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ABSTRACT

Pulsating waves (also known as roll waves) might occur on the free surface of  extreme events like mud and debris flows, among others, 
usually intensifying the caused damage. This technical note aims to inform about the roll wave phenomenon developing in a free-surface 
laminar flow, and analyze its generation criteria, centered on the concepts of  Froude number and disturbance frequency. The complete 
linear stability analysis of  the new depth-averaged model was proven a useful theoretical tool in determining new generation criteria 
for roll waves developing in non-Newtonian fluids. The results showed that the roll wave generation depends on two criteria: the first 
is associated to the minimum Froude number, and the second is related to the cut-off  frequency. In addition, we have confirmed that 
the new generation criteria can be verified via numerical simulation based on a second model with full equations (Fluent software). 
Globally, the emergence of  roll waves is favored by the non-Newtonian properties of  the flowing fluid and the fact that the cut-off  
frequency decreases along with the minimum Froude number. Lastly, both generation criteria were tested in order to examine a case 
study involving the occurrence of  roll waves in a watershed.
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RESUMO

Ondas pulsantes (tipo roll waves) podem surgir na superfície livre de eventos extremos como corridas de detritos e lamas, dentre outros, 
potencializando os danos causados. Esta nota técnica tem por objetivo informar sobre a fenomenologia das roll waves evoluindo na 
superfície livre de escoamentos laminares e analisar seus critérios de geração com foco nos conceitos de Froude mínimo e da frequência 
de perturbação. A análise de estabilidade linear completa do novo modelo das equações promediadas na vertical, mostrou-se como 
ferramenta teórica útil na determinação dos novos critérios de geração de roll waves evoluindo em fluidos não-newtonianos. Os resultados 
demonstraram que a geração de roll waves depende, de fato, de dois critérios: o primeiro associado ao número de Froude mínimo e o 
segundo relacionado à frequência de corte. Além disso, testou-se e confirmou-se que esses novos critérios de geração foram também 
atendidos, quando da simulação numérica obtida por um segundo modelo baseado nas equações completas, neste caso, o software 
Fluent. Globalmente, o surgimento de roll waves é favorecido pelas propriedades não-newtonianas do fluido escoante com a frequência 
de corte diminuindo com o número de Froude. Por fim, ambos os critérios de geração foram aplicados em um estudo de caso com 
presença de roll waves em uma bacia de drenagem.

Palavras-chave: Roll waves; Fluido não-Newtoniano; Regime laminar; Número de Froude mínimo; Frequência de corte.
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INTRODUCTION 

Roll waves are waves that propagate with constant amplitude, 
length and velocity, modeled as a wave train, under the action of  
weight and viscous forces, wall resistances, and surface tensions. 
They can be also characterized as waves with the aspect of  mobile 
hydraulic jumps (pulsating regime), which are present in the nature. 
Roll waves can occur in diverse flow situations and contexts: in 
pressure flows, in free-surface flows or in the interface of  multi-
phased media, in Newtonian or non-Newtonian fluids, under 
laminar or turbulent regimes, naturally developed (natural roll 
waves) or under an imposed frequency, as illustrated by Figure 1.

The phenomenon might occur in dam spillways, in natural 
flows (geophysical) (Bazargan & Aghebatie, 2015; Arai  et  al., 
2013), in highway traffic (vehicles are treated as fluid particles) 
(Kuehne, 1984), in gas pipelines (Aydin et. al., 2015) and even in 
the circulation of  human arteries (Brook & Pedley, 2002). Given 
the variety of  contexts in which they might occur, roll waves can 
be classified as a multidisciplinary, large spectrum phenomenon, 
of  environmental, social, industrial and medical interest.

There is a propitious domain for the phenomenon to occur 
in the ambit of  “natural” disasters (landslides, mudflows, avalanches, 
volcanic lavas, superficial flows), depending on topographic, physical 
(viscosity, for instance) and dynamic factors (like the discharge). 
Consequently, it also depends on the flow Froude ( minFr Fr> ) and 
Reynolds numbers (Coussot, 1994; Ng & Mei, 1994; Balmforth 
& Liu, 2004; Maciel et al., 2013) and, at the same level, on the 
involved disturbance frequencies, being all parameters intimately 
related to the flowing fluid rheology.

