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ABSTRACT

Long-term soil moisture forecasting allows for better planning in sectors as agriculture. However, there are still few studies dedicated 
to estimate soil moisture for long lead times, which reflects the difficulties associated with this topic. An approach that could help 
improving these forecasts performance is to use ensemble predictions. In this study, a soil moisture forecast for lead times of  one, 
three and six months in the Ijuí River Basin (Brazil) was developed using ensemble precipitation forecasts and hydrologic simulation. 
All ensemble members from three climatologic models were used to run the MGB hydrological model, generating 207 soil moisture 
forecasts, organized in groups: (A) for each model, the most frequent soil moisture interval predicted among the forecasts made with 
each ensemble member, (B) using each model’s mean precipitation, (C) considering a super-ensemble, and (D) the mean soil moisture 
interval predicted among group B forecasts. The results show that long-term soil moisture based on precipitation forecasts can be 
useful for identifying periods drier or wetter than the average for the studied region. Nevertheless, estimation of  exact soil moisture 
values remains limited. Forecasts groups B and D performed similarly to groups A and C, and require less data management and 
computing time.
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RESUMO

A previsão a longo prazo da umidade do solo permite melhor planejamento em áreas como a agricultura. No entanto, há ainda poucos 
estudos dedicados à especificamente estimar umidade do solo para longos horizontes de tempo, o que reflete as dificuldades associadas 
a este tipo de previsão. Uma abordagem que pode ajudar a melhorar a performance destas previsões é a utilização de previsões por 
conjuntos (ensemble). Neste estudo, uma previsão de umidade do solo para horizontes de tempo de um, três e seis meses foi desenvolvida 
na bacia do rio Ijuí (Brasil) usando uma combinação de previsões por conjuntos de precipitação e simulação hidrológica. Todos os 
membros dos conjuntos de três diferentes modelos climatológicos foram utilizados para rodar o modelo hidrológico MGB, gerando 
207 previsões de umidade do solo, organizadas em quatro grupos: (A) para cada modelo, o intervalo de umidade mais frequentemente 
previsto entre as previsões feitas com cada membro do ensemble, (B) usando a precipitação média de cada modelo, (C) considerando 
um superensemble, e (D) o intervalo de umidade do solo médio previsto entre as previsões do grupo B. Os resultados mostram que a 
umidade do solo a longo prazo estimada com base em previsões de precipitação pode ser útil para identificar períodos mais secos ou 
mais úmidos do que as condições médias para a região estudada. Contudo, a estimativa dos valores exatos de umidade do solo ainda 
é bastante limitada. Previsões realizadas com os grupos B e D tiveram performance similar as dos grupos A e C, e requerem menor 
análise e processamento de dados e esforço computacional.

Palavras-chave: Umidade do solo; Previsão por conjuntos; Modelagem hidrológica.
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INTRODUCTION

Long-term forecasting of  soil moisture allows for better 
agricultural management (Saldanha et al., 2012). Soil moisture can 
be obtained by hydrological simulations in the absence of  observed 
data. It can be estimated using a combination of  precipitation 
forecasting by general circulation models (GCM) with a soil water 
content estimation from a hydrological rainfall-runoff  model.

Forecasting hydrological variables, such as precipitation, is 
the prediction of  future states of  hydrological phenomena. This 
forecast is affected by model uncertainties of  parametrization, 
physical process simplifications, and data input quality. The need 
to assess and quantify uncertainties has increased the use of  
ensemble forecasts in the past several years (Demargne et al., 2014).

An ensemble is formed using different members of  a 
model, where each member represents a different trajectory of  the 
atmospheric conditions during the forecast lead time. Members 
can be generated by small differences in initial conditions. In this 
case, the scattering among the members allows quantifying the 
relative uncertainty related to the initial conditions. A multi-model 
approach allows quantifying uncertainties due to model formulation 
(Kirtman & Pirani, 2009).

Saldanha (2009) and Saldanha et al. (2012) developed a 
long-term soil moisture forecast using a rainfall forecast from a 
global model climate forecast system and soil moisture forecasts 
from the MGB (Modelo de Grandes Bacias – Large Basins 
Model) hydrologic model (Collischonn, 2001). The average of  
14 members of  the ensemble of  the precipitation forecasts were 
used as input data to the hydrological model, which was fit with 
observed discharge. The simulation results were compared to 
the soil moisture calculated using observed rainfall to forecast 
soil moisture with reasonable accuracy for up to three months 
of  lead time.

The uncertainties in the forecasting are in the initial 
conditions (members of  a model) and model structure. Yao & 
Yuan (2018) used a set of  soil moisture hindcasts directly from 
multiple GCMs to investigate soil moisture predictability and 
forecast ability in China. The soil moisture from six models of  the 
North American Multi-Model Ensemble (NMME) (Kirtman et al., 
2014) were verified against ERA Interim reanalysis (Dee et al., 
2011). A multi-model super-ensemble approach was used – when 
all ensemble members from different models are used together. 
The results showed that the simple mean of  the models provided 
better soil moisture forecasts than any individual model. Also, 
an optimized super-ensemble mean (with different weights for 
different models) led to even better results.

Spennemann et al. (2017) assessed the performance of  
seasonal soil moisture forecasts in southern South America, for 
lead times up to nine months. The results showed that the forecast 
skill decreased as the lead time increased. There was almost no 
improvement over using climatology data for lead times longer 
than three months.

Currently, there is an operational soil moisture forecasting 
system for the continental United States, the Surface Water 
Monitor (SWM). The forecast is performed using the VIC model 
(Gao  et  al., 2009) and a multi-model (outputs from different 
models used together) approach with lead times up to three 
months. The predictions use historical meteorological data from 

the same period of  the year of  interest, and the hydrological model 
is initialized with current state information regarding, mainly, soil 
moisture and snow water equivalent. More information about the 
Surface Water Monitor, a project conducted by the University of  
Washington, can be found in Wood (2008).

