to Drillis et al. (1964), a1 = 0.737 and b1 = 0.263 
for American people, being the “anatomical mean values” used in 
Equation 7. This way, ψ1 e ψ2 were calculated furnishing Equation 
8, with R = 0.94837 and presenting a distribution of  measured 
and calculated values which is shown in Figure 8.

Figure 7. Analysis of  Equation 6. Definitions: M* = Mh/(ph³), 
dimensionless parameter; dimensionless residuals = (M*e – 
M*c)/σ, M*e = experimental data, M*c = calculated data, σ = 
standard deviation. (a) Ideal line; (b) normal probability plot of  the 
dimensionless residuals; (c) box plot for dimensionless residuals.

Figure 8. Comparison between measured values and calculated 
with Equation 8. M* = Mh/(ph³), dimensionless parameter.
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2 3.81

2
0.0406Fr H *M*

H * 0.737H * 0.263
=

− −
	 (8)

Equations 6 and 8 involve the same set of  dimensionless 
parameters: M*, H* and Fr. Equation 8, however, suggests a much 
higher dependence of  M* on the Froude number (Fr), expressed by 
the exponent 2.0 instead of  0.165. In terms of  the dependence on H*, 
Equation 6 furnishes the exponent of  2.898, while Equation 8 can be 
presented also varying the exponent between 3.81 (H* → 0) and 1.81 
(H* → ∞), with a mean value between the extremes of  2.81. Thus, the 
dependency of  both equations on H* is similar, considering the mean 
value of  the exponent. The validity of  Equation 8 with the presented 
coefficients, is linked to the data that led to these coefficients. They 
derive from the proposed adjustment (for example, β may be different 
from the initial proposal around 1/7 to 1/6, for the power law velocity 
profiles). Equation 8 shows that, for H* → 1, M* → ∞, suggesting the 
extreme case for which the instability is inevitable due to the submersion 
of  the human body (stability would need an infinite mass).

CONCLUSION

This study evidenced important dimensionless parameters 
for the study of  the human stability in risky water flows. Multivariate 
analyzes with the proposed formulation resulted in equations 
with high correlation coefficients and good adjustment between 
experimental data and calculated values. It was observed initially 
that the relevant dimensionless parameters, in a more complete 

analysis, may be composed by: h
3

M
hρ

, Fr, hH
h

, h
ε , oI , VI

h , with the 

meanings described in the text. Successive possibilities were tested, 
showing that good correlations can also be obtained using only: 

h
3

M
hρ

, Fr , hH
h

, 
h
ε , oI . Aiming to use literature results, a sensitivity 

analysis was performed, resulting as more evident dimensionless 

parameters the following three: h
3

M
hρ

, Fr , hH
h

, possible to be 
quantified with the literature data.

A second analysis was made on a previous approximate 
formulation of  the literature, based on Newton’s second law, 

leading to the same dimensionless parameters, h
3

M
hρ

, Fr  , hH
h

. 

This formulation also correlates satisfactorily the different parameters, 
but presenting relatively larger errors compared to the previous 
empirical formulation.

The set of  variables that determines the human instability 
in flow is quite large and rarely data is available from experiments 
described in the literature.

On the other hand, the correlations obtained from the 
analyzes as performed in this study contain the necessary elements 
for the quantification of  human instability. These results also point 
the convenience of  more complete experimental studies, in order 
to provide a larger set of  the variables discussed here.
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