It should be noticed that just some of  the disturbances 
neighboring the uniform regime will actually evolve into roll wave 
state, implying the existence of  a frequency band ( minf , maxf ), which 
assures the phenomenon for a given discharge range. Should it 

not occur, the disturbances would dampen (Ferreira et al., 2014). 
Gray & Edwards (2014) also reported the existance of  a cut-off  
frequency necessary for the generation of  disturbances in granular 
flows. Such finding is in accordance with the experimental results 
of  Forterre & Pouliquen (2003). Additionally, a minimal channel 
length ( minL ) is necessary for the propagation of  stabilized roll 
waves (Di Cristo et al., 2013a). Both generation criteria ( minFr Fr> , 
and ( ) critical cut offf f −< ) depend on the rheological properties of  the 
fluid. Along these lines, such rheological parameters should be 
accurately quantified, a difficult task, may it be in natural events 
or under controlled laboratory conditions, especially when taking 
into account the lack of  infrastructure of  Brazilian universities for 
treating the rheology (rheometry) of  complex fluids.

Roll wave studies count from the decades of  1910 and 
1920 (Cornish, 1910; Jeffreys, 1925) and, since then, they are of  
high interest to the scientific community. In the decade of  1940, 
the classical work of  Dressler (1949) opened up a new line of  
research, calling the attention of  the mathematical society. In the 
end of  the 1960’s, Brock (1969) proposed his doctoral thesis, 
analyzing the phenomenon on water, generating and measuring 
waves in two long channels. When it comes to non-Newtonian 
fluids, the works of  Kajiuchi & Saito (1984), Ng & Mei (1994), 
Liu and Mei (1994) are considered pioneers.

Through time, chiefly in the last 15 years, the roll wave 
phenomenon has been reported in the physics literature (Liu 
& Mei, 1994; Liu & Gollub, 1994; Needham & Merkin, 1987; 
Hwang & Chang, 1987; Gao et al., 2003), in chemistry (Holmås, 
2010), in engineering (He  et  al., 2020; Mcardell, 2016) and in 
applied mathematics (Razis et al., 2019; Campomaggiore et al., 
2016), under three self-complementary branches: mathematical, 
numerical and experimental modelling. This reaffirms the multi-
inter-transdisciplinary aspect of  the subject, reflecting in the 
opportunity/possibility to gather around different researchers 

Figure 1. Roll wave phenomenon in open channels and in experimental tests carried out in laboratories. Roll waves in water: (a) 
Turner Dam and Reservoir, Vally Center (Ponce, 2005), (b) concrete channel, Lions Bay (Balmforth, 2011), (e) Channelized Achumani 
River, La Paz (Ponce & Guzmán, 2019). Roll waves in glycerin: (c) experimental apparatus for roll wave measurements, LH2 Lab., Ilha 
Solteira, Brazil (own authorship). Roll waves in mud: (d) concrete channel (Institut National de Recherche en Sciences et Technologies 
pour L’environnement et L’agriculture, 2001), (f) experiment in an inclined channel, LH2 Lab., Ilha Solteira, Brazil (own authorship).
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and aptitudes. As previously stated, in the event of  roll wave 
generation, may it be in dam spillways or in “natural” disasters, 
the phenomenon usually intensify the caused damage, not only 
developing erosive actions and promoting sediment transport, 
but also generating waves of  higher amplitudes, especially in the 
case of  non-Newtonian fluids (Maciel et al., 2018).

Although in reduced numbers, roll wave studies concerning 
both laminar and turbulent regimes have been experimentally 
carried out (Brock, 1969; Tamburrino & Ihle, 2013; Fiorot et al., 
2015; Maciel et al., 2017; Zhao et al., 2015; Aranda et al., 2016; 
Miao et al., 2020; Fei et al., 2021). Works based on mathematical 
and numerical modelling, on the other hand, are more frequent 
in the literature (Zanuttigh & Lamberti, 2002; Gao et al., 2003; 
Balmforth & Liu, 2004; Di Cristo & Vacca, 2005; Maciel et al., 
2013; Ferreira et al., 2014; Cao et al., 2015; Ivanova et al., 2017; 
Maciel et al., 2018; Kan et al., 2018; among others).

