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ABSTRACT

Rainfall time series with high temporal resolution are required for estimating storm events for the design of  urban drainage systems, 
for performing rainfall-runoff  simulation in small catchments and for modeling flash-floods. Nonetheless, large and continuous 
sub-daily rainfall samples are often unavailable. For dealing with the limited availability of  high-resolution rainfall records, in both time 
and space, this paper explored an alternative version of  the k-nearest neighbors algorithm, coupled with the method of  fragments 
(KNN-MOF model), which utilizes a state-based logic for simulating consecutive wet days and a regionalized similarity-based approach 
for sampling fragments from hydrologically similar nearby stations. The proposed disaggregation method was applied to 40 rainfall 
gauging stations located in the São Francisco and Doce river catchments. Disaggregation of  daily rainfall was performed for the 
durations of  60, 180 and 360 minutes. Results indicated the model presented an appropriate performance to disaggregate daily 
rainfall, reasonably reproducing sub-daily summary statistics. In addition, the annual block-maxima behavior, even for low exceedance 
probabilities, was relatively well described, although not all expected variability in the quantiles was properly summarized by the model. 
Overall, the proposed approach proved a sound and easy to implement alternative for simulating continuous sub-daily rainfall amounts 
from coarse-resolution records.

Keywords: Sub-daily rainfall generation; Daily rainfall disaggregation; Hydrological and physical similarity.

RESUMO

Séries de precipitação de alta resolução temporal são necessárias para a modelagem de eventos regulares e extremos em projetos de 
sistemas pluviais urbanos, simulação de vazões em pequenas bacias, estudos de balanços hídricos e modelagem de inundações de curta 
duração, por exemplo. Não obstante, amostras longas e contínuas de precipitação subdiária são, via de regra, difíceis de ser encontradas. 
Para contornar o problema da limitada disponibilidade de dados de alta resolução temporal tanto na escala temporal como na espacial, 
esse artigo explorou uma versão alternativa do algoritmo dos k-ésimos vizinhos mais próximos, acoplada ao método dos fragmentos, 
(modelo KNN-MOF), que se baseia nos estados de chuva para simulação de dias chuvosos consecutivos e em uma abordagem de 
similaridade regional para amostragem dos fragmentos de estações similares próximas a estação de interesse. O método de desagregação 
proposto foi aplicado para um grupo de 40 postos pluviográficos localizados nas bacias dos rios Doce e São Francisco. A desagregação 
da precipitação diária foi realizada para as durações de 60, 180 e 360 minutos. Os resultados indicaram que o mesmo apresentou um 
desempenho apropriado para a desagregação de precipitação diária, reproduzindo as estatísticas como média, variância e assimetria 
para as durações analisadas. Adicionalmente, o comportamento dos máximos anuais, mesmo para baixas probabilidades de excedência, 
foi relativamente bem descrito, ainda que nem toda a variabilidade esperada dos quantis tenha sido abrangida pelo modelo. De forma 
geral, a abordagem proposta mostrou-se uma alternativa coerente e de fácil implementação para simular séries contínuas de precipitação 
subdiária a partir de registros de menor resolução temporal.

Palavras-chave: Geração de precipitação subdiária; Desagregação de precipitação diária; Similaridade hidrológica e fisiográfica.
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INTRODUCTION

Rainfall time series with high temporal resolution are often 
required for estimating storm events for the design of  urban 
drainage systems, for performing rainfall-runoff  simulation in small 
catchments and for modeling flash-floods. Nonetheless, large and 
continuous sub-daily rainfall samples are, most often than not, 
unavailable. As compared to daily records, the fine-scale rainfall 
measurements are usually smaller in length and more affected 
by missing data, which may severely compromise the statistical 
inference of  sub-daily precipitation block-maxima (Westra et al., 
2012). In addition, the sub-daily pluviograph network is usually not 
sufficiently dense for properly describing the spatial variation of  
short-duration storm bursts and, as a result, it is often unfeasible 
to obtain a full picture on the time-space dependence structures 
of  sub-daily rainfall events (Li et al., 2018).

As a means for dealing with the limited availability of  
high-resolution rainfall records, in both time and space, a number 
of  techniques for obtaining continuous sequences of  short-duration 
precipitation events from the disaggregation of  daily rainfall amounts 
has been discussed in the literature. According to Sharma & Mehrotra 
(2010) and Diez-Sierra & del Jesus (2019), the most common 
models for this purpose encompass: (i) parametric point-process 
models using Poisson clustering, such as the Newman-Scott and 
the Bartlett-Lewis rectangular pulses (Koutsoyiannis & Onof, 
2001; Yusop et al., 2014); (ii) the self-similarity approach, which 
resorts to random cascades (Kang & Ramirez, 2010; Müller & 
Haberlandt, 2018) or fractals/ multi-fractals (Serinaldi, 2010); and 
(iii) nonparametric models based on resampling techniques, such 
as the method of  fragments (Westra et al., 2012; Li et al., 2018).

Point-process models are reported to preserve most summary 
statistics of  sub-daily rainfall amounts and properly reproduce 
extreme events (Diez-Sierra & del Jesus, 2019). However, they require 
the estimation of  a relatively large set of  parameters (Pui et al., 
2012), which should increase modeling uncertainty. In addition, 
such models were originally designed for generating fine-scale 
rainfall sequences and, for employing them for disaggregation, 
it becomes necessary to introduce “adjusting procedures” for 
correcting the simulated rainfall amounts (e.g., Koutsoyiannis & 
Onof, 2001). On the other hand, random cascade models, although 
parsimonious (Sivakumar & Sharma, 2008), are frequently unable 
to properly reproduce the observed variance, the extreme rainfall 
amounts and the temporal dependence structure of  the full 
sequence of  sub-daily rainfall, which, to some extent, constrains 
their application for flood risk assessment and design purposes 
(Diez-Sierra & del Jesus, 2019). Moreover, both approaches often 
require sub-daily rainfall information at the target site itself  for 
parameter estimation, which makes it difficult to properly validate 
models and to use them for simulation in locations where only 
daily records are available.