Some previous studies have worked with long term soil 
moisture prediction. However, there are still few applications 
specifically dedicated to estimate soil moisture with long term lead 
times. It reflects the difficulties and limitations associated with this 
kind of  forecast, when compared, for example, with short term 
flow forecasting. Considering the studies conducted so far, it is 
possible that using different approaches of  ensemble precipitation 
and hydrological modelling could lead to better performance of  
long-term soil moisture forecast.

The objective of  the study here conducted was to evaluate 
the ability of  using hydrological simulation and forecasted 
precipitation to estimate soil moisture for long term lead times. 
This research aimed to evaluate different approaches of  employing 
the information from a set of  members of  ensemble forecasts, 
in order to analyze if  it would lead to improved forecast results.

METHODOLOGY

This study uses three GCM model ensembles precipitation 
forecasts with bias correction in a hydrologic model fitted to flow 
for estimating soil moisture. Monthly soil moisture forecasts were 
compared with the soil moisture estimated by the hydrologic model 
with the observed precipitation, called the pseudo-observed soil 
moisture.

All ensemble members of  each climatic model were used 
to perform soil moisture forecasts. Also, a multi-model approach 
was assessed, which allowed the uncertainties associated to the 
models to be considered.

Framework

The steps of  this methodology are as follows (see Figure 1):
•	 Hydrologic model parameters calibration: the MGB hydrological 

model (Collischonn et al., 2007) was fit using rainfall and 
runoff  observed in the basin;

•	 Pseudo-observed soil moisture estimation: using observed precipitation, 
the soil moisture was estimated by the hydrological model 
for the same period used for forecasting (January 1st, 2005 
to December 31, 2013);

•	 Precipitation forecast: the forecasted rainfall was obtained from 
the IRI (International Research Institute for Climate and 
Society, Columbia University, USA) (International Research 
Institute for Climate and Society, 2013). Three databases of  
three models were selected: CCM3v6, ECPC, and GFDL;

•	 Forecasted precipitation bias correction: comparing the precipitation 
data from previous periods identified a bias in the precipitation 
forecast. This was statistically corrected before used in the 
hydrological model for soil moisture estimation;

•	 Temporal disaggregation of  the precipitation: the outputs from 
the GCMs were at monthly intervals and the hydrologic 
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model used daily precipitation. An empirical procedure 
was developed to distribute the monthly precipitation in 
daily values;

•	 Soil moisture forecast: soil moisture was estimated using the 
forecasted precipitation in the hydrological model. Daily 
values were transformed to monthly values. Pseudo-observed 
and forecasted soil moisture values were compared to assess 
the forecast performance, since no in situ soil moisture 
data was available.

The simulations were developed for three lead times: 
1, 3, and 6 months. The forecasted soil moisture was classified 
as humid (above the mean soil moisture for that month), normal 
(mean), or dry (below the mean), when compared to the pseudo-
observed soil moisture.

saturation degree with a SMOS-based (Soil Moisture and Ocean 
Salinity mission) soil water index and observed that the MGB 
estimate of  the soil moisture was a satisfactory representation of  
the water conditions on a weekly/monthly timescale.

MGB is a rainfall-runoff  semi-distributed model. The basin 
is discretized in unit-catchments, each containing one stream 
segment. Areas with similar hydrological behaviors, classified 
according to soil type and land use, are combined into Hydrological 
Response Units (HRU). The soil water balance, evapotranspiration, 
interception, surface runoff, sub-surface flow, and groundwater 
flow are simulated using a daily or smaller time step. Vertical 
processes (interception, evapotranspiration, surface, sub-surface 
flow generation, and percolation to the aquifer) are simulated for 
each HRU in each unit-catchment. Volumes generated at each 
HRU are summed for each unit-catchment and routed using 
linear reservoirs. At this application, surface runoff  is propagated 
through the stream network using the Muskingum-Cunge method 
(Collischonn, 2001). Other versions of  MGB model are available 
at Paiva et al. (2013) (using full Saint-Venant equations) and at 
Pontes et al. (2017) (inertial formulation). Evapotranspiration is 
calculated by Penman-Monteith method, as shown in Shuttleworth 
(1993). The soil water balance follows a Dunnian process and 
uses an approach like the Arno model (Todini, 1996). Equation 
1 and Figure 2 show the water balance calculation. All variables 
are in units of  mm:

( ), , , , , , , ,
t t 1

i j i j i j i j i j i j i j i jW W P ET Dsup Dint Dbas Dcap−= + − − − − + 	 (1)

where ,
t

i jW  is the water stored in the soil layer at the end of  the 
time period at unit-catchment i and in HRU j, ,

t 1
i jW  −  is the water 

in the soil layer at the beginning of  the time period, ,i jP  is the 
precipitation that reaches the soil, ,i jET  is the evapotranspiration, 

,i jDsup  is the surface runoff, ,i jDint  is the subsurface flow, ,i jDbas , 

Figure 1. Main framework.

Figure 2. MGB-IPH water balance. PC [mm] is the precipitation 
over the canopy. EI [mm] is the evaporation from the intercepted 
water layer. Wm [mm] is the maximum storage capacity for the soil 
layer. All other variables have the same meaning as in Equation 1.

Hydrologic model

Soil moisture was estimated through the water balance 
module of  the MGB hydrological model (Collischonn et al., 2007). 
Despite being conceived as a rainfall-runoff  model, MGB properly 
represents other elements of  the hydrological cycle. Paz et al. (2014) 
analyzed the effects of  representing vertical hydrological processes 
in simulations of  Pantanal floods, and Ruhoff  et al. (2013) compared 
the evapotranspiration estimated using Moderate Resolution 
Imaging Spectroradiometer (MODIS) and the one simulated 
using MGB. Colossi et al. (2017) compared MGB simulated soil 
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is the flow to the aquifer, and ,i j Dcap  is the flow from the aquifer 
to the soil layer.

Soil moisture is represented by the soil saturation degree, 
calculated as the fraction of  the maximum water storage Wm that 
the current water depth W represents. Values are calculated as:
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where S is the current saturation degree at unit-catchment i, iWm  
is the maximum water depth at unit-catchment i, j is the HRU, 

,i jA  is the area of  the unit-catchment i in HRU j, and iA  is the total 
area of  the unit-catchment i.