The basis for the mathematical model applied in roll waves 
studies generally results from the inclusion of  a good rheological 
model of  the fluid in the viscous part of  the stress tensor in the 
momentum equation, providing, along with the conservation of  
mass, Navier-Stokes equations (for Newtonian fluids) and Cauchy 
equations (for non-Newtonian fluids).

Thus, the aim of  this work is to revisit a roll wave 
mathematical model based on depth-averaged equations, for a 
laminar flow of  non-Newtonian fluid (Maciel et al., 2013), focusing 
on two generation criteria for the phenomenon: the minimum 
Froude number, determined with basis on the temporal linear 
stability analysis, and the cut-off  frequency (spatial stability), 
defined as the maximum frequency below which roll waves would 
occur, and above which they would be dampened (Ferreira, 2013). 
Furthermore, our work also aims to verify if  the new generation 
criteria established for flows of  non-Newtonians fluids can be 
confirmed through numerical simulations performed by a second 
model with full equations (Fluent software).

Since the instabilities present a spatial-temporal growth, 
they can be interpreted as a dynamic system, subjected to diverse 
theoretical and numerical analysis. Numerical simulations were 
performed with the Fluent 14.5 software (full equations), exhibiting 
roll waves whose amplitude and wavelength varied in function of  
the flow Froude number and the cut-off  frequency. The results 
were theoretically and experimentally in accordance with the 
literature, allowing for validating the criteria for phenomenon 
generation and control. Later on, we applied such findings in a 
case study concerning the roll waves generation in the Acquabona 
basin (Italy).

Considerations on rheology

Studies concerning rheology precede its own nomenclature, 
with Hooke and Newton, still in the century XVII, being the 
first to establish a relation between stress and shearing. The term 
“rheology” was created by Professor E. C. Bingham, characterizing 
the study of  the deformation and flow of  matter. Later on, in 
1929, such definition was accepted along with the foundation of  
the American Society of  Rheology (Barnes et al., 1989).

The rheological behavior of  the materials is defined in 
accordance with the relation between forces and deformations. 

This relationship can be represented by a mathematical formulation 
called “rheological equation of  state” or “constitutive equation”. 
Thus, the rheological properties are expressed by a mathematical 
model whose values represent the characteristics of  the material 
(Malkin & Isayev, 2012).

In order to fully comprehend the rheology of  materials, 
a previous knowledge about the relation between two physical 
quantities is fundamental: the shear stress and the shear rate, 
both responsible for classifying the materials as Newtonian and 
non-Newtonian. Furthermore, it is necessary to understand the 
composing parameters of  such quantities: the viscosity (differential, 
apparent, complex), which defines the relation between shear stress 
and shear rate; the yield stress, which refers to the minimum stress 
required for the fluid to flow; and the flow index, indicative of  
the linearity or the non-linearity of  the shear stress/rate relation.

Rheology can be applied in several areas, from the hemorheology, 
to the pharmaceutical, chemical, food and construction industries, 
and in the treatment of  the hydrodynamics of  natural (or artificial) 
phenomena with the presence of  complex fluids. In this sense, 
several fields in science can no longer develop without rheological 
studies - polymers and plastics, for instance, are still the main object 
of  rheological researches (Malkin & Isayev, 2012).

Recent studies have been focusing on the rheological 
characterization of  mud materials produced by the mining industry, 
with aims to minimize the impacts of  the activity (Boger, 2013; 
Long  et  al., 2017). It is important to understand the dynamic 
behavior of  flows of  this nature (mudflow) and identify their non-
destructive potential (benefits), in order to define methodologies 
for a sustainable applicability of  such material, like in brick 
production, for example (Buzzo, 2019).

The rheological characterization of  mud materials is even 
more complex due to its non-Newtonian nature. Therefore, more 
refined rheometric approaches, such as the use of  rheometers or 
consolidated alternative techniques, able to accurately provide 
the levels of  shear stress and shear rate of  the analyzed materials, 
have become mandatory.