Nonparametric models, in turn, may provide flexible 
means for simulating rainfall disaggregation, despite of  their 
limited ability for extrapolation and reproduction of  quantiles’ 
variability (Costa  et  al., 2015). First, such models are able to 
reasonably reproduce samples’ summary statistics and, to some 
extent, the block-maxima behavior for the finer-scale precipitation 
increments (Lu & Qin, 2014; Li et al., 2018; Diez-Sierra & del 
Jesus, 2019). In addition, the very nature of  nonparametric models 

avoids establishing assumptions regarding both the underlying 
distribution of  the stochastic process from which sub-daily rainfall 
stems and the functional relationship between continuous and 
coarse-aggregated rainfall amounts, which may reduce modeling 
uncertainty (Pui et al., 2012; Sivakumar, 2017). Finally, once some 
degree of  hydrological similarity between gauging stations is 
established, the aggregation of  regional information for inference 
in the target site is straightforward (Westra et al., 2012; Li et al., 
2018), which may be useful for circumventing the requirements 
of  fine-scale information at the referred location.

One of  the earliest nonparametric techniques comprises the 
so-called method of  fragments, originally proposed by Svanidze, 
in 1961, for stochastic generation of  streamflows (Svanidze, 1980). 
Since its introduction, the method of  fragments has been widely 
used for precipitation and streamflow disaggregation (see, for 
instance, Li et al., 2018 and references therein). In the context of  
rainfall disaggregation, the method of  fragments is often coupled 
with the k-nearest neighbors approach discussed in Lall & Sharma 
(1996), which resorts to the bootstrapping technique (Efron, 1979) 
for sampling rainfall amounts from the most similar events in a 
given sample (for the sake of  brevity, the outlined coupled model 
is hereafter termed KNN-MOF).

Despite its widespread use, the KNN-MOF approach, as 
originally designed, presented two theoretical underpins: (i) the continuity 
at the boundaries, i.e., in successive days, is not warranted, which 
may entail an unsuitable reproduction of  clustered rainfall events; 
and (ii) high-resolution rainfall information is required at the 
target site. For addressing these issues, in this paper we explore 
an alternative version of  the KNN-MOF model, which utilizes a 
state-based logic for simulating consecutive wet days (Sharma & 
Srikanthan, 2006) and a regionalized similarity-based approach for 
sampling fragments from hydrologically similar nearby stations 
(Westra et al., 2012; Mehrotra et al., 2012), eliminating the needs 
of  sub-daily records in the location of  interest. By resorting to 
the outlined rationale, one may expect to obtain a well-suited 
disaggregation model, which could provide a reasonable framework 
for estimating short-duration design events from coarse-resolution 
records.

The remainder of  the paper is organized as follows. 
The next section presents the material and methods, which 
encompass a brief  description of  the study area and the dataset, 
and describes with detail the simulation algorithm, the measure of  
hydrological similarity between rainfall stations and the strategy 
for model validation. Next, the case study is discussed. Finally, the 
conclusions and envisaged research developments are addressed.

MATERIAL AND METHODS

Study area and dataset

The proposed disaggregation method is applied to a set 
of  40 rainfall gauging stations in sub-basins 40 and 41, which are 
included in the São Francisco river catchment, and in sub-basin 
56, which is a component of  the Doce river catchment. Sub-daily 
rainfall data were made available by the Brazilian Geological Service 
(CPRM), which operates the selected gauging stations. The data 
set presents data resolution of  1 minute and the average size of  
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the utilized sub-daily time series is 6 years, with average yearly 
precipitation amounts varying from 800 to 1650 mm. Those 
days with missing values were simply discarded from the analysis.

The physical attributes of  the catchments used in this study 
were obtained from the digital platform of  the Brazilian Water 
National Agency (Agência Nacional de Águas, 2019). To identify the 
spatial distribution of  those stations a GIS platform is employed.

For validating the disaggregation model, we utilized the 
rainfall gauging station with the longest record of  sub-daily 
rainfall in the study area, namely, the Caeté gauging station 
(code ANA 01943010), located in the sub-basin 40. High-resolution 
rainfall data in such a station encompasses 28 years, spanning 
from 1990-2017, with average yearly precipitation amount of  
1260 mm. However, 5 years of  this data were removed due to 
high number of  missing values. Figure 1 presents the study area, 
highlighting the target site of  Caeté.

Stochastic simulation of  sub-daily precipitation with 
the KNN-MOF model

In this paper, we utilize a variant of  the k-nearest neighbors 
resampling method developed by Lall & Sharma (1996), which 
includes a regional similarity-based approach, as discussed in 
Westra et al. (2012), for synthetically generating sub-daily rainfall 
sequences. The rationale behind the proposed approach is that, for 
the set of  wet days, one may consider that the joint distribution 
of  some attribute of  sub-daily rainfall, associated to a particular 
duration, and the daily rainfall amounts is the same at the target 
site and at a set of  nearby stations, entailing hydrologic similarity. 
Rainfall attributes must be defined as to uncover as much 
information as possible regarding the full sequence of  sub-daily 
rainfall increments. Once hydrologic similarity is established, 
logistic regression models are employed in order to identify the 
neighboring gauging stations with higher probability of  similarity 
with the (ungauged) target site, on the basis of  the catchments’ 

physical attributes, which, in turn, allows information transfer for 
rainfall disaggregation.