The model discretization uses a Digital Elevation Model 
(DEM) to extract the physical characteristics of  the basin. 
The MGB model plugin, code, and other information are available 
at https://www.ufrgs.br/lsh.

The calibration period was from 01/01/1980 to 12/31/2004, 
and the forecast period was from 06/01/2005 to 12/31/2013. 
The period of  verification of  calibration is the same of  forecast. 
The MGB hydrological model was calibrated with discharge 
data only. A similar procedure was used by Sípek & Tesar (2013). 
It is assumed that the calibrated hydrological model properly 
represents the basins water cycle, which includes the soil moisture. 
Thus, uncertainties related to the hydrological modeling and 
parametrization were not analyzed. Only those related to the 
precipitation forecast were assessed.

Precipitation forecast

Ensemble forecasted precipitation was obtained from IRI. 
Based on the data series coverage and forecast horizon, three 
databases of  three models were selected: CCM3v6, ECPC, and 
GFDL (see Table 1). More details about the model selection can 
be seen at Colossi (2015).

Rainfall bias correction

General Circulation Models may exhibit a bias when 
applied on a regional scale. This bias, if  not corrected, can cause 
significative errors (Ahmed et al., 2013).

The procedure used to bias correction was based on the 
systematic error found between the statistical distribution of  the 
monthly observed precipitation and of  the forecasting model 
climatology. These distributions were developed for each month 
(Jan-Dec) and each model ensemble mean precipitation. Correction 
was applied to each ensemble member.

Rainfall disaggregation

The forecasted precipitation was in a monthly interval, 
and the hydrologic model simulates the soil humidity on a daily 
basis. To transform the forecasted monthly precipitation in daily 
precipitation, the distribution of  the total monthly precipitation 
was transferred from one of  the observed precipitation series, in a 
procedure similar to the fragments method proposed by Svanidze 
(1980, apud Farias, 2003). The following procedure was used to 
transform monthly precipitation into daily values:

•	 Observed precipitation series from 1980 to 2004 from 
gauges were selected. This data was also used for model 
calibration;

•	 For each series of  predicted precipitation (each member of  
each model) and each month of  the simulation period (2005-
2013), the employed rainfall distribution over the month was 
the one from a month in the observed series which total 
monthly precipitation was closer to the total forecasted (bias 
corrected). For example, if  the forecasted precipitation for 
Jan/2010 for member 3 of  the model XX is 50 mm, in the 
historical observed precipitation series (1980-2004) the January 
whose total precipitation was closer to 50 mm (January of  
YYYY) was identified. Then, the daily distribution of  rainfall 
of  Jan/YYYY was applied for Jan/2010 for member 3 of  
model XX. This introduces uncertainty at the daily prediction 
level, but the comparison of  the results of  the soil moisture 
is performed at the monthly level.

Table 1. Information regarding selected databases.
Model Description Spatial resolution Members

CCM3v6-SSST CCM3.6 is a version of  NCAR’S Community Climate Model. 
See Hack et al. (1998), Hurrell et al. (1998), and Kiehl et al. (1998).

2.8125° × 2.789327° (T42) 24 members

ECPC-SSST This is the model of  the Experimental Climate Prediction Center, 
developed and run at the Scripps Institution of  Oceanography, 
University of  California, USA (International Research Institute for 
Climate and Society, 2014).

1.875° × 1.904128° 12 members

GFDL-SSST Forecasts from the AM2 model of  the Geophysical Fluid Dynamics 
Laboratory from Princeton University were employed. See 
Delworth et al. (2006) and GFDL Global Atmospheric Model 
Development Team (2004).

2.5° × 2.0° 30 members
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STUDY AREA

The Ijuí River basin is in the Rio Grande do Sul state, 
Brazil. The basin has an area of  about 10800 km2, centered at 
54.076°W / 28.387°S. The Ijuí River is a tributary of  the Uruguay 
River, a major component of  La Plata Basin (Figure  3). This 
region has a humid subtropical climate (Cfa) under the Köppen 
classification. The average total annual precipitation ranges from 
1790 to 1950 mm, without strong seasonality over the year.

About 40% of  the Ijuí River basin area is used for agricultural 
activities (Brasil, 2006). Almost all Uruguay River basin has an 
important agricultural role (see Figure 4); however, only 7% of  
the cultivated area is irrigated (Agência Nacional de Águas, 2013).

SRTM Digital Elevation Model 90 m resolution (as processed 
by Weber et al., 2004) was used to extract topological information 
of  the basin. HRUs were defined using land use information with 
a 300 m spatial resolution (European Space Agency, 2010) and soil 
type data in a 1:5000000 scale (Embrapa, 1981 apud Brasil [20--]). 
The Ijuí River basin is extensively used for agricultural purposes, 
primarily crops, and pasture areas, with fragments of  forest spread 
across the basin (see Figure 4).

Hydrologic model calibration and verification

The MGB model was calibrated using discharge data only, 
available at seven fluviometric gauges (Figure 6). The calibration period 
was from 01/01/1980 to 12/31/2004, and the forecast/verification 
period was from 06/01/2005 to 12/31/2013.

Calibration led to Nash-Sutcliffe efficiency coefficient 
(NS) higher than 0.7, and discharge logarithm Nash-Sutcliffe 
efficiency coefficient (NSlog) higher than 0.8 in all gauges, 
which shows that there was good agreement between observed 
and simulated discharges. Volume error was smaller than 
│3%│ for all gauges, which indicates good performance for 
the water balance.

For the verification period, NS was higher than 0.6 
for all gauges, and NSlog, higher than 0.8. Volume error 
was smaller than │15%│, also for all analyzed points. Flow 
duration curves from simulated discharges were still very 
similar to observed ones. Therefore, the hydrological model 
is considered able to well represent hydrologic process in 
the basin for the interest period (2005-2013). Colossi (2015) 
presents the model parametrization and efficiency scores for 
calibration and verification of  all gauges.

Precipitation forecast

Figure 7 shows the grid for the precipitation forecast model 
near the application basin. For each member of  each model, the 
nine (3×3) nearest forecast points were selected, so the basin and 
its surroundings were covered.