In free-surface natural flows like flows of  mud and debris, 
the distinguishing behavior of  these materials, characterized by the 
suspension of  mineral-based particles (clay, extended granulometry 
sands and other particulates) in water, is rheologically described by 
non-Newtonian models, more specifically the Herschel-Bulkley’s 
(Coussot, 2014). Such model is not only characterized by the non-
linear relation between shear stress and shear rate, but also for 
the presence of  a yield stress and an apparent viscosity, allowing 
for the occurrence of  thixotropic and viscoelastic phenomena 
(Freydier et al., 2017).

Viscoplastic fluids of  similar rheology, like the carbopol 
gel, are usually employed in physical experimentations carried out 
in laboratories (Piau, 2007; Chambon et al., 2014). The carbopol 
gel is a viscoplastic fluid produced from a hydro-dissolvable acrylic 
polymer, whose rheological characteristics are similar to those of  
the mud found in mudflows and in dam reservoirs. Analogous to 
mud, the carbopol gel presents, on determined concentrations, 
yield stress and has the Herschel-Bulkley model as representative 
of  its rheological properties (Balmforth et al., 2014).

In this context, our research group has been working on 
the rheometry of  different types of  fluid, whose rheograms are 
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exhibited in Figure 2. It is worth noticing that the pure glycerin 
(Newtonian), the carbopol gel and the clay mixtures (Herschel-
Bulkley) are the most-employed fluids used in the generation of  
experimental roll waves.

METHODOLOGY

Mathematical modelling

The roll wave mathematical modelling is developed with 
basis on the classical system of  equations of  momentum and 
conservation of  mass, in which a proper stress tensor (Newtonian, 
Binghamian, Herschel-Bulkley, Casson, Carreau, etc) is inserted 
in the viscous part of  the dynamic equation. On the hypotheses 
of  an incompressible and homogenous fluid, in a laminar regime, 
with null velocity (no-slip condition), in the bottom of  a large 
inclined channel, under the action of  gravity, the dimensionless 
depth-averaged Cauchy system of  equations for a non-Newtonian 
Herschel-Bulkley fluid is given by (Maciel et al., 2013).

Continuity equation:

( )huh 0
t x

∂∂
+ =

∂ ∂
	 (1)

Momentum equation:

( ) ( )
( ) ( )( )

( ) ( )( )

n2 2

2

u huh 1 C n 1 nC1 h h C 1 C uh
t x x h C n 1 h nC2Fr

a∂  ∂ − + +∂
+ + = − − −  

∂ ∂ ∂ − + +  
	 (2)

with length scales: *  /x x L= , *   / 0h h h= ; velocity scale: *u = / 0u u ; time 
scale: *  /0t u t L= ; / cos0 0Fr u gh θ=  (Froude number), ( )/ sinc 0C ghτ ρ θ=  

(yield stress parameter, cτ : yield stress), where h is the fluid height, 
u  is the mean flow velocity, x is the longitudinal distance along 
the channel, t is the time, L is the characteristic length, n is the 
flow index, ρ is the fluid density, g is the gravity acceleration, θ  is 
the channel slope, 0h  is the fluid depth, 0u  is the mean velocity in 

a uniform flow, and ( )
( )

( ) ( )

( ) ( )

 2

2 2 2

2 n 1 C 4n 3 n2n 1
3n 2 n 1 2 n 1 nC n C

a
 + + ++   =

+  + + + +  

 is the 

momentum coefficient distribution along the depth, in function 
of  n and C. Asterisks were omitted in (1) and (2) for notation 
convenience.

The dimensional mean uniform flow velocity for Herschel 
Bulkley fluid is calculated by Equation 3 (Maciel et al., 2013).