The resampling algorithm is based on the random selection 
of  sub-daily rainfall “fragments” from hydrologically similar 
nearby gauging stations. The so-called “fragments” are defined as 
vectors containing the full sub-daily rainfall sequence, aggregated 
with respect to a particular duration and normalized by the total 
rainfall amount observed in a given day. For defining hydrological 
similarity, we employ the following hydrological attributes, as 
computed for the durations of  60, 180 and 360 minutes, for each 
wet day (Westra et al., 2012):

•	 The maximum rainfall intensity, for each duration, normalized 
by the total rainfall amount for that day;

•	 The fraction of  zeros, i.e., for a particular duration, the 
percentage of  intervals with no rainfall; and

•	 The timing of  maximum rainfall intensity, which accounts 
for the time of  the day in which the rainfall burst of  
maximum intensity occurs.

For assessing the hydrological similarity between two 
stations, we resort to the two-dimensional two-sample Kolmogorov 
Smirnov test (2D2S KS), as proposed by Fasano & Franceschini 
(1987), at the significance level of  5%. Such a test provides evidence 
as to whether the joint distributions of  each of  the hydrological 
attributes and the daily rainfall amounts time series are statistically 
similar in a pair of  gauging stations. The 2D2S KS test statistic 
is given by the following equation (Press & Teukolsky, 1988):

( )  
. ² .  
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Figure 1. Location of  the gauging stations for this case study.
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N1 and N2 denote, respectively, the number of  sample 
points in samples 1 and 2, D is the maximum difference of  the 
integrated probabilities along the four quadrants defined over 
a given sample point (see Press et al., 1992 for details), and r is 
the complement of  the average Pearson correlation coefficients, 
as estimated from both joint distributions. For computing the 
term in the right-hand side of  Equation 1, one must numerically 
approximate the following expression (Westra et al., 2012):

( ) ( ) ² ² 
∞ − −

=
= −∑ j 1 2 j x

j 1
x 2 1 eKSQ 	 (3)

For additional information on the 2D2S KS test, the reader 
is kindly referred to Press & Teukolsky (1988) and Press et al. 
(1992). The similarity between two stations is summarized by the 
2D2S KS test result, which comprises a binary response u, with 
value of  1 being attributed to statistically similar stations and a 
value of  0 otherwise.

For modeling the binary response, as obtained from the 
hydrological attributes’ similarity evaluation, a logistic regression 
model, which utilizes physical catchments’ attributes as predictors, 
is established. Here, we consider a set of  4 potential predictors, 
namely, the absolute differences in latitude, in longitude, in 
elevation and in the product between the differences in latitude 
and longitude, which is intended to be a proxy for the Euclidian 
distance between the two gauging stations. In formal terms:

( ) ( )   = = =
+

z

z
eP u 1 logit z

e 1
	 (4)

in which,

 = + + + +0 1 1 2 2 3 3 4 4z v v v vβ β β β β 	 (5)

with vector β  encompassing the regression coefficients and vector  
ν  the previously outlined predictors.

Equation 4 provides the probability that two rainfall gauging 
stations are similar, conditioned on the physical attributes of  the 
catchments. For disaggregating the daily rainfall amounts in the 
target site, a set of  nearby stations with higher values of  ( )=P u 1  
must be retained. It should be noted that no formal procedures 
for variable selection are employed in regression analysis since we 
intend to evaluate the influence of  each of  these predictors with 
respect to the considered rainfall durations.

Following Westra et  al. (2012), we select the neighbors 
on the basis of  the average probability of  similarity stemming 
from the three hydrological attributes. Seasonality is dealt with 
by assessing similarity for different periods defined along the 
water year (Oct.-Sep.), which, for our purposes, were defined as 
to coincide with the 4 seasons in the southern hemisphere. After 
identifying the most similar nearby stations, the disaggregation 
algorithm can be applied to the daily rainfall time series at the 
target site. In short, the algorithm works as follows:

1.	 The sequence of  daily rainfall amounts at the target site 
is derived from the historical record;

2.	 Sequences of  daily rainfall are obtained in the nearby 
stations identified with the previously described regional 
similarity-based approach. Dimensionless fragments (fr), 

for each season, day and duration, are then estimated with 
Equation 6:

,
,

,
 =

∑

s
i ms

i m s
i mm

X
fr

X
	 (6)

in which ,
s
i mX  denotes the sub-daily rainfall amount in the gauging 

station s, aggregated along a duration m, in a given day i;
3.	 For each wet day, similar daily rainfall depths are sought 

at the nearby stations. For accounting for seasonal 
characteristics in sub-daily sequences, the referred daily 
amounts are only evaluated within a moving window of  
±15 days (Pui et al., 2012; Westra et al., 2012), centered at 
the day of  interest. Furthermore, for allowing the proper 
simulation of  successive wet days, the sampling strategy 
is also conditioned on the previous and next days’ states 
(wet or dry);

4.	 For a given day, all sample points along the period of  
record located inside the moving window and with similar 
wetness previous and next-day states are extracted from the 
set of  neighbors. Such sample points are then ranked with 
respect to the absolute deviation from the daily amount 
at the target site, and the k-nearest neighbors are kept for 
resampling;

5.	 A random number is drawn from a standard uniform 
distribution and compared to the probability expressed 
by Equation 7:

( ) ( )/
/=

=
∑k

i 1

1 j
P j

1 i 	 (7)

in which j denotes the rank of  each of  the k retained fragments. 
This allows the random selection of  a fragment; and

6.	 The sub-daily rainfall amount is then computed by 
multiplying the fragment, as selected in previous step, by 
the daily precipitation depth at the day of  interest.

After identifying the disaggregation models, for each 
season and duration, we utilize a rainfall gauging station with 
measurements encompassing a long period-of-record for 
assessing their predictive abilities. At each sub-daily scale, a set 
of  100 model runs (Westra et al., 2012) is simulated at the target 
site with the disaggregation algorithm. The performance of  the 
models is then evaluated by comparing the mean values of  a set 
of  summary statistics for wet days, which encompasses the mean, 
the variance, the coefficient of  skewness and the quantile curve, 
for the sub-daily temporal scales, with the observed counterparts. 
Also, for the quantile curves, the model ability in synthetizing the 
variability of  the maximum rainfall amounts is assessed through 
the computation of  the 95% confidence intervals.