Figure 3. Ijuí River basin location.

Figure 4. Ijuí River basin hydrological response units (HRUs).

Figure 5. Precipitation gauges.

Precipitation gauges are shown in Figure 5. Data from 26 stations 
was used for model calibration and bias correction, and data from 
35 gauges was used to estimate the pseudo-observed soil moisture.
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Forecasted precipitation bias correction

Figure 8 shows an example output of  the bias correction 
improvement for the forecasted precipitations. The original 
forecasted precipitation strongly underestimated the observed 
precipitation. After the bias correction, the predictions showed 
better agreement with the observed values and exhibited a variation 
range closer to that of  the basin.

Table 2 shows the mean error of  the monthly precipitation 
for the forecast period (June/2005-Dec/2013). The error is defined 
as the difference between basin average monthly precipitation 
forecasted by the model and the observed precipitation.

( ) Py Pobs
Mean absolute error

n
∑ −

= 	 (2)

where Py [mm] is the monthly precipitation to be analyzed, with or 
without the bias correction, Pobs [mm] is the observed precipitation 

Figure 6. Fluviometric gauges.

Figure 7. Precipitation forecast grid points.
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for the month, and n is the number of  months between June/2005 
and Dec/2013.

The absolute mean error dropped up to 99% after 
applying the bias correction. The best performance was 
observed for model CCM3v6. Similar results were found 
for model GFDL. However, the GFDL model still tended to 
underestimate the basin’s precipitation, although less than when 
no bias correction was introduced. Model ECPC, which had a 
negative bias before the bias correction procedure (forecasted 
precipitation < observed precipitation), exhibited a positive bias 
after the correction but with a smaller magnitude than prior 
correction. For the model ECPC, forecasts with a 1 month 
lead time were slightly better than those for 3 and 6 months 
of  lead time. However, for the CCM3v6 and GFDL models, 

the smallest mean error values were found for 3 months of  
lead time.

SOIL MOISTURE FORECAST

Soil moisture forecasts were generated from running 
MGB hydrological model with forecasted precipitations. These 
precipitations are ensemble members from the models presented 
at Table 1, or the mean of  the members of  each model.

MGB model was run 207 times (see Table 3 and Figure 9 at 
“Simulations” section, next), generating 207 monthly soil moisture 
series. Each soil moisture result was classified as humid, normal or 
dry, when compared with the mean historic soil moisture for the basin 
(see Table 4 and Figure 10 at “Pseudo-observed soil moisture” section). 
Next sections show how these results were grouped and evaluated.

Figure 8. Example of  rainfall bias correction effect. Ijuí River basin average precipitation, ensemble mean.

Table 2. Mean absolute error of  monthly forecasted precipitation comparing to observed precipitation.

Model Lead time (months) Mean error without 
bias correction (mm)

Mean error with
bias correction (mm) Error reduction

CCM3v6 1 -72.6 -3.2 -96%
3 -71.0 1.0 -99%
6 -69.8 6.7 -90%

ECPC 1 -27.1 13.8 -49%
3 -21.5 16.6 -23%
6 -19.1 18.0 -6%

GFDL 1 -85.4 -16.6 -81%
3 -82.3 -6.4 -92%
6 -82.4 -12.7 -85%
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Table 3. Soil moisture forecasts for each lead time.

Forecast 
id

Climatic 
model

Forecast 
criteria 
group

Precipitation forecasts Soil moisture simulations
Characteristic of  
the soil moisture 

forecast
1 CCMv6 A 24, from the 24 members of  the model 24 Mode of  24 members
2 ECPC A 12, from the 12 members of  the model 12 Mode of  12 members
3 GFDL A 30, from the 30 members of  the model 30 Mode of  30 members
4 CCMv6 B 1, the mean precipitation from the 

24 ensemble members of  CCM3v6
1, ran with the ensemble mean 
precipitation

Mean of  24 members

5 ECPC B 1, the mean precipitation from the 
12 ensemble members of  ECPC

1, ran with the ensemble mean 
precipitation

Mean of  12 members

6 GFDL B 1, the mean precipitation from the 
30 ensemble members of  GFDL

1, ran with the ensemble mean 
precipitation

Mean of  30 members

7 All three 
models

C 66, all members of  the three models (24 
from CCM3v6, 12 from ECPC, and 30 
from GFDL)

66. Each ensemble member of  each 
model ran the hydrological model

Mode of  66 members

8 All three 
models

D 3, the ensemble mean precipitation of  
each model

3, ran with the ensemble mean 
precipitation of  each model

Mean of  the mean of  
three models

Table 4. Soil moisture classes. Sm is the monthly mean observed soil moisture.
Soil moisture class Soil moisture class code Lower limit Upper limit

Humid +1 Sm + (standard deviation /2)
Normal 0 Sm - (standard deviation /2) Sm + (standard deviation /2)

Dry -1 Sm - (standard deviation /2)

Simulations

Precipitation forecasts from three models were used 
in this study. Each model has a set of  members: 24 for model 
CCM3v6, 12 for ECPC, and 30 to GFDL. The ensemble average 
precipitation for each model was estimated. The MGB hydrological 
model was used to simulate soil moisture for each precipitation 
forecast (each member of  each model: 66 soil moisture series; 
each model ensemble average: 3 forecasts), which resulted in 207 
soil moisture series (three lead times × 69 forecasts). These soil 
moisture forecasts are organized in four groups:

•	 Group A - considering the ensemble of  members of  each 
model: with each ensemble member, MGB model was run and 
soil moisture was predicted and classified as humid, normal 
or dry. The most frequent (the mode) soil moisture class 
predicted among the members of  a model was considered 
the forecast of  that model’s ensemble. That means, from 
the 24 members of  CCM3v6, one soil moisture forecast is 
considered. From the 12 members of  ECPC, another. And 
from the 30 members of  GFDL, a third forecast;

•	 Group B - considering the ensemble mean precipitation of  each 
model: the ensemble mean precipitation was estimated. With 
this precipitation, MGB was run, generating one soil moisture 
forecast for each model. This way, the soil moisture prediction 
is the one from the model’s ensemble mean precipitation;

•	 Group C - for the super-ensemble: all members, of  all three 
model, were used to individually run MGB. The resulting 
forecast is one value, the most frequent soil moisture class 
predicted among all members of  all three models. It is the 
mode of  soil moisture class predicted for all members of  
all models;

•	 Group D - for the model ensemble (multi-model approach): 
result is the average of  the three soil moisture forecasts 
from Group B. The mean soil moisture class predicted 
among the three forecasts with the mean precipitation.