( )
1

n 1 n
0

0
n

gsin zn n 1 nCu
n 1 k 2n 1

ρ θ +  + +  =   + +  
	 (3)

where: ( )/0 0 cz h gsinτ ρ θ= − .
Through Equations 1 and 2, it is possible to evaluate the 

above-mentioned scheme as a dynamic system of  the phenomenon, 
allowing for the use of  the stability analysis technique. For such 
analysis, an infinitesimal disturbance of  small amplitude is added 
to the uniform flow ( ) ( ), , h u 1 1= , which is given by: ( ) ( ),  ,h x t 1 H x t= +  
and ( ) ( ), ,u x t 1 U x t= + , with ( ),H x t  and ( ),   U x t 1<< .

Linear stability analysis

The linear stability theory is a tool that allows us to obtain 
important information about the dynamic system, such as the growth 
rate and the propagation velocity of  instabilities. Through this method, 
widely discussed by Briggs (1964), Ng & Mei (1994), Maciel et al. 

Figure 2. Flow curve of  the fluids analyzed in the generation of  experimental roll waves: (a) glycerin, (b) carbopol and (c) mud.
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(2013), it is possible to characterize the necessary conditions for 
the generation of  instabilities. Di Cristo & Vacca (2005) used this 
theory to evaluate the convective nature of  roll waves instabilities, i.e. 
to demonstrate how waves can appear and grow in time and space 
only if  the flow conditions are favorable. The aim of  this section is to 
determine the dispersion equation for the system (Equation 1 and 2) 
and analyze how infinitesimals disturbances ( ( ),H x t  and ( ),U x t ) in the 
height ( ), h x t  and in the mean flow velocity ( ), u x t  behave. Knowing 
the periodicity of  the solution, the disturbance can be described 
as ( ) ( )ˆ, i kx t H x t He ω−= , where Ĥ is the magnitude (constant), k  is the 
wavenumber, and ω is the frequency. Parameters k  and ω are complex 
numbers defined as: r iiω ω ω= +  and r ik k ik= + , with rk  (real part of  k) 
being the wavenumber, rω  (real part of  ω), the frequency, and  ik  and iω , 
the amplification rates, where  i 0ω >  indicates a temporal amplification 
and ik 0<  indicates a positive spatial amplification in the x direction 
(Gaster, 1962). The dispersion equation (Equation 4) can be obtained 
by solving the disturbed system for ( ),H x t .

( ) ( )( )
( )

2 2
2

n 1 2n 112 k n 1 C i k i k 0
n 1 nCFr

ω a ω a
+ + − − − + − − =     + + 

	 (4)

First criterion

The temporal linear stability analysis is determined by 
solving the dispersion equation (Equation 4), whose incognita 
is ω , while considering ik 0= . Therefore, the first criterion for 
instabilities generation is obtained (Equation 5). In order for the 
disturbances to propagate downstream and amplify themselves, 
the Froude number must be greater than the threshold value minFr , 
as described in detail by Maciel et al. (2013).

min 2 2
Fr Fr

2

ϑ

ϕ aϕϑ aϑ
> =

− +
	 (5)

where:

( ) ( )( )
( )

,
n 1 2n 1

n C
n 1 nC

ϕ
+ +

=
+ +

( ) ( ),n C n 1 Cϑ = −

Second Criterion

By its turn, the spatial stability is carried out aiming to 
examine a critical condition related to the disturbance frequency. 
Thus, based on the dispersion equation (Equation 4) and considering 

r ik k ik= +  and i 0ω = , ( )rk ω  is given by Equation 6 (Ferreira, 2013).

( ) ( )r

2

1k 2 i c di
1

Fr

ω aω ϕ
a

 = + ± +  − 
 

	 (6)

with:

2 2 2
2

1c 4
Fr

ω a a ϕ = − + − 
 

2d 4
Fr
ϑω aϕ aϑ = − + 

 

After solving Equation 6, for rk 0> , we obtained Equation 7 and 
Equation 8, respectively related to the cutoff  frequencies ( ( cω , f c ).

2
c 2

1 1abs 2
2 Fr

ω ω a ϑ aϑϕ
a

  < = − −    
 (dimensionless)	 (7)

or yet

c 0
c

0

uf f
2 h
ω
π

 < =  
 

 (dimensional)	 (8)

More details about the second criterion are presented in 
Appendix A.