RESULTS AND DISCUSSION

After obtaining the sub-daily rainfall data in the 40 rainfall 
gauging stations, for the durations of  60, 180 and 360 minutes, the 
hydrological attributes – maximum intensity, fraction of  zeros and 
timing of  the maximum intensity – were estimated for each site. 
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Next, the 2D2S KS test was employed for assessing the similarity 
of  pairwise stations with respect to each of  the hydrological 
attributes and each season.

Results from the 2D2S KS test demonstrated that, for the 
maximum intensity and time of  maximum intensity attributes, the 
model presented an appropriate performance, identifying similarity 
for a number of  stations. On the other hand, for the remaining 
attribute, i.e., the fraction of  zeros, similarity was not readily 
established, except for the period spanning from June to August, 
which may be partially ascribed to the small number of  wet days 
in these months and to the relatively small precipitated amounts 
in such days. A similar problem was reported by Westra et  al. 
(2012) when disaggregating daily rainfall amounts in stations 
spread across Australia, which may, to some extent, point to a 
flawed proposal of  hydrological attributes for defining similarity. 
As a result, the fraction of  zeros attribute was not considered for 
subsequent analyses.

The next step was identifying the logistic regression models, 
which relate the binary response of  each hydrological attribute to 
the catchments’ physical characteristics. Table A1 (Appendix A) 
presents a summary of  the elevation, latitude, longitude for the 
gauging stations, including those of  the target site. These attributes 
were used as predictors in the regression model (which does not 
consider the Caeté station). Regression coefficients were then 
estimated by means of  the iteratively reweighted least squares 
approach. Table 1 presents the regression coefficients for each of  
the hydrological attributes for the duration of  60 minutes and for 
each season. Results for the remaining durations are presented in 
Tables A2 and A3 also in Appendix A. One may notice that the 
difference in longitude is the physical characteristic with higher 
coefficient values (significant for most durations at the 5% level), 
which suggests that, for the study area, it is the most influencing 
physical factor to identify similarity.

For each hydrological attribute, the probability of  a given 
nearby station of  being similar to the target site was computed 
with the obtained regression model. For identifying the donor 
sites, the mean value of  the two probabilities was estimated in 
each season, and the best ranked stations were kept for rainfall 
disaggregation. Table A4 (Appendix A) presents the averaged 
probabilities, for the duration of  60 minutes, with respect to 
the Caeté station. As it can be seen, the probabilities may vary 

depending on the season, presenting higher values in less rainy 
periods, making it easier to correlate the attributes. Also, Table A4 
indicates the need to separate the model by seasons, as different 
stations were selected for each one.

After defining potential donor sites, we proceeded to the 
calibration of  the disaggregation model. This process requires the 
specification of  the k-nearest neighbors (k), the number of  donor 
gauging stations (S) and the maximum absolute deviation of  the 
daily rainfall amounts with respect to that observed in the target 
site. The summary statistics for the wet days were calculated to 
evaluate model performance.

The first parameter to be estimated was the number of  
neighbors, k. For assessing the impact of  this parameter in the 
model, we fixed the remaining parameters, using S = 10 and the 
deviation = 10%. Results are depicted in Table  2, which also 
presents the relative error between the observed records and 
the mean simulated value (i.e, the mean value of  the predictions’ 
ensemble), for each statistic, for the 60 minutes duration. Positive 
values indicate overestimation and negative values underestimation.

From Table 2, one may observe that, in this case study, 
the usage of  the number maximum of  neighbors does not have 
a substantial impact in the model, due to the difficulties to obtain 
more than 10 days that are within the maximum absolute deviation 
of  10%. Considering the number of  data and gauging stations that 
Westra et al. (2012) had available for their work, this parameter 
would be essential in order to limit the number of  days to resample. 
Therefore, considering the mentioned aspects, this parameter will 
not be employed for further analyses and durations. The second 
parameter to be estimated was the maximum absolute deviation 
of  the daily rainfall amounts. For the duration of  60 minutes and 

Table 1. Regression model coefficients for the duration of  60 minutes (quantities inside brackets denote the p-values for the estimates).
Maximum Intensity

Season Intercept (β0) Latitude (β1) Longitude (β2) LatxLong (β3) Elevation (β4)
DJF -0.3816 [0.00] -0.1007 [0.00] -0.2219 [0.00] 0.0426 [0.42] -0.0004 [0.02]
MAM -1.0302 [0.00] -0.2184 [0.65] -0.2250 [0.00] 0.0841 [0.41] 0.0001 [0.42]
JJA 0.4919 [0.00] -0.1374 [0.11] -0.3586 [0.00] -0.0528 [0.12] -0.0007 [0.00]
SON -0.0017 [0.25] 0.0060 [0.11] -0.1897 [0.00] 0.1301 [0.21] -0.0009 [0.58]

Timing of  the Maximum Intensity
Season Intercept (β0) Latitude (β1) Longitude (β2) LatxLong (β3) Elevation (β4)

DJF -4.7091 [0.00] -0.4951 [0.42] -0.2871 [0.75] 0.0463 [0.98] -0.0005 [0.013]
MAM -3.2334 [0.00] 0.1207 [0.84] -0.6331 [0.04] -0.1007 [0.17] 0.0001 [0.90]
JJA -0.5423 [0.34] -0.1544 [0.00] -0.3661 [0.00] -0.1239 [0.18] -0.0008 [0.01]
SON -1.9019 [0.00] -0.3080 [0.19] -0.0247 [0.55] -0.1183 [0.47] -0.0011 [0.12]
DJF = December to February; MAM = March to May; JJA = July to June; SON = September to November.

Table 2. Relative errors between the observed summary statistics 
and the predictions’ ensemble mean value for distinct numbers 
of  neighbors.