Considering the three climatic models and the four 
criteria groups, for each lead time, there were eight soil moisture 
forecasts, identified by a ‘forecast id’, as shown in Table 3 and 
Figure 9. Forecasts 1, 2, and 3, according to its forecast id, are 
the Group A forecasts, for models CCM3v6, ECPC, and GFDL, 
respectively. Forecasts 4, 5, and 6 are those from Group B, for 
models CCM3v6, ECPC, and GFDL, respectively. Forecast 7 is 
the super-ensemble, the Group C forecast, and forecast 8 is the 
Group D forecast.

In Table 3, the column ‘precipitation forecasts’ indicates 
how many precipitation forecasts were employed to produce the 
soil moisture forecast. The column ‘soil moisture simulations’ 
refers to how many times the MGB hydrological model was run to 
generate the soil moisture series. Finally, the ‘characteristic of  the 
soil moisture forecast’ informs how the soil moisture simulations 
or the precipitation forecasts were analyzed to became one soil 
moisture forecast.

Pseudo-observed soil moisture

The forecasted saturation degree for each month was 
compared to the pseudo-observed soil moisture. The results 
were compared not as exact values, but as a class of  soil moisture. 
The soil moisture for each month of  the forecast period was 
classified according to its deviation from the historical mean as 
humid (code +1), normal (0), or dry (-1) (see Table 4).
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Figure 9. Flowchart representing the soil moisture forecast and results classification.

Figure 10. Ijuí River basin average soil moisture for the period between 1980 and 2004, its standard deviation, and the classification 
of  the saturation degree.
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The soil moisture historical mean in the basin was estimated 
through hydrological simulation using the observed rainfall for 
the period of  1980-2004. Figure 10 shows the monthly mean 
pseudo-observed soil moisture in the basin, classified as dry, 
normal, or humid, according to Table 4.

Performance evaluation of  soil moisture forecasts

The soil moisture forecast performance was evaluated by 
a comparison with the pseudo-observed soil moisture classes. 
The results were analyzed for the mean soil saturation degree of  
the Ijuí River basin (no spatial variability was analyzed) and for 
the mean monthly values in the forecast period.

Success and error indicator

For each month of  the forecast period, the error of  the 
soil moisture class estimate was calculated as:

( ) ( )Error= Forecasted soil saturation class  - Pseudo-observed soil saturation class 	 (3)

where the soil saturation classes are estimated as Table  4 and 
Figure 10 in +1 (humid), 0 (normal) or -1 (dry).

According to Equation 3, a positive error indicates that 
the forecasted soil saturation class was more humid (or higher, 
according to the second column of  Table 4) than the observed soil 
saturation. A negative error indicates that forecast underestimated 
observed soil moisture. For example, error -2 happens when 
forecasted soil saturation class was dry (code -1 according to 
Table 4) and observed soil saturation class was humid.

The success index of  the forecast is:

         = Number of months where the forecast error is zeroSuccess
n

	 (4)

The forecast errors can vary from -2 to +2, and are 
assessed by:

( )          22 +
= + =

Number of months where the forecast error isRate of Error
n

	 (5)

( )          11 +
= + =

Number of months where the forecast error isRate of Error
n

	 (6)

( )          11 −
= − =

Number of months where the forecast error isRate of Error
n

	 (7)

( )         22 −
= − =

Number of months where the forecast error isRate of Error
n

	 (8)

Where n is the number of  months in the forecast period.

Contingency table

A 2 × 2 contingency table can be established by splitting 
the simulated soil moisture series into three groups comparing 
with the pseudo-observed soil moisture: dry, normal, and humid 

classes. The contingency table, shown in Figure 11, contains four 
types of  values:

a:	 successes, events correctly forecasted;

b:	 false alarms, events predicted but not observed;

c:	 observed events that were not forecasted;

d:	 correct rejection, events not observed and not predicted.

Figure 11. Contingency table for binary events. Source: Wilks (2006).

Based on the contingency table for each series (dry, normal, 
and humid), the results were analyzed for the Probability of  
Detection (POD), Probability of  False Detection (POFD), False 
Alarm Ratio (FAR), and Bias. These measures are (Wilks, 2006):

aPOD
a c

=
+

	 (9)

 bPOFD
b d

=
+

	 (10)

bFAR
a b

=
+

	 (11)

a bBIAS
a c
+

=
+ 	 (12)

POD quantifies the number of  events correctly predicted 
compared to the observed total. It varies from 0 to 1, and values 
closer to 1 correspond to better results. POFD evaluates the 
proportion of  events not observed but forecasted, and FAR is 
the ratio of  events predicted but not observed over the total of  
forecasted events. Both measures vary from 0 to 1, where 0 is 
the ideal result. Finally, the Bias indicates the relation between 
the total number of  predicted events and observed ones. Bias 
values greater than 1 indicate that the forecast predicted a greater 
number of  events than actually occurred. Results lower than 1 
indicate that the forecast underestimated them.
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RESULTS

Soil moisture forecasts group A — Ensembles of  the 
GCM models (ids 1, 2, and 3)

Soil moisture forecasts, compatibilization for a monthly 
time scale, and classification according to Figure 10 were carried 
for each member of  each model. For each month of  the simulation 
period and each model, the forecasted soil moisture class was the 
most common among those predicted by the members of  a model. 
This way to present and analyze the results was chosen because 
it simplifies the user’s understanding and decision making. This 
type of  presentation is easier for the user to analyze than a fully 
probabilistic forecast, but still has advantages over a completely 
deterministic forecast (World Meteorological Organization, 2012).