Numerical simulations

It is worth noticing that numerical simulation of  the 
Equations 1 and 2 (Maciel et al. 2013), in which the first generation 
criterion is satisfied (minimum Froude or Reynolds number), 
have already been widely carried out by various authors (Maciel 
& Lledo, 1999, Balmforth & Liu, 2004, Di Cristo et al., 2013b). 
The significant contribution brought by the new mathematical 
model (Equations 1 and 2) resides in including the complexity 
of  the Herschel-Bulkely viscoplastic rheology (three-parameter 
rheological model) in the viscous tensor, which is associated to the 
establishment of  the supplementary criterion (cut-off  frequency). 
Our results show that the minimum Froude number is necessary, 
but not enough to generate the phenomenon.

Thus, this technical note aims to verify if  a full equations 
model is able to validate the generation criteria previously established, 
and to examine if  the roll waves retain the same properties.

The numerical simulations were performed within the 
ANSYS Fluent 14.5 software. The full equations (of  continuity and 
momentum) were discretized through the finite volume method. 
The geometry and mesh were elaborated using the ANSYS 
Design Modeler and ANSYS Meshing, respectively. The mesh was 
constituted of  193.200 rectangular elements (with spatial refinement 
Dx 5 Dy≤ ×  near of  the inlet of  channel) and all simulations were 
performed with a fixed time step of  0,0001 s, small enough to 
guarantee numerical stability through the Courant-Friedrichs-
Lewy (CFL) condition (CFL .0 25< ). Figure 3 presents the applied 
boundary conditions and the employed mesh (it is important to 
observe that h0 is the normal depth of  the channel and  02h  is the 
region with the refined mesh). The selected meshing was used 
in the generation of  roll waves due to its well-refinement, and 
its capability in assuring numerical convergence and providing 
theoretical-numerical results in agreement with the uniform regime 
(normal depth, velocity profile and shear rate). The numerical 
schematization is summarized in Table 1.

Given the necessity to numerically detect the interface 
between the test fluid and the air, we utilized the VoF interface 
tracking method (Hirt & Nichols, 1981; Ferreira  et  al., 2015; 
Issakhov & Zhandaulet, 2020). In order to apply this technique, 
we considered the immiscibility of  both fluids, and introduced 
the volume fraction scalar variable to track the interface.

The VoF technique adds a new scalar diffusion-advection 
equation, coupled with the continuity and momentum equations, 
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to obtain the volume fraction field in order to track the interface 
between test fluid and air. The Modified High Resolution Interface 
Capturing (HRIC) scheme is used in this work to discretize the 
volume fraction equation. In order to numerically disturb the 
uniform flow, we employed a User-Defined Function (UDF) 
applied to the velocity inlet of  the channel, dependent on the 
imposed disturbance frequency (Equation 9):

0
2 tV u 1 Bsin
T
π  = +     

	 (9)

where V  is disturbed mean flow velocity with period T  ( /f 1 T= ) 
and magnitude B (in the order of  1/1000).

RESULTS AND DISCUSSIONS

In order to analyze the occurrence of  roll waves phenomena 
and evaluate its generation criteria, numerical simulations for 
Newtonian, power-law and Herschel-Bulkley fluid flow cases are 
presented in this section. Data were gathered from previous works 
which observed and/or simulated flows with roll waves generation. 
For the Newtonian case, Fiorot et al. (2015) experimentally observed 
and measured roll waves in pure glycerin flowing down an inclined 
channel of  0.30 m x 0.15 m x 2.50 m long. For the power-law case, 
Ng & Mei (1994) observed roll waves. The Herschel-Bulkley case 
was simulated in the same conditions of  the power-law case, adding 

a low yield stress value to the power-law fluid. In this technical 
note, all numerical tests were performed in a 6 m long numerical 
channel. Subsection Uniform flow presents the simulations for 
the three fluids. Subsection Roll wave generation shows the results 
for a disturbed uniform flow to verify the roll wave generation. 
The properties of  the fluids, of  the flows and roll waves simulated 
are summarized in Table 2. Finally, we present a qualitative analysis 
of  roll wave generation in the Acquabona Case.