Statistics k = 10 Maximum 
number of  k

Mean of  the annual maximum 4.94% 4.21%
Mean 0.50% 0.43%
Variance 0.16% -0.38%
Skewness 4.47% 3.64%
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keeping S = 10, we tested deviations of  5% and 10%, in order to 
assess which one would entail a better performance. Results are 
presented by Table 3. One may notice that decreasing the deviation 
to 5% did not result in substantial changes in the statistical properties 
and also caused a reduction of  model variability, as there are less 
fragments selected to be resampled. In view of  this result, we defined 
the deviation of  10% for the remaining simulations.

Lastly, to estimate the number of  gauging stations (S) to be used 
for disaggregation of  the target site, we considered the values of  

5, 10 and 15. Results for the 60 minutes duration are presented 
in Table 4 and those for the remaining durations are located in 
Tables A5 and A6 in Appendix A. One may observe that, for 
the duration of  60 minutes, the model was more efficient in 
reproducing the observed values when 15 stations were used 
in the disaggregation. However, when increasing the duration 
to 180 or 360 minutes, the model was able to disaggregate the 
series at the target site with less neighboring stations.

Considering the results obtained from the calibration step, 
which are the maximum number for the k-nearest neighbors, 
the maximum absolute deviation of  10% and number of  
donor gauging stations (S) of  15 for 60 minutes duration and 
5 for durations of  180 and 360 minutes, the final simulations were 
carried out. 100 model runs were performed and, on each run, the 
observed daily time series was disaggregated. As the fragments are 
randomly chosen (step 5 of  the disaggregation algorithm), one 
may expect different outcomes at each run, which, in turn, should 
converge for the observed summary statistics on average terms. 
Figure 2 presents the results of  each one of  the 100 model runs 
for the 60 minutes duration, considering the assessed statistical 

Table 3. Relative errors between the observed summary statistics 
and the predictions’ ensemble mean value for distinct deviations 
with respect to daily rainfall amount in the target site.

Statistics Deviation = 5% Deviation = 10%
Mean of  the annual 
maximum

2.87% 4.21%

Mean -0.44% 0.43%
Variance -1.81% -0.38%
Skewness 3.40% 3.64%

Figure 2. Annual maximum, mean, variance and skewness results for each one of  the 100 model runs for the 60 minutes duration. 
Dots denote model predictions and the solid horizontal line the mean value of  the observed statistics.

Table 4. Comparison between the observed summary statistics and the predictions’ ensemble mean value for distinct numbers of  
rainfall gauging stations “donors” (S) – 60 minutes duration.

Statistics Records S = 5 S = 10 S = 15
Simulated Deviation Simulated Deviation Simulated Deviation

Mean of  the annual maximum 36.98 38.90 5.20% 38.53 4.21% 38.38 3.79%
Mean 2.40 2.45 2.11% 2.41 0.43% 2.41 0.51%
Variance 17.58 18.21 3.58% 17.51 -0.38% 17.35 -1.33%
Skewness 3.98 4.06 2.05% 4.13 3.64% 4.04 1.61%
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properties. The continuous horizontal line represents the mean 
values of  the observed statistics and each point represent the 
model predictions for each iteration.

Regarding Figure 3, it represents the deviations from the 
observed values for each iteration, for the duration of  60 minutes. 
For other durations, the reader is kindly referred to Figures A1 to A4 
located in Appendix A. For all statistical properties and durations, 
the model resulted on deviations of  ±10%, which indicates an 
appropriate performance. It is important to highlight that, for 
the duration of  60 minutes, the model can better reproduce the 
observed mean and variance, as compared to the other durations, 
which tend to overestimate them. Other important aspect is that 
this work considered considerably less data than Westra et al. (2012) 
to resample the fragments for each simulation and yet presented 
reasonable results. The mentioned authors had available about 
250 years of  data among the selected gauging stations for resampling, 
while, in this work, the selected number of  stations resulted in 
approximately 90 years of  data for 60 minutes duration (15 stations 
with 6 years each) and 30 years of  data for 180 and 360 minutes 
duration (5 gauging stations with 6 years each).

To evaluate the model ability in synthetizing the variability 
of  the annual maximum rainfall amounts, the quantile curves were 
constructed considering the 95% confidence intervals (CI), as shown 
in Figures 4 to 6. The hollow points indicated the recorded values 
from the gauging station, whereas the continuous line represents 
the median of  the 100 simulations and the dashed lines represent 
the confidence bands.

Overall, the results indicate an appropriate model 
performance to estimate the annual maximum rainfall amounts, 
mainly for smaller durations and higher exceedance probabilities. 

Figure 3. Deviations of  model predictions from the observed summary statistics of  rainfall amounts for the 60 minutes duration.

Figure 4. Quantile curve of  annual maximum rainfall 
amounts – 60 minutes duration, including the observed values, 
median and confidence interval (CI) of  95%.

Figure 5. Quantile curve of  annual maximum rainfall 
amounts – 180 minutes duration, including the observed values, 
median and confidence interval (CI) of  95%.
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However, the model tends to overestimate the rainfall amounts 
with lower exceedance probability for the 60 minutes duration 
and underestimate them for the 360 minutes duration.

It is worth highlighting that, for the durations 
of  60 and 180 minutes, most of  the observed values fall inside 
the confidence bands, which suggests that, to some extent, the 
resampling algorithm is able to capture the expected estimation 
variability that stems from sampling errors. This was also observed 
by Westra et al. (2012) and Li et al. (2018). For the 360 minutes 
duration, despite enclosing most observed points, the model 
worsens its performance, with narrow confidence intervals, which 
are not being able to resample with variability. Further analysis 
must be made in order to define a method to compensate and 
deal with this aspect.

In order to visualize the spatial distributions of  the 
selected gauging’s obtained from the similarity probabilities, 
Figures A5 and A6 (Appendix A) were produced. The stations 
employed to disaggregate the target site daily time series for the 
duration of  60 minutes are indicated for each season, with the 
rank of  each station located previous to its code. As the observed 
behavior is similar for the other durations, we presented in this 
paper the figures only for the mentioned duration.

As it can be seen, for the period of  December to February 
(DJF) the model selects the geographically nearest stations, which 
are probably affected by similar meteorological systems, as the 
most similar - even though the climate conditions are not expected 
to vary considerably due to the relatively small size of  the study 
area. The behavior for the periods between March to May (MAM) 
and September to November (SON) are quite similar and, in 
these cases, the model selects more distant stations - yet still in 
the same catchment of  the target site. For the period between 
June and August (JJA), which is the driest season of  the year, it 
is easier to identify similarity due to the small number of  rainy 
days. This fact explains the reason for the selection of  distant 
stations instead of  the close ones. As such, regarding the rank of  
similarity probability, it is interesting to observe that the highest 
ranked stations are often distant from the target site, indicating 
the hydrological attributes have higher influence over the physical 
counterparts for some stations.

CONCLUSIONS

This article presented a method for disaggregating daily 
rainfall, which is based on an alternative version of  the KNN-MOF 
model that utilizes a state-based logic for simulating consecutive wet 
days (Sharma & Srikanthan, 2006) and a regionalized similarity-based 
approach for sampling fragments from hydrologically similar nearby 
stations (Westra et al., 2012). Similarity identification was made 
by considering hydrological attributes, such as maximum intensity 
and timing of  the maximum intensity, and physical attributes, such 
as absolute difference in latitude, in longitude, and in the product 
between the differences in latitude and longitude.

Considering the hydrological attributes for identifying 
stations’ similarity, the maximum intensity and timing of  the 
maximum intensity performed appropriately. However, due to 
difficulties regarding the fraction of  zeros, such an attribute was 
not employed in this study. Concerning the physical attributes, the 
one with higher influence was the longitude, which was identified 
through the logistic regression model coefficients.

The similarity probabilities, which are the results of  combining 
both hydrological and physical attributes, presented different 
values depending on the season of  the year, with higher values 
in less rainy periods, making it easier to correlate the attributes. 
Also, it is important to consider seasonality, as different stations 
are selected for each season.

After selecting potential donor sites, we proceeded to 
the calibration of  the disaggregation model, identifying which 
parameters resulted in better model performance, considering the 
statistics summary for the wet days. The “optimum” model was 
achieved considering the non-specification of  a number for the 
k-nearest neighbors, the maximum absolute deviation of  10% and 
number of  gauging stations (S) of  15 for 60 minutes duration and 
5 for durations of  180 and 360 minutes.

The simulations indicated an appropriate model performance 
when comparing to the statistics obtained for the validation 
gauging station of  Caeté. Regarding the annual maximum rainfall 
amounts, the quantile curves constructed show the most part 
of  observed values are between the 95% interval. However, the 
model presents narrow intervals for higher rainfall durations, 
which implies difficulties in representing the expected quantiles’ 
variability for such durations.

Also, the model is able to appropriately reproduce the 
quantiles of  low exceedance probability for the 180 minutes 
duration, indicating its capacity to reproduce extreme rainfall 
amounts which are important for estimating storm events for 
the design of  drainage systems and performing rainfall-runoff  
simulations. For the 60 minutes duration there is an overestimation 
and for the 360 minutes duration there is an underestimation of  
such quantiles.

We acknowledge that further analyses must be made in 
order to compensate and deal with the aforementioned difficulties 
and a broader comparison with other methods with distinct 
theoretical foundations and complexity levels, such as that of  the 
disaggregation coefficients (Teodoro et al., 2014), is necessary for 
allowing some generalization of  the proposed approach. However, 
the obtained results are deemed promising for addressing the 
problem of  rainfall disaggregation, particularly in what concerns 
extreme events, when only daily records are available.

Figure 6. Quantile curve of  annual maximum rainfall amounts 
– 360 minutes duration, including the observed values, median 
and confidence interval (CI) of  95%.
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Appendix A. Results’ tables and figures.

Table A1. Summary of  the catchments’ physical characteristics.
Station code Gauge Station Name Latitude Longitude Elevation Data Extent

01943010 CAETE (Estação de interesse) 19° 54’ 10” 43° 39’ 59” 825 1990-2017
02043002 LAGOA GRANDE (MMV) 20° 10’ 45” 43° 56’ 34” 1326 2000-2006
01943022 CAIXA DE AREIA 19° 57’ 02” 43° 54’ 10” 1159 2000-2006
01943009 VESPASIANO 19° 41’ 13” 43° 55’ 14” 677 2000-2006
01944009 PEDRO LEOPOLDO 19° 38’ 04” 44° 03’ 09” 730 2000-2006
01946009 SAO GOTARDO 19° 18’ 51” 46° 02’ 39” 1086 2000-2005
01943035 VAU DA LAGOA 19° 13’ 05” 43° 35’ 17” 1085 2000-2006
01844010 PONTE DO LICINIO-JUSANTE 18° 40’ 20” 44° 11’ 36” 547 2001-2005
01844009 PRESIDENTE JUSCELINO-JUSANTE 18° 38’ 41” 44° 03’ 02” 576 2001-2005
01843002 GOUVEA 18° 27’ 56” 43° 44’ 35” 1106 2001-2006
01844001 SANTO HIPOLITO (ANEEL/CEMIG) 18° 18’ 21” 44° 13’ 32” 530 2001-2005
01845021 CANOEIROS 18° 02’ 17” 45° 31’ 23” 796 2000-2005
02044007 ENTRE RIOS DE MINAS 20° 39’ 37” 44° 04’ 18” 871 2000-2006
02044042 CARMO DA MATA (ETA-COPASA) 20° 33’ 45” 44° 52’ 02” 854 2000-2006
02043013 CONGONHAS-LINIGRAFO 20° 31’ 06” 43° 50’ 08” 871 2000-2008
02045012 PIUM-I 20° 27’ 33” 45° 56’ 38” 809 2000-2006
02045002 IGUATAMA 20° 10’ 12” 45° 42’ 56” 639 2000-2006
02045013 SANTO ANTONIO DO MONTE 20° 05’ 03” 45° 17’ 48” 969 2000-2006
02044052 JARDIM 20° 02’ 50” 44° 24’ 32” 779 2000-2007
01944027 JUATUBA 19° 57’ 20” 44° 20’ 03” 724 2000-2008
01944004 PONTE NOVA DO PARAOPEBA 19° 56’ 57” 44° 18’ 19” 708 2002-2006
01944021 VELHO DA TAIPA 19° 41’ 31” 44° 55’ 56” 636 2000-2005
01944049 PAPAGAIOS 19° 25’ 38” 44° 43’ 11” 741 2000-2006
01845004 LAGOA DO GOUVEIA 18° 49’ 59” 45° 50’ 26” 1038 2000-2005
01944062 FAZENDA SANTA RITA 19° 58’ 58” 44° 29’ 32” 820 2000-2008
02044021 ALTO DA BOA VISTA 20° 06’ 20” 44° 24’ 04” 905 2000-2008
02044024 FAZENDA CURRALINHO 20° 00’ 27” 44° 19’ 52” 786 2000-2006
02044041 FAZENDA LARANJEIRAS 20° 06’ 08” 44° 29’ 05” 895 2000-2007
02044054 SERRA AZUL 20° 05’ 12” 44° 25’ 38” 817 2000-2008
01841011 TUMIRITINGA 18° 58’ 15” 41° 38’ 30” 137 2000-2006
01940009 PANCAS 19° 13’ 51” 40° 50’ 07” 112 2000-2006
01940020 CALDEIRAO 19° 57’ 17” 40° 44’ 30” 694 2000-2006
01941005 BARRA DO CUIETE-JUSANTE 19° 03’ 42” 41° 31’ 59” 143 2000-2006
01941006 ASSARAI-MONTANTE 19° 35’ 39” 41° 27’ 29” 156 2000-2006
01941012 ALTO RIO NOVO 19° 03’ 29” 41° 01’ 39” 535 2000-2006
01942008 DOM CAVATI 19° 22’ 26” 42° 06’ 07” 319 2000-2006
01942030 CENIBRA 19° 19’ 40” 42° 23’ 51” 225 2000-2006
01942031 CACHOEIRA DOS OCULOS-MONTANTE 19° 46’ 36” 42° 28’ 35” 248 2000-2006
01942032 NAQUE VELHO 19° 11’ 17” 42° 25’ 20” 205 2000-2006
01943002 CONCEICAO DO MATO DENTRO 19° 00’ 51” 43° 26’ 48” 624 2000-2006
02043010 PIRANGA 20° 41’ 17” 43° 18’ 02” 608 2000-2008

Table A2. Regression model coefficients for the duration of  180 minutes (quantities inside brackets denote the p-values for the estimates).
Maximum Intensity

Season Intercept (β0) Latitude (β1) Longitude (β2) LatxLong (β3) Elevation (β4)
DJF 1.3692 [0.00] -0.9454 [0.00] -0.7300 [0.00] 0.3111 [0.02] -0.0007 [0.03]
MAM 0.4315 [0.04] -0.4245 [0.04] -0.6882 [0.00] 0.3248 [0.02] -0.0001 [0.80]
JJA 2.3737 [0.00] -0.4146 [0.10] -1.2252 [0.00] 0.3069 [0.05] -0.0006 [0.10]
SON 0.9288 [0.00] 0.1989 [0.40] -0.4499 [0.00] -0.0438 [0.72] 0.0002 [0.60]

Timing of  the Maximum Intensity
Season Intercept (β0) Latitude (β1) Longitude (β2) LatxLong (β3) Elevation (β4)

DJF -26.5661 [1.00] 0.0000 [1.00] 0.0000 [1.00] 0.0000 [1.00] 0.0000 [1.00]
MAM -3.7642 [0.00] -0.1715 [0.85] -0.3550 [0.58] 0.0584 [0.93] -0.0009 [0.62]
JJA -0.2821 [0.20] 0.6195 [0.00] -0.5347 [0.00] -0.1660 [0.32] -0.0007 [0.10]
SON -3.4161 [0.00] 0.2574 [0.76] -0.4279 [0.58] -0.2286 [0.79] -0.0027 [0.24]
DJF = December to February; MAM = March to May; JJA = July to June; SON = September to November.
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Table A3. Regression model coefficients for the duration of  360 minutes (quantities inside brackets denote the p-values for the estimates).
Maximum Intensity

Season Intercept (β0) Latitude (β1) Longitude (β2) LatxLong (β3) Elevation (β4)
DJF 1.4108 [0.00] -1.0828 [0.00] -0.7838 [0.00] 0.4526 [0.00] -0.0009 [0.01]
MAM 0.3760 [0.07] -0.2652 [0.20] -0.6430 [0.00] 0.3037 [0.02] -0.0003 [0.46]
JJA 2.0095 [0.00] -0.2586 [0.28] -0.9016 [0.00] 0.1726 [0.22] -0.0007 [0.06]
SON 1.0502 [0.00] 0.0903 [0.68] -0.4713 [0.00] -0.0203 [0.87] 0.0001 [0.77]

Timing of  the Maximum Intensity
Season Intercept (β0) Latitude (β1) Longitude (β2) LatxLong (β3) Elevation (β4)

DJF -26.5661 [1.00] 0.0000 [1.00] 0.0000 [1.00] 0.0000 [1.00] 0.0000 [1.00]
MAM -4.8886[0.04] 0.8225 [0.72] -2.2739 [0.70] 0.7356 [0.89] -0.0032 [0.70]
JJA -0.9126 [0.00] -0.4354 [0.07] -0.8159 [0.00] 0.1582 [0.43] -0.0003 [0.51]
SON -26.5661 [1.00] 0.0000 [1.00] 0.0000 [1.00] 0.0000 [1.00] 0.0000 [1.00]
DJF = December to February; MAM = March to May; JJA = July to June; SON = September to November.

Table A4. Similarity Probabilities for each season – Duration of  60 minutes.
DJF MAM JJA SON

Station Code Probability Station Code Probability Station Code Probability Station Code Probability
01943009 0.320 01943035 0.199 01843002 0.685 01843002 0.418
02044024 0.315 02043002 0.198 02043013 0.637 01844009 0.382
01943022 0.314 01943022 0.197 01943002 0.624 01844001 0.379
01944009 0.314 01843002 0.191 01844009 0.623 01943002 0.379
01944004 0.311 01943009 0.189 02044007 0.618 02043013 0.378
01944027 0.311 02043013 0.188 01844001 0.611 01943035 0.372
01944062 0.309 01943002 0.188 01943035 0.610 02044007 0.369
02043013 0.306 02043010 0.182 01844010 0.589 01844010 0.365
02044054 0.306 01844009 0.180 02043010 0.588 02043010 0.360
02044052 0.305 01944009 0.179 01944009 0.564 01943009 0.341
02044021 0.296 01844010 0.176 01943009 0.563 01944009 0.340
02044041 0.292 01844001 0.175 02044054 0.532 02044054 0.321
02044007 0.278 02044007 0.175 02044024 0.530 02044024 0.321
01943035 0.276 01944004 0.164 02044052 0.522 01943022 0.320
02043002 0.272 01944027 0.162 02044021 0.520 02043002 0.319
01943002 0.256 02044024 0.160 01944062 0.517 02044021 0.318
02043010 0.254 02044021 0.158 02044041 0.512 02044052 0.317
01944049 0.251 02044052 0.156 01944027 0.512 01944004 0.314
01944021 0.243 02044054 0.154 01944004 0.511 01944027 0.314
02044042 0.235 02044041 0.153 01943022 0.507 02044041 0.314
02045013 0.224 01942032 0.153 02044042 0.498 01944062 0.313
01942031 0.210 01944062 0.150 01944049 0.496 01944049 0.308
01844009 0.207 01942030 0.149 02043002 0.487 02044042 0.308
01843002 0.204 01942031 0.147 01944021 0.431 01944021 0.280
01844010 0.198 01845021 0.144 01845021 0.420 01845021 0.273
02045002 0.185 01944049 0.144 02045013 0.397 01942032 0.267
02045012 0.174 02044042 0.138 01942032 0.361 01942030 0.263
01942030 0.169 01944021 0.134 01942030 0.356 02045013 0.262
01844001 0.166 01942008 0.133 01942031 0.352 01942031 0.258
01942008 0.164 01841011 0.129 02045012 0.347 01942008 0.249
01942032 0.159 01941005 0.123 02045002 0.340 02045002 0.237
01940020 0.145 02045013 0.116 01942008 0.336 02045012 0.235
01946009 0.140 01845004 0.116 01845004 0.317 01845004 0.229
01845021 0.133 01941006 0.108 01946009 0.284 01946009 0.214
01845004 0.132 02045002 0.102 01940020 0.264 01841011 0.212
01941006 0.125 01946009 0.099 01841011 0.247 01941005 0.205
01941012 0.113 01941012 0.098 01941012 0.242 01941006 0.202
01841011 0.104 01940009 0.097 01941005 0.235 01940020 0.199
01941005 0.104 02045012 0.096 01941006 0.232 01941012 0.194
01940009 0.081 01940020 0.069 01940009 0.162 01940009 0.164

DJF = December to February; MAM = March to May; JJA = July to June; SON = September to November.
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Figure A1. Annual maximum, mean, variance and skewness results for each one of  the 100 model runs for the 180 minutes duration. 
Dots denote model predictions and the solid line the mean value of  the observed statistics.

Table A5. Comparison between the observed summary statistics and the predictions’ ensemble mean value for distinct numbers of  
rainfall gauging stations “donors” (S) – 180 minutes duration.

Statistics Records S = 5 S = 10 S = 15
Simulated Deviation Simulated Deviation Simulated Deviation

Mean of  the annual maximum 51.23 51.57 0.67% 53.44 4.31% 50.39 -1.63%
Mean 4.35 4.26 -1.97% 4.20 -3.32% 4.19 -3.72%
Variance 50.26 47.76 -4.97% 48.24 -4.03% 47.40 -5.69%
Skewness 3.20 3.23 0.85% 3.42 7.01% 3.26 1.91%

Table A6. Comparison between the observed summary statistics and the predictions’ ensemble mean value for distinct numbers of  
rainfall gauging stations “donors” (S) – 360 minutes duration.

Statistics Records S = 5 S = 10 S = 15
Simulated Deviation Simulated Deviation Simulated Deviation

Mean of  the annual maximum 60.10 59.92 -0.31% 61.85 2.91% 57.92 -3.63%
Mean 6.09 5.93 -2.68% 5.87 -3.65% 5.85 -4.01%
Variance 86.61 83.61 -3.47% 85.43 -1.37% 82.61 -4.62%
Skewness 2.79 2.81 0.65% 2.94 5.45% 2.79 0.22%
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Figure A2. Deviations of  model predictions from the observed summary statistics of  rainfall amounts for the 180 minutes duration.

Figure A3. Annual maximum, mean, variance and skewness results for each one of  the 100 model runs for the 360 minutes duration. 
Dots denote model predictions and the solid line the mean value of  the observed statistics.



RBRH, Porto Alegre, v. 25, e5, 2020

Aguilar & Costa

15/16

Figure A4. Deviations of  model predictions from the observed summary statistics of  rainfall amounts for the 360 minutes duration.

Figure A5. Selected stations to disaggregate daily rainfall amounts at the target site for the 60 minutes duration and the summer and 
autumn seasons.
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Figure A6. Selected stations to disaggregate daily rainfall amounts at the target site for the 60 minutes duration and the winter and 
spring seasons.