Figures 12, 13, and 14 show examples of  group A forecast 
results for different lead times. The results show that forecasts 
from group A tend to underestimate soil moisture. This trend is 
quite prominent for the GDFL model for lead times of  1 and 3 
months. Furthermore, there were only a few occurrences during 
the simulation period where the exact pseudo-observed saturation 
class was identified by the forecast. However, in several cases the 
forecasted soil moisture class was one class immediately higher 
or lower than the observed class. This indicates that, despite not 
being able to identify the exact saturation class at most times, the 
forecast exhibited better performance for recognizing the soil 
moisture overall behavior.

Soil moisture forecasts group B — Mean of  the 
ensemble members (ids 4, 5, and 6)

Figures 15, 16, and 17 show examples of  the soil moisture 
forecast results from the ensemble mean precipitation forecast of  
each model. The results show that the performance of  the group B 
forecast was better than that of  group A for identifying the exact soil 
moisture class pseudo-observed. The ECPC model (forecast id 5), 
for a lead time of  1 month, tended to overestimate the soil moisture 
class. This trend was intensified for lead times of  3 and 6 months. 
The GFDL model (id 6) tended to overestimate the moisture class 
for a lead time of  3 months. This tendency was even greater for a 
6 months lead time. Finally, model CCM3v6 (forecast id 4) was the one 

who better identified the soil saturation class. This result is coherent 
with the comparison of  forecasted and observed precipitations.

Soil moisture forecasts group C — Super-ensemble (id 7)

The super-ensemble systematically tended to underestimate the 
soil saturation, as shown in Figure 18. This can be mainly attributed 
to the members distribution and bias correction. The precipitation 
bias correction was applied to every member but was determined 
with the members mean. However, members spreading was not 
homogeneous (several members with low precipitation and a 
few with very high precipitation). When using every member to 
perform an individual soil moisture prediction, many members 
generate a low soil moisture class as a result. When counting the 
number of  members in each soil moisture class, estimating the 
probability of  each saturation degree, the dryer classes tended to 
have higher probability, leading to an overall underestimate of  the 
predicted soil moisture. This effect was already apparent from the 
predictions using all ensemble members considering each model 
individually (forecasts group A). With the super-ensemble, the 
effect is intensified, and the resulting forecast is affected.

Soil moisture forecasts group D — Models ensemble (id 8)

Figure  19 and Figure  20 show, for lead times of  one 
and six months, the soil moisture predicted using the mean 
class of  the classes forecasted by the ensemble mean of  each 
model. In other words, forecast group D is a rounded average 
of  forecasts group B.

Despite exhibiting better agreement with the pseudo-observed 
soil moisture than forecasts group C, forecasts group D hardly 
can correctly predict the soil moisture class. Furthermore, group 
D tended to overestimate the soil moisture, especially for lead 
times of  3 and 6 months.

ANALYSIS AND DISCUSSIONS

Tables 5, 6, and 7 show the performance of  the forecasts. 
The error is defined as the predicted soil moisture class minus 
the pseudo-observed class, as presented in the “Performance 

Figure 12. Soil moisture pseudo-observed class and forecast id 1 for a lead time of  1 month. Anomaly class -1 indicates a month 
dryer than the historical mean, 0 indicates normal soil moisture, and +1 indicates a more humid period.
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Figure 13. Soil moisture pseudo-observed class and forecast id 2 for a lead time of  6 months.

Figure 14. Soil moisture pseudo-observed class and forecast id 3 for a lead time of  3 months.

Figure 15. Soil moisture pseudo-observed class and forecast id 4 for a lead time of  1 month.

Figure 16. Soil moisture pseudo-observed class and forecast id 5 for a lead time of  3 months.



RBRH, Porto Alegre, v. 25, e28, 2020

Colossi & Tucci

13/19

Figure 17. Soil moisture pseudo-observed class and forecast id 6 for a lead time of  6 months.

Figure 18. Soil moisture pseudo-observed class and forecast id 7 for a lead time of  3 months.

Figure 19. Soil moisture pseudo-observed class and forecast id 8 for a lead time of  1 month.

Figure 20. Soil moisture pseudo-observed class and forecast id 8 for a lead time of  6 months.
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evaluation of  soil moisture forecasts” section. Thus, error=0 
corresponds to a successful forecast. Positive errors indicate 
an overestimation of  the forecast, while negative errors show 
underestimation.

The results show that the success rate, error=0, was less 
than 37% for all eight forecasts. However, an important amount 
of  errors is ±1, which indicates that most of  the time, the soil 
moisture forecast misses between dry and normal or normal and 
humid classes. The percentage of  errors=±2 was at maximum of  
30%. That means, forecasts of  dry conditions when the soil was 
actually humid, or vice versa, happened for 30% of  the simulation 
period at maximum.

Establishing a 2 × 2 contingency table for each saturation 
class (dry, normal, and humid), the results were analyzed for the 
probability of  detection (POD), probability of  false detection 
(POFD), false alarm ratio (FAR), and Bias. Figures 21, 22, and 23 
show these results.

The ideal result would be POD=1 and POFD=0. However, 
the predictions were far from the ideal case. For the three models, 
all eight forecasts tended to have PODs similar to their POFDs, 
and non-zero values.

Analyzing the FAR and BIAS, the performance tended to 
be better for the normal class, which demonstrates the difficulty 
of  detecting the occurrence of  extreme events.

For all models and lead times, the forecasts for the dry 
class with the ensemble (group A) and the super-ensemble 
(group C) tended to have higher values of  POD and POFD than 
the predictions using the average precipitation of  each model 
(group B) and with the ensemble of  the models (group D). This is 
related to the members dispersion and the bias correction results. 
The prediction with all members of  a model (ids 1, 2, and 3) 
tended to underestimate the predicted class, and this effect was 
intensified when the forecast was made with the super-ensemble. 
This caused a greater number of  predicted dry events, but not 
all actually occurred. This increased the POD and POFD. This 
effect can also be found in the Bias, which was greater than 1.0 
in almost all the predictions of  dry class made with the ensemble 
of  members (group A) or with the super-ensemble (group C).