Uniform flow simulation

The case studies gathered in Table 2 were initially simulated 
without imposing any disturbances in the fluid, so it would be 
possible to verify some of  the properties of  the uniform flow, such 
as velocity profiles and shear rates. The simulations performed by 
the Fluent software (full equations) were then confronted with 
the mathematical model (Equations 1 and 2), for both the velocity 
profile and the shear rates, as it can be seen in Figure 4.

It can be noticed that the uniform flow simulations present 
a good agreement with the results of  the mathematical model. 
When it comes to the simulations related to Herschel-Bulkley 
fluids (with the presence of  a yield stress), the occurrence of  
a plug becomes evident, i.e., the depth from the free surface 
in which the shear rate is null (fluid flowing as a “solid body”). 
By comparing the flow results provided by the Power-law and 
the Herschel-Bulkley fluids, it can be seen that the presence of  a 
yield stress culminates in lower shear rates.

Roll wave generation

Following the parameters set in Table 2, both generation 
criteria were checked for the three types of  fluid: Newtonian, Power-
law and Herschel-Bulkley. The first criterion was to verify a Froude 
number minFr Fr> , which depends on the fluid characteristics and 

Table 1. Employed Numerical schemes in roll wave simulation.
Multiphase model VoF

Time Unsteady
Second Order Implicit

Viscous model Laminar
Pressure-velocity coupling Simplec

Pressure Presto
Momentum Third Order MUSCL

Volume fraction Modified HRIC

Figure 3. Numerical mesh used for roll wave simulation: (a) boundary conditions and (b) grid details.
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on the flow dynamics (Equation 5). Should the first condition be 
satisfied, the second criterion is then tested. Not every disturbance 
frequency will be able to produce permanent roll waves.

The range of  frequencies that favors the phenomenon 
occurrence depends on the rheological properties of  fluid and 
on the Froude number, as shown in Equation 7 and Equation 8. 
Table 2 summarizes the properties of  all test fluids, the values 
concerning the generation criteria for stabilized roll waves ( minFr , 

cω , and f c), and the main features of  the experimentally-simulated 
permanent roll waves.

Through the data presented in Table  2, it can be seen 
that the Froude number is higher than the minimum necessary 
for all tests. It can also be observed that the cut-off  frequency 
decreases each time we added a non-Newtonian effect (  n and cτ ). 
In order to verify the validity of  the cut-off  frequency criterion, 
simulations were performed at various disturbance frequencies. 

Figure 4. Numerical simulation versus mathematical model concerning the velocity profiles and the shear rates of  the uniform flow 
for: (a) Newtonian, (b) Power-law and (c) Herschel-Bulkley fluids.
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For the Newtonian fluid, the tested disturbance frequencies were 
0.5, 1, 3, 4 and 6 Hz, and the results of  the numerical simulations 
are shown in Figure 5.

It can be seen that at disturbance frequencies higher than 
.4 82 Hz, the waves dampened, i.e. should the disturbance frequency 

be above the critical or cut-off  frequency (Table 2), there is no 
occurrence of  roll waves. The same findings are also true for the 
Power-law ( ). ; cn 0 4 0τ= =  and the Herschel-Bulkley ( ). ; .  cn 0 4 0 2 Paτ= =  
models, at disturbance frequencies of  .0 8, 1.0, 2.0 and 3.7 Hz, as 
shown in Figure 6. As the disturbance frequency increases, roll-
wave development initially shuts off  in the Herschel-Bulkley fluid 
and later on in the Power-law fluid.

Furthermore, an increase in the main properties of  the 
roll waves (amplitude, length and propagation velocity) can be 
noticed as the generating frequencies lessen, in both Newtonian 
and non-Newtonian cases.

As far as the roll wave profile is concerned, it is possible to 
verify that low-frequency waves are more sharply, with characteristics 
similar to those of  shock waves, as experimentally verified in 
Newtonian and non-Newtonian laminar flows (Fiorot et al., 2015, 
Maciel et al., 2017, Cunha, 2017). Such finding indicates that the 
disturbance frequency is an important parameter in the generation 
and in the characterization of  roll waves. However, it is necessary 
to point out that the tests were exclusively carried out in laminar 
flows, as indicated by the Reynolds number (Table 2).

