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ABSTRACT

This study aims to investigate the transformations experienced by the mean water level and radiation stress tensor during the propagation 
of  Bichromatic-Bidirectional (Bi-Bi) waves on a slope of  1:22 and water depth varying from 55 cm to 26 cm, simulating laboratory 
conditions. A computer program written in Python was used to compute those quantities at different combinations of  wave angles 
and periods. The setup and setdown of  the mean water level are strongly dependent on the combination of  periods and direction of  
the primary waves, as they propagate along the slope, modifying the bound infragravity wave. Mohr’s circles for the radiation stress 
tensor showed significant changes of  diameter and center at different points along the basin. The radiation stress components for the 
Bi-Bi waves are the sum of  the stresses associated with each primary wave and a nonlinear term which results from the interference 
between primary waves. Disregarding these nonlinear terms may significantly affect the nearshore hydrodynamics prediction.

Keywords: Bimodal seas; Infragravity waves; Radiation stress; Nonlinear wave-wave interaction.

RESUMO

Este trabalho tem por objetivo investigar as transformações sobre o nível médio da água e o tensor de tensão de radiação durante a 
propagação de ondas Bicromáticas e Bidirecionais (Bi-Bi) em um talude 1:22 e profundidades variando de 55 cm a 26 cm, simulando 
uma bacia de ondas em laboratório. Um modelo matemático escrito em Python foi utilizado para o cálculo daquelas grandezas para 
diferentes combinações de ângulos e períodos de ondas. A sobre-elevação e o rebaixamento do nível médio da água são fortemente 
dependentes da combinação de períodos e direções escolhidos para as ondas primárias, dado que elas refratam ao longo do talude, 
modificando assim a onda de infragravidade aprisionada. Os círculos de Mohr para o tensor de tensões de radiação mostraram 
mudanças significativas no diâmetro e no posicionamento do centro em diferentes pontos ao longo da bacia. As componentes da 
tensão de radiação para as ondas Bi-Bi são a soma das tensões associadas a cada onda primária e um termo não linear que resulta da 
interferência entre as ondas primárias. Ao se desconsiderar estes termos não-lineares pode-se causar consequências significativas sobre 
previsão da circulação hidrodinâmica.

Palavras-chave: Mar bimodal; Ondas de infragravidade; Tensão de radiação; Interação não-linear onda-onda.
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INTRODUCTION

Infragravity waves are long surface waves with frequencies 
ranging from 0.004 Hz to 0.04 Hz, and amplitudes of  O(100 - 101 cm). 
Their wavelengths can be much longer than those typical of  free 
wind-generated waves, O(102 - 103 m), making them difficult to be 
identified in the sea. The first observations of  these low‑frequency 
oscillations were made by Munk (1949) and Tucker (1950). 
The phenomenon was named “surf  beat” and associated with the 
envelope of  wave groups that caused a variable mass transport 
inside the group.

According to Bertin et al. (2018), infragravity waves are 
now widely accepted as responsible for significant impacts on 
the hydrodynamics and morphodynamics of  coastal areas like 
sandy beaches, tidal inlets, coral reefs and harbors. These long 
period oscillations can drive rip currents (DALRYMPLE et al., 
2011), can propagate into aquifers on sandy coasts and cause 
underground water fluxes through barrier islands, between sea 
and lagoons (GENG; BOUFADEL, 2015; LI; BARRY, 2000; 
LONGUET‑HIGGINS, 1983), can intensify wave run-up and 
overtopping over dunes, structures and fringing coral reefs 
(CHERITON; STORLAZZI; ROSENBERGER, 2016) and 
can eventually dominate the net sediment transport in the surf  
zone (AAGAARD; GREENWOOD, 2008). Janssen (2003) 
reported that the slow modulation of  the infragravity waves 
can cause resonance inside harbors, affecting the moored ship 
behavior and the design wave characteristics for port structures. 
According to the author, the forcing of  infragravity waves may 
even “be normative to their design”. Infragravity waves have been 
associated with microseisms (LONGUET-HIGGINS, 1950), can 
cause vibrations in coastal cliffs, leading to their instability and 
erosion (YOUNG et al., 2011), and are related to seismic waves in 
the solid Earth, a phenomenon known as “the hum” (ARDHUIN; 
GUALTIERI; STUTZMANN, 2015).

The first mathematical explanation for the generation of  
infragravity waves came with the pioneering work of  Longuet‑Higgins 
and Stewart (1964) where the concept of  radiation stress for ocean 
waves was defined as the excess of  momentum flux due to the 
presence of  the waves. According to the authors, the radiation 
stress is proportional to the square of  the wave height and has 
tensor like nature. Equations (1) to (3) show the normal and 
shear components of  the stress tensor (S), where E is the wave 
energy per unit area (J/m2); n is the ratio of  group velocity to 
wave celerity; and θ is the wave angle of  propagation relative to 
the coordinate system x-y.
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Therefore, inside a wave group, where a slow periodical 
change of  the individual (short period) wave heights exists, there 
will also be a variation of  the radiation stress, which will be 
compensated by the gradient of  the mean water level from the 

regions of  higher to lower wave heights, known as wave setup and 
setdown. Figure 1 shows a sketch of  a wave group formed by two 
collinear short period waves and the associated infragravity wave, 
which has a phase shift of  180° relative to the group envelope. 
If  the primary waves have periods Ta and Tb, the infragravity wave 
will have period TaTb/|Ta-Tb|.

According to the classification of  Zhang and Chen (1999), 
this long period wave is a ‘strong’ interaction characteristic between 
primary waves, which appears immediately after the start of  
the propagation of  free waves. It is also a “bound wave”, as its 
existence strictly depends on the existence of  the primary waves 
and it propagates with the group celerity and not according to 
the dispersion relation (JANSSEN, 2003).

Although the concept of  radiation stresses has been known 
for decades, little attention has been given to the problem of  the 
stress field associated with two non-collinear waves. Hsu et al. (2006) 
investigated the influence of  the directionality of  the incoming 
wave on the radiation stresses and in the wave setup and setdown. 
Shi and Kirby (2008) and Hsu and Lan (2009) later made some 
corrections to the original work, and verified that oblique waves 
were not capable of  driving nearshore circulations outside the surf  
zone. However, none of  them studied the effects of  two different 
wave systems reaching the coast at the same time.

The present article extends those previous studies by analyzing 
the radiation stress field associated to Bichromatic‑Bidirectional 
waves, from now on referred to as Bi-Bi waves. This condition 
should be interpreted as a simplified view for bimodal seas, a 
state very often found in Nature (RAPIZO  et  al., 2015), and 
more specifically in the southeast and northeast coast of  Brazil 
(MELO et al., 1995; PARENTE et al., 2015). Although occurrences 
of  infragravity waves associated to these sea conditions are known, 
their effects on littoral processes and nearshore hydrodynamics 
are still research topics.

MATERIAL AND METHODS

In this section, wave (geometrical) refraction will be 
reviewed, and the analytical second order equations for the mean 
water level and radiation stresses are derived. Following Dean 
and Dalrymple (1991), mean values for second order properties 
are obtained from depth integrated or time averaged equations, 
based solely on first order solution substituted into nonlinear 

Figure 1. Wave group composed by two collinear bichromatic 
waves and the generated infragravity wave.
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terms of  the expressions of  momentum flux and dynamic free 
surface boundary condition.

Wave refraction

In geometric optics, refraction is defined as a change in 
celerity as a wave propagates across a variable medium, resulting in 
a change in the direction of  propagation of  the light ray. A direct 
analogy applies between light rays and water waves, if  the refraction 
index, which is defined as the ratio between the local speed of  
light and the speed in vacuum, is defined as the ratio between the 
local celerity and deep-water celerity. The analogy however does 
not extend to the physics of  refraction of  both types of  waves. 
First, the speed of  light in vacuum is a universal constant, whereas 
the wave celerity in deep water varies with the wave frequency 
(or period or length) because water waves are dispersive. Second, 
the intensity of  the water wave (height) changes along the refraction 
path, unlike the light waves.

At this point, it is important to address two common 
misconceptions about the refraction of  water waves. The bathymetry 
will be considered to have straight depth contours, all parallel to 
the shore. First of  all, as waves approach the shore, the crests 
never become parallel to the isobaths. Applying Snell’s Law (4),
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where θi is the angle of  the crest with the depth contour at depth 
hi or the angle between the wave number and the normal to the 
depth contour. The angle θi can only be zero (normal incidence) 
if  the wave celerity at depth hi is zero, consequently if  the depth 
itself  is null.

Second, as a wave propagates towards shallower water, its 
height actually decreases by approximately 10% or even more, 
depending on the angle of  incidence. Figure 2 shows an example 
of  the ratio between local wave height (H) to deep water wave 
height (H0) for different values of  incidence. For a deep water 
angle of  incidence of  50º, for instance, the wave height returns 
to be the same at relative water depth (h/L) equal to 0.0578, very 
close to shallow water limit.

If  one considers the simultaneous refraction of  two wave trains 
(say, wave ‘a’ and wave ‘b’) across the parallel contour bathymetry, 

the patterns of  interaction will change, as the orientations of  the 
crests of  each wave will evolve. In other words, the individual 
wave rays will undergo refraction differently from each other. At a 
given point with known depth h, for wave ‘a’ it will correspond 
a relative water depth h/La, while for wave ‘b’ it will correspond 
a relative water depth h/Lb. This means also that each primary 
wave would be undergoing different processes (for  instance, 
changes in wave height or second order effects) at the location 
of  interaction. The vertical lines in Figure 2 correspond to three 
points (x1, x2 and x3) with different depths (say, h1, h2 and h3); for 
each point, the relative depth (h/L) for the 1.1 s wave (dashed 
line) will differ from those for the 1.5 s wave (solid line).

Mean water level

Using second order Stokes theory, Dalrymple (1975) studied 
the interaction between two waves with the same frequency but 
different directions of  propagation. This condition may happen 
as waves are reflected by a structure or a natural morphological 
feature. It was shown that these monochromatic-bidirectional 
wave trains generate static longshore undulations of  the mean 
water level, which may be one of  the possible mechanisms for 
rip currents formation and an explanation for the equal spacing 
between them (INMAN; TAIT; NORDSTROM, 1971). In the 
surf  zone, these spatial oscillations modulate the wave height and 
wave‑induced circulation along the coast, which is usually attributed 
to edge waves or irregular bottom topography (DALRYMPLE et al., 
2011; XIE, 2012). Dalrymple (1975) analytically derived the mean 
water level under the effects of  monochromatic-bidirectional wave 
groups by time-averaging the Bernoulli equation. The following 
expression results:
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where x = (x, y) where x is the cross-shore coordinate positive 
in the landward direction (m) and y is the longshore coordinate 
positive to the right of  an observer looking seaward (m); h = local 
depth (m); H = wave height (m); Δk = (ka - kb) = difference wave 
number vector (rad∙m-1); Δθ = (θa - θb) = difference between the 
two incident wave angles (radian); and the subscripts ‘a’ and ‘b’ 
correspond to each wave. It should be observed that Equation (5) 
describes a stationary undulation that would be present along the 
coastline during the occurrence of  such a sea state. Dalrymple 
and Lanan (1976) conducted physical model tests to verify the 
existence of  this stationary long wave and associated nearshore 
circulations.

However, if  two waves have different directions and 
different frequencies (Bi-Bi waves) other phenomena occur and 
time-averaging the Bernoulli equation is not suitable anymore. 
Using the Sharma and Dean (1981) equation for the instantaneous 
free surface elevation, the following expression for the mean water 
level is obtained:Figure 2. Shoaling and refraction coefficient.
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	 (6)

where g = acceleration of  gravity (m/s2); σ = wave frequency 
(Hz); φ = wave phase ( )· tφ σ ε= − +k x ; ε = initial wave phase; and A+ 
and A- are terms of  additive and subtractive interaction between 
the primary waves, respectively, given by expressions (7) and (8).

Unlike the equation derived by Dalrymple (1975), Equation (6) 
has terms which vary in time. The terms that involve the addition 
of  phases are known as additive interference. They  will have 
higher frequency, although the wave length will depend on the 
angle between the primary wave number vectors. Note that in 
Equation (7) the sum of  the wave vector numbers is involved, 
while in Equation (8), the wave vector numbers of  the primary 
waves are subtracted.

If  the two primary frequencies are close to each other, 
averaging over the main period will render the additive terms 
equal to zero. On the other hand, if  the two frequencies are rather 
different, say 1.1 s and 1.5 s, a short period term (T+ = 0.63 s) will 
appear. Figure 3 illustrates the influence of  the angle difference 
between the two primary waves. For small angles, the additive 
interference has higher frequency and shorter length compared 
to the individual waves, whereas the subtractive interference 
will have lower frequency and longer wave length. If  the angle 
difference is large, however, the additive interference may have 
longer wave length whereas the subtractive interference will have 
shorter wave length.

Observe that Equation (5) is retrieved from Equation (6) if: 
(i) monochromatic-bidirectional waves are considered; (ii)the time 
average of  the additive interaction is neglected; (iii) the magnitudes 
of  the wave number vectors are the same for waves with same 

period; and (iv) the phase of  the subtractive interaction does not 
depend on the time when waves have the same period.

	 (7)

	 (8)

Physically, the Bi-Bi wave causes a bound progressive 
long wave, which propagates in the direction of  the vector 
which results from the subtraction of  the two primary wave 
vectors (Figure 3). Similar to the stationary wave associated with 
a monochromatic‑bidirectional sea state, one may infer that the 
infragravity wave produced by Bi-Bi waves generates rip currents. 
However, this progressive bound wave would also be able to cause 
the longitudinal displacement of  the rip currents, a phenomenon 
commonly seen in Nature (FOWLER; DALRYMPLE, 1990). 
Equation (6) reduces to the expressions for the wave set-down of  
progressive and standing waves if  the angle differences are taken 
as 0º or 180º, and the frequencies are the same.

Radiation stresses

The expressions of  the radiation stresses for Bi-Bi waves are 
given by Equation (9), where Sij are the components of  the radiation 
stress tensor (N/m); u and v are components of  the horizontal 
orbital velocities of  waves ‘a’ and ‘b’ (m/s), respectively; p is the 
pressure term (N/m2), ρ is the density of  the medium (kg/m3), 
δ is the Kronecker delta, the overbar means time averaging, and 
the subscripts i and j correspond to the Cartesian components 
x and y, respectively. This equation differs from the simple linear 
superposition due to the presence of  the interaction components 
(  and ) and by the mean water level itself, given by Equation (6).

	 (9)

After some algebraic manipulation, the complete equations 
are derived for the terms of  the radiation stress, which assume the 
general form shown in Equation (10). The complete equations are 
given in Appendix 1, and they have the general form:

Figure 3. Wave number vectors of  the primary waves and their 
additive (blue) and subtractive (red) second order interactions.
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( )cosij ija ijbS S S ψ φ φ±= + + ±a b 	 (10)

where 
±ψ  represents a nonlinear interaction function (additive or 

subtractive) that depends on the physical and geometrical properties 
of  waves ‘a’ and ‘b’. Each component of  the total radiation stress 
tensor is composed of  the superposition of  the primary waves 
tensor components added to nonlinear interaction functions. 
The additional terms generate a non-uniform and transient stress 
field with a period related to the properties of  the primary waves. 
Low frequency components are represented by terms which 
include the time averaged phase differences, cos a b( - )φ φ , while the 
high frequency terms are multiplied by cos a b( + )φ φ . These results 
significantly differ from those originally presented by Longuet‑Higgins 
and Stewart (1964) for unimodal and unidirectional waves, and 
later expanded to oblique waves by Hsu et al. (2006) and Shi and 
Kirby (2008), or a simple linear superposition as proposed by 
Battjes (1972) for short-crested waves.

The expressions presented in Appendix 1 reduce 
to the usual form of  the radiation stress components for 
monochromatic‑monodirectional waves (e.g. DEAN; DALRYMPLE, 
1991). To illustrate the physical interpretation of  the equations 
for the mean water level and radiation stresses components for 
Bi-Bi waves, some examples will be shown in the next sections.

Methodology

Conde et al. (2014) performed physical model tests with 
bichromatic-monodirectional waves in a wave flume at the National 
Laboratory for Civil Engineering (LNEC). The flume had a total 
length of  32.57 m, the water depth was 0.95 m near the wave‑maker, 
and then varied from 0.55 m to 0.10 m in a constant 1:22 slope, 
before reaching a constant depth region (10 cm) and the absorption 
system. The simulated bichromatic waves had 1.1 s and 1.5 s, both 
being 0.08 m high. The instrumentation consisted of  an eight-gauge 
movable structure 1.8 m long, with the sensors positioned 0.2 m 
apart. Measurements were taken on a 20 m stretch of  the channel. 
An ADV probe took measurements at mid-depth, spaced by 1 m 
on a 17 m stretch. Using time, spectral and wavelet analysis, the 
authors studied nonlinear wave transformations on the slope and 
on the 10 m long subsequent horizontal bed. The spectral and 
wavelet analysis clearly identified the presence of  the infragravity 
wave, with frequency equal to the difference of  the two basic 
frequencies (4.125 s) and energy higher than that of  the second 
harmonic of  the primary waves. Further information about the 
experiments and data analysis can be found in Conde et al. (2013) 
and Conde, Lemos and Fortes (2014).

Ma et al. (2017) investigated in laboratory the interaction 
of  monochromatic-bidirectional waves building an experimental 
set-up consisting of  two crossing flumes inside a wave basin. 
The  angle difference between both waves was fixed to 24°, 
and different wave frequencies and amplitudes were simulated. 
Capacitance wave probes and high-speed cameras were used to 
investigate the wave-wave interactions and showed that they are 
strongly dependent on wave amplitude and frequency.

A natural extension of  Conde et al. (2014) and Ma et al. 
(2017) would be adding both, wave directionality and frequency, 

to the experiments and study the behavior of  the infragravity 
wave with different combinations of  angle difference between 
the primary waves. Using a computer program written in Python, 
a broad set of  tests can be made to help better understand the 
nonlinear processes involved in 3D physical model tests to be 
carried out in a wave basin.

De Souza e Silva, Rosman and Neves (2017) compared the 
Bi-Bi’s mean water level and radiation stresses to the results obtained 
by the traditional formulas for monochromatic-monodirectional 
waves (e.g. Dean; Dalrymple, 1991). A series of  tests were simulated 
with monochromatic-bidirectional waves using the Bi-Bi waves 
formulas and a Δθ ranging from 0° to 360°. The results showed 
that for angle differences of  0° and 180°, and an equal initial 
phase (εa = εb), the calculated mean water level was identical to 
traditional formulas and that it varies through all possible angle 
combinations as a continuous and smooth curve. The maximum 
setup and setdown variations occurred for a steep stationary wave 
and for a progressive bichromatic-bidirectional wave with small 
angle differences. For the radiation stresses, the Mohr’s circle 
was used, a well-known technique in Continuum Mechanics for 
representing stresses states. It was concluded that these second 
order terms significantly change the Mohr’s circle’s diameter and 
center, meaning that the nonlinearity should not be disregarded 
neither in numerical nor in physical models.

The focus here is on the transformations experienced 
by the infragravity wave and the stress tensor components on a 
1:22 slope if  the experiments of  Conde et al. (2014) were to be 
made in a 3D wave basin. Bi-Bi waves were simulated using the same 
periods and height combinations tested by Conde: 1.1 s (wave ‘a’) 
and 1.5 s (wave ‘b’), and 0.08 m for each wave at the wave maker. 
Wave ‘b’ had a constant direction of  0º (normal to the wave 
maker), while the shorter wave was rotated by 1° in each test 
until completing 360º.

The simulated 3D wave basin in Figure 4 is 30 m wide, 
6.5 m long and has a 1:22 slope in the x-axis. The water depth 
ranged from 0.55 m (x=0 m) to 0.26 m (x=6.5 m). The shallow 
limit was set by the Ursell criteria for second order Stokes theory, 
which prevented the slope to reach 0.10 m depth as in Conde’s 
experiment. Three different positions at the center x-axis of  the 
basin (y=0 m) were chosen to illustrate some results: x1=0 m 

Figure 4. Bathymetry of  the numerical 3D wave basin. Black 
circles show the three chosen points for more detailed analysis. 
Horizontal and vertical scales are distorted.
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(h1=0.55 m); x2=5 m (h2=0.33 m) and x3=6.5 m (h3=0.26 m). 
In all simulations, both waves propagated in intermediate water 
conditions.

RESULTS AND DISCUSSION

Results for the mean water level and the radiation stress 
components will be shown here. Unless otherwise stated, all graphs 
illustrate the results for position x1, where both waves have zero 
initial phase (εa = εb = 0). A detailed analysis about the effects of  
the phase difference can be seen in De Souza e Silva, Rosman 
and Neves (2017).

Phase structure

Consider two waves whose wave numbers are ka and kb as 
shown in Figure 5, where the wave ‘a’ may have any direction (360º) 
relative to wave ‘b’. Both subtractive and additive interferences 
will have wave lengths given by the magnitude of  the difference 
or addition of  the primary wave number vectors; as long as the 

primary periods are not equal, the interference will move in space 
and time as a bound wave, in the direction of  the resulting wave 
number vector. The wave lengths of  the interferences will be 
given as 2π/|ka±kb|, with period TaTb/|Ta±Tb|. The direction 
of  propagation of  the interference wave will be limited to an 
angle θlim relative to the shorter wave ‘a’ as given by Equation (11).

lim sin 1θ −= b

a

k
k

	 (11)

Depending on the angle between the primary waves, the 
interference wave length may be either longer or shorter than the 
primary waves. This is a remarkable result, different from what 
happens with wave groups formed by collinear waves, whose wave 
length is always longer than the wave length of  the primary waves.

Experimental studies conducted by Conde et al. (2014) 
in LNEC’s wave flume showed the presence of  not only the first 
subtractive interference, but also the interference between higher 
harmonics. In a wave basin, one might expect that third or higher 
order interference may develop more easily. Table 1 summarizes 
the interference periods, both subtractive and additive, for the 
primary waves with 1.1 s and 1.5 s.

Mean water level

Equation (6) allows computing the mean water level for any 
combination of  angle and period of  Bi-Bi waves. Figure 6 shows 
continuous curves that describes the maximum and minimum 
mean water level height under all possible combinations of  angle 
difference between 1.1 s and 1.5 s period waves along the slope. 
The setup and setdown are more significant at 0° angle difference. 
Around 60°, the effects over the mean water level are minimum 
and when both waves tend to propagate with opposite directions, 
the influence of  the nonlinear interactions grow.

Figure 5. (a) Subtractive (red) and (b) additive (blue) wave numbers 
resulting from wave-wave interaction.

Table 1. Interference matrix: subtractive period (–) and additive 
period (+).

Interference
Matrix

1st Order 2nd Order 3rd Order
σa 2σa 3σa

1st Order σb σa±σb 2σa±σb 3σa±σb

2nd Order 2σb σa±2σb 2σa±2σb 3σa±2σb

3rd Order 3σb σa±3σb 2σa±3σb 3σa±3σb

period (–)
(s)

Ta Ta/2 Ta/3
1.10 0.55 0.37

Tb 1.50 4.125 0.868 0.485
Tb/2 0.75 2.357 2.063 0.717
Tb/3 0.50 0.917 5.500 1.375

period (+)
(s)

Ta Ta/2 Ta/3
1.10 0.55 0.37

Tb 1.50 0.635 0.402 0.295
Tb/2 0.75 0.446 0.317 0.246
Tb/3 0.50 0.344 0.262 0.212
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Figure 7 shows the expected infragravity wave generated 
by the Bi-Bi waves inside the basin, for the case where wave ‘a’ 
has a 10° angle and wave ‘b’ a 0° angle in deep water condition. 
Refraction and shoaling effects are considered in the model. 
The angle difference at x1, x2 and x3 positions are 9.6°, 8.5° and 7.9°, 
respectively. Because of  this decreasing angle difference and the 
increase in the steepness of  the primary waves, the infragravity 
wave changes direction and increases its height as it propagates 
along the basin slope. The drawn arrows in the figure indicate the 
propagation direction of  this long bound wave, which is a function 
of  the primary wave numbers. At x1, x2 and x3, the direction of  
the infragravity wave is 24.5°, 24.7° and 24.0°, respectively.

It is important to keep in mind that Figure 7 shows an 
instant in time. When time is allowed to vary, the progressive 
characteristic of  the infragravity wave becomes evident.

The curves in Figure 6 and the snapshot of  the mean water 
level in Figure 7 are helpful to understand what happens to the 
infragravity wave as Bi-Bi waves approach the shore. As refraction 
and shoaling affect the incoming waves, they tend to propagate 
at smaller angles with respect to the isobaths in shallower water 
depth. The bound wave then, rapidly increases its height, while its 
direction changes according to the difference of  the wave number 

vectors of  the primary waves. However, even a slight difference 
in angle of  propagation between the primary waves, will cause 
the infragravity wave to propagate in a direction that is neither 
one of  the primary waves.

Radiation stresses

Closely analyzing the radiation stress equations shown in 
Appendix 1, one can see the importance of  the angle difference 
between the primary waves. Figure 8 shows the Mohr’s circles 
of  the stress tensor resulting from different combinations of  
directions for the 1.1 s and 1.5 s period waves at the bottom of  
the slope (h1=0.55 m). The normal and shear stress components 
are higher when both waves propagate in the same direction. 
As the angle difference increases, the diameter of  the Mohr’s circle 
decreases down to a minimum around 120°, and then it gradually 
increases again until both waves propagate in opposite directions. 
It is interesting to notice that this pattern is different from the 
one shown in De Souza e Silva, Rosman and Neves (2017) for 
monochromatic-bidirectional waves, where the Mohr’s circle had 
a maximum diameter at 0° angle difference (progressive wave) 
and a minimum at 180° (standing wave). As a matter of  fact, the 
radiation stress field of  Bi-Bi waves strongly depends on the angle 
and the period combination of  the primary waves.

Figure 9 shows the Mohr’s circle at positions x1, x2 and x3 
in the simulated wave basin. As the angle difference between the 
primary waves decreases and their steepness increase, the center of  
the circle moves away from the y-axis (because (Sxx + Syy)/2 grows 
at shallow water), while increasing its diameter (because Sxy also 
grows).

Figure 6. Setup or setdown of  the mean water level with the 
propagation of  Bi-Bi waves (Ta = 1.1 s and Tb = 1.5 s).

Figure 7. Infragravity wave oscillation inside the 3D numerical 
basin. Arrows are just an illustration of  the wave number vector 
of  the primary waves (black) and infragravity wave (red).

Figure 8. The Mohr’s circles for different angle differences 
between waves ‘a’ and ‘b’.
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Figure 10 shows the radiation stress field for each of  
the three components of  the stress tensor (Sxx, Sxy and Syy), for 
the case where wave ‘a’ (Ta = 1.1 s) has a 10° angle and wave ‘b’ 
(Tb = 1.5 s) a 0° angle in deep water conditions. The patterns 
of  each component are similar to the infragravity wave, as the 
intensities become more pronounced as the waves propagate 
along the slope and the crests are curved due to refraction of  
the primary waves.

At this point, it is interesting to investigate the nonlinear 
terms of  the equations in Appendix 1 of  the radiation stress 
field. Figure  11 shows the exact same condition shown in 
Figure 10 but disregarding the nonlinear terms. It is seen that 
in the normal components (Sxx and Syy) only variations in the 
cross-shore direction appear, while the shear stress component 
(Sxy) is constant all over the basin. This result significantly differs 
from the one illustrated in Figure  10, where all three stress 
components oscillates in the cross and longshore directions. 
This result suggests the importance of  including nonlinear 
terms in numerical models when two or more waves approach 
the shore simultaneously.

Figure 9. The Mohr’s circle at the three positions in the 3D basin: 
x1 is the deepest and x3 the shallowest.

Figure 10. Radiation stress field of  the three stress components: 
Sxx, Sxy and Syy, respectively.

Figure 11. Radiation stress field, disregarding the nonlinear terms: 
Sxx, Sxy and Syy, respectively. 
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CONCLUSION

Bimodal spectra may be thought of  as group of  waves 
with two primary frequencies but collinear (same direction). 
However, it is important to keep in mind that these spectra could 
be the superposition of  two different wave systems with also 
different directions, which contain multiple wave-wave interaction 
components. Conde  et  al. (2014) investigated the nonlinear 
bichromatic-monodirectional wave interactions in a wave flume with 
a 1:22 slope. Spectral and wavelet analysis have clearly identified 
the frequency corresponding to the main infragravity wave but 
have also shown other interference patterns.

The present work investigated the effect of  including wave 
directionality to the bichromatic pattern. A computer program 
written in Python was used in this investigation, which included 
the Bi-Bi second order equations for calculating the mean water 
level and radiation stresses. The simulated waves were based in the 
physical model presented in Conde et al. (2014), with 1.1 s and 1.5 s, 
but now could have any combination of  directions. The numerical 
3D basin simulated a wave basin 6.5 m long, 30 m wide, with depth 
ranging from 0.55 m to 0.26 m on a 1:22 slope.

The effects of  the Bi-Bi waves on setup and setdown of  the 
mean water level and on the radiation stress tensor were compared 
to the monochromatic formulations presented in the literature. 
It was seen that, for waves with 1.1 s and 1.5 s periods, the setup 
and setdown are more pronounced close to 0° and 180° difference 
of  angle between the waves and that around 60° the effects of  
the nonlinearities over the mean water level are minimum. It was 
also seen that near the shore, the infragravity wave behaves as a 
progressive wave, travelling in the longshore direction. This is an 
extension of  the findings made by Dalrymple (1975), which showed 
a standing wave being generated by monochromatic‑bidirectional 
wave system.

Concerning the radiation stress tensor, it was shown 
that the infragravity wave generated by Bi-Bi waves creates an 
oscillating radiation stress field variable in the longshore and 
cross-shore directions, a phenomenon which does not occur 
with monochromatic waves. Even the shear stress component 
(Sxy), which is considered as a constant for monochromatic wave 
in the offshore zone, undergoes significant spatial variations for 
Bi-Bi waves. These results are significantly different from what is 
expected by the equations developed for monochromatic oblique 
waves by Shi and Kirby (2008), in which case there would be no 
net forces outside the surf  zone to drive nearshore circulations. 
For Bi-Bi waves, however, there are important cross-shore and 
longshore variations, both in space and time of  the radiation stresses 
in all three components which should be taken into account in 
numerical models. Yet, physical experiments in a wave basin are 
still needed to validate these theoretical results.

Regarding coastal morphology, this spatial variation of  
second order terms may be able to mobilize bars in the surf  
zone and to generate spatially varying longshore currents. As the 
mean sea level propagates along the shore as a long-period wave, 
another consequence of  Bi-Bi waves might be the formation and 
longshore displacement of  rip currents, sources of  risk to beach 
goers and an important nearshore water renewal agent. Regarding 
coastal works, significant damage may result from the long period 

oscillatory excitation, such as resonance in structures (e.g. piers, 
ocean outfalls), as well as harbor resonance.
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Appendix 1. Radiation Stress Equations
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