For the wet class, the prediction with the ensemble mean 
(ids 4, 5, and 6) and with the multi-model approach (id 8, group D) 
had POD and POFD values higher than those from the forecasts 
performed with the ensemble (ids 1, 2 and 3) and the super-ensemble 
(id 7, group C). The Bias in these cases was almost always higher 

than 1.0, which indicates that there were more wet events predicted 
than occurred. This may be related to the predominance of  La 
Niña events over the simulated time interval. In the southern 
region of  Brazil, the occurrence of  the La Niña phenomenon 
is associated with intense droughts, while El Niño is linked to 
abundant rainfall. The precipitation forecasting models possibly 
did not captured the dry tendency resulting of  the La Niña events 
that happened during the study period.

For the BIAS, with 1 and 3 months lead times, the 
performance of  the multi-model approach (id 8) for the normal 
class was better than any other prediction and near the ideal value 
(1.0), indicating that there was no tendency to underestimate or 
overestimate the number of  forecasted months in the normal 
soil moisture class. Analyzing the three classes, the group D 
prediction tended to overestimate the number of  wet events and 
underestimate the number of  dry events. This may be related to 
the characteristic of  the occurrence of  the El Nino Southern 
Oscillation (ENSO) phenomenon over the simulated period, as 
discussed previously.

For the forecast with a 6 months lead time in the dry 
category, the false alarm ratio, probability of  false detection, and 
BIAS were zero for group D forecasts (id 8), because there were 
no dry months predicted for this lead time.

The super-ensemble (forecast id 7) for lead times 
of  1 and 3 months for dry conditions has a POD higher than those 
of  the other predictions, except for one (the average precipitation 
of  the ECPC model for wet conditions with a 3 months lead 
time). However, it also has the highest value of  POFD. This 
occurred because, as already discussed, the super-ensemble has 
a strong tendency to underestimate the monthly saturation class. 
This trend can also be confirmed through the BIAS, which had 
a value greater than 1.5 for the dry class for the three lead times, 
and a value of  2.5 for 1 month lead time. The FAR was always 
around 0.9, indicating that approximately 90% of  the predicted 
events (months of  soil moisture below normal) were not observed.

For the humid class, for all lead times, the forecast of  
the super-ensemble had POD and POFD close to zero due 
to the low incidence of  months predicted in the humid class. 
The BIAS in these cases was always below 0.16, indicating a strong 
underestimation of  the number of  events observed. The FAR, also 
for all lead times, was equal to 1.0, which shows that, in addition 
to underestimating the number of  wet events (months where 

Table 5. Successes and errors of  forecasts for 1 month lead time.
Forecast id 1 2 3 7 4 5 6 8

Error type Ensemble Super-
ensemble

Mean Multi-modelCCM3v6 ECPC GFDL CCM3v6 ECPC GFDL
Error= 0 36% 27% 25% 28% 37% 21% 37% 27%

+1 9% 19% 13% 9% 34% 38% 22% 38%
-1 33% 33% 38% 40% 14% 14% 17% 19%
+2 5% 8% 6% 1% 14% 22% 17% 15%
-2 17% 13% 18% 22% 2% 5% 8% 1%

Successes: Error= 0 36% 27% 25% 28% 37% 21% 37% 27%
Positive errors 14% 27% 18% 10% 48% 60% 39% 52%
Negative errors 50% 46% 56% 62% 16% 18% 24% 20%
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Table 6. Successes and errors of  forecasts for 3 months lead time.
Forecast id 1 2 3 7 4 5 6 8

Error type Ensemble Super-
ensemble

Mean Multi-
modelCCM3v6 ECPC GFDL CCM3v6 ECPC GFDL

Error= 0 31% 31% 31% 31% 32% 28% 35% 33%
+1 16% 23% 14% 11% 36% 38% 29% 38%
-1 32% 23% 32% 40% 16% 9% 16% 12%
+2 7% 12% 7% 0% 16% 25% 15% 17%
-2 15% 11% 17% 18% 1% 0% 6% 0%

Successes: Error= 0 31% 31% 31% 31% 32% 28% 35% 33%
Positive errors 22% 35% 20% 11% 51% 63% 44% 55%
Negative errors 47% 34% 49% 58% 17% 9% 21% 12%

Table 7. Successes and errors of  forecasts for 6 months lead time.
Forecast id 1 2 3 7 4 5 6 8

Error type Ensemble Super-
ensemble

Mean Multi-
modelCCM3v6 ECPC GFDL CCM3v6 ECPC GFDL

Error= 0 32% 26% 25% 26% 30% 28% 30% 32%
+1 16% 24% 33% 21% 37% 34% 37% 33%
-1 33% 20% 15% 33% 12% 10% 6% 7%
+2 7% 15% 17% 2% 20% 28% 27% 28%
-2 13% 15% 11% 17% 1% 0% 0% 0%

Successes: Error= 0 32% 26% 25% 26% 30% 28% 30% 32%
Positive errors 22% 39% 50% 23% 57% 62% 64% 61%
Negative errors 46% 35% 25% 50% 13% 10% 6% 7%

Figure 21. POD and POFD for dry, normal, and humid classes for forecasts. Use Table 3 as reference for forecasts types and ids.

soil saturation was considered above normal for the month), the 
super-ensemble never correctly predicted a month with wet class.

For normal class predictions (soil moisture within the 
expected class for the month), the performance of  the super-
ensemble was better than for the dry or wet classes in terms of  

FAR and BIAS. There was still a tendency to underestimate the 

number of  months in the normal class, in addition to having a 

high incidence of  false alarms. For all lead times, the POFD was 

larger than the POD.
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The multi-model approach (forecast group D) exhibited 
results that were typically better than any of  the predictions made 
using the members of  a model’s ensemble, either with the set 
of  members (group A) or the super-ensemble (group C) when 
analyzing trends, that means, accepting errors +1 or -1, for lead 
times of  one and three months. Soil moisture predictions based 
on the ensemble of  averages (group D) involved less computing 

time and data management compared to the forecast with the set 
of  members (groups A and C), since it requires less runs of  the 
hydrological model and, consequently, generates a smaller amount 
of  results for processing, and may be an interesting alternative in 
forecasting. The ensemble of  averages (group D), by employing 
different models, accounts for different physical characteristics, 
processes, and horizontal and vertical spatial resolutions. For the 

Figure 22. False alarm ratio for dry, normal, and humid classes for different forecasts. Use Table 3 as reference for forecasts types 
and ids.