Qualitative analysis of  the roll wave generation 
criteria applied in the Acquabona Case

The Acquabona drainage basin, in Italy, drains off  into a 
1600 m long channel, and its monitoring system usually registers 
debris flows with the presence of  wavefronts (pulsating regime). 
Thus, phenomena like the roll wave can be conveniently recorded 
through a series of  monitoring stations installed along the channel, 
geophone sensors at its bottom, and ultrasonic sensors set up in 
predetermined spots, allowing for an accurate measurement of  
the depth of  flow in function of  time. According to Zanuttigh & 
Lamberti (2007), it is possible to confirm the presence of  wavefronts 
and measure their amplitudes and propagation velocities. As an 
example of  qualitative exploratory research, on July 25th and 27th, 
1998 and on August 17th of  the same year, rainfall and depth-of-
flow measurements were carried out in Acquabona. On August 
17th, the flow lasted for approximately 38 minutes, registering 
more than 15 different wave peaks at measuring station number 
3. The maximum depth was of  1.8 m and the front velocity was 
estimated in 7.7 m/s, (Berti et al., 2000). Figure 7 exhibits registers 
of  the depth assessed in function of  time.

This event (August 17th, 1998) has been explored both in 
the characterization of  the flowing fluid rheological properties and 
in the search for models that agreeably represent the phenomenon 
(Berti  et  al., 2000; Zanuttigh & Lamberti, 2007; Fiorot  et  al., 
2018). The waves identified by the letters A, B, C, D, and E, 

Table 2. Fluid properties, minimum conditions for roll wave generation, wave height ( ) ,∆h  wavelength ( )λ  and celerity ( numU ).
Fluid and Flow Properties Newtonian Power-law Herschel-Bulkley

( )c Paτ 0 0 0.20(1)

( ).  /n
nK Pa s

0.212 0.14 0.14
µ  ( ).Pa s

n 1.00 0.40 0.40
C 0 0 0.1774
a 1.2 1.125 1.103

( ) 0h m 0.0098 0.0057 0.0057

( ) /0u m s 0.256 0.235 0.123

( )minL  m (2) 0.45 1.26 1.35

Fr 0.830 0.985 0.531

minFr 0.577 0.298 0.218

Re 14.58 42.50 41.76

( ) cf Hz 4.82 3.70 1.927

cω 1.163 0.563 0.558

Wave height and wavelength
Frequencies ( )Hz Frequencies ( )Hz Frequencies ( )Hz

1.0 3.0 4.0 0.8 1.0 0.8 1.0
cω 0.241 0.723 0.965 0.121 0.152 0.232 0.291

( )h m∆ 0.0064 0.003 0.0011 0.0024 0.0021 0.0016 0.0009

( )mλ 0.7500 0.210 0.1500 0.6290 0.5030 0.5300 0.3500

numU (m/s) 0.750 0.630 0.600 0.5032 0.5030 0.424 0.350
(1) Value attributed in the numerical test. (2) All minimal channel lengths  minL (Di Cristo et al., 2013a) were verified.
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inside the shaded region in Figure 7, present similar amplitudes 
and periods, distinguishing themselves from the other waves. 
Fiorot et al. (2018) explored the idea that the referenced sequence 
of  waves could have formed a roll-wave pattern, since they were 
able to verify the ability of  the mathematical model established 
by Maciel et al. (2013) to determine wave amplitudes and their 
flagrant dependency on the rheological properties of  the fluid. 
Taking into account the type of  sediment and the granulometry, 
in accordance with the method proposed by Malet et al. (2003) 
and the technique established by Fraccarollo & Papa (2000) for 
determining the yield stress, a smaller error was obtained in the 
roll-wave amplitude (error of  -13%, excluding D peak). Further 
details are discussed by Fiorot et al. (2018). Table 3 exhibits the 
cut-off  frequency and the minimum Froude number required for 
roll wave generation, based on the rheological parameters and 
on the normal depth of  flow estimated for the Acquabona case.