Figure 23. Bias for dry, normal, and humid classes for different forecasts. Use Table 3 as reference for forecasts types and ids.
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ensemble mean of  the same model (group B), this may not be 
true if  the members were generated only from perturbations in 
the model parameters or in the initial conditions.

In the procedure used, the bias of  the precipitation forecast 
was removed from the ensemble mean precipitation. For a large 
proportion of  the models and lead times, the soil moisture prediction 
with the ensemble mean precipitation of  each model (forecasts 
group B) exhibited similar or moderately better results than the 
predictions using the complete set of  members of  each model 
(group A), or with the super-ensemble (group C). This indicates 
that, without considering the members dispersion, there was no 
advantage to using the whole ensemble in the predictions over 
using the ensemble mean precipitation.

The absence of  seasonality in the precipitations of  the 
region under study hinders a possibly better performance of  
the forecasts. This seasonality would be more easily identifiable 
by the forecasts, yielding better results. Furthermore, the low 
performance of  the models for precipitation forecast may 
be influenced by phase errors (for example, a prediction of  
xx mm predicted one month earlier or later to the observed 
precipitation). This phase error in the precipitation forecast 
may impair the performance of  the soil moisture prediction. 
Although the soil acts as a reservoir, the error in the forecast is 
greater than the soil damping capacity. This error is associated 
with the temporal resolution of  the forecast (monthly) and 
the process of  transformation of  the expected monthly 
totals into daily values, which does not necessarily reflects 
the observed temporal distribution. Furthermore, the grid of  
points where the precipitation forecast is available is quite 
coarse and might represent an important limitation to the 
forecasted precipitations.

In this study, using ensemble precipitation forecasts, the 
effect of  precipitation forecast uncertainties on the prediction of  
soil moisture was considered. However, there are other sources 
of  uncertainty that may affect the results.

The observed flow, precipitation, and climate data used 
for the hydrological model implementation and bias correction 
of  the predicted precipitation may contain errors in the historical 
series, or even do not have enough density of  observation points 
to represent the basin. Similarly, soil use and type information 
may not have enough spatial resolution to accurately represent 
the basin. Furthermore, there are uncertainties when considering 
that the conditions of  land cover and use remained constant in the 
basin through calibration and simulation periods. Nevertheless, 
none of  the above was identified in this study as a major source 
of  uncertainty.

Finally, the hydrological model, when calibrated, seeks to 
properly represent the entire hydrological process in the basin. 
However, a model is a simplification of  reality, and does not 
necessarily accurately reflect what happens in the basin. Thus, 
the results found herein are linked to the hydrological model 
used, the MGB.

CONCLUSIONS

Generating soil moisture forecasts for groups B and D uses 
only the mean precipitation of  each model. This way, the hydrological 

model is run only as much models are been analyzing (in this case, 
three). Forecasts of  groups A and C involve running the hydrological 
model once for each ensemble member (herein, 66 times for each lead 
time). Analyzing the set of  results, it is perceived that the forecasts 
made with the average precipitation predicted by the members of  
each model (group B) involved less computing time and information 
handling than forecasts made with groups A and C and produced 
similar or slightly better results in most times. In addition, the multi-
model approach (forecasts group D) allowed weighted analysis of  
the results, accounting for the agreement between the models, and 
did not require a significant additional processing once the group 
B predictions were made. For identifying trends (accepting results 
when the predicted class was at most one class immediately above 
or below the pseudo-observed soil moisture class), in most cases 
the average of  each model (group B) performed better than the 
corresponding ensemble (group A), and the ensemble of  averages 
(group D) performed even better. The average of  the members 
of  an ensemble softens the forecast by minimizing the effect of  
details hard to identify. In this sense, the average of  the means 
intensifies this process. However, because of  this, the ensemble 
of  means (group D) exhibited better performance for evaluating 
the soil moisture trends but not necessarily for identifying the exact 
class, since the average has a decreased capacity to identify extreme 
events. Accordingly, it tended to have worse performance than the 
prediction with the average (group B) of  the best model when 
analyzing the exact soil moisture class predicted (humid, normal, 
or dry) and not trends.

Among the climate models that provided the precipitation 
forecasts used here, after the bias correction of  the precipitations, 
error, and correlation analysis between the predicted and observed 
precipitations showed that CCM3v6 model produced better 
results, although in a very tenuous way. After performing the 
soil moisture predictions and subsequent analysis of  the results, 
this slightly better performance of  the CCM3v6 model can be 
more clearly verified. However, the use of  only one model would 
eliminate the possibility of  the D group forecast. Moreover, the 
spatial resolution of  all three climatic models is very coarse when 
compared to the studied basin. A precipitation forecast with better 
spatial and temporal resolution would potentially yield better 
performance for the soil moisture predictions.

Although the long-term forecast of  precipitation and, 
consequently, of  soil moisture still requires great evolution, the 
available alternative (using the average monthly precipitation) does 
not allows the identification of  anomalies. In other words, the use 
of  precipitation forecasts, even with a low accuracy index for the 
exact soil moisture class, allows the identification of  periods in 
which soil moisture is higher or lower than normal for the month, 
which is impossible using the long-term mean monthly rainfall.

The work presented herein aimed to organize and evaluate 
a methodology for implementing soil moisture ensemble long-term 
forecasts using free online data and software. This eases the 
utilization of  such methodology, since it requires only internet 
access to obtain all the data and software necessary. Thus, the 
main contributions of  this study to soil moisture forecasting are 
the assessment of  the forecast generated with different sets of  
precipitation prediction, the probabilistic element considered in 
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the forecasting, and the organization of  a methodology that is 
easily reproducible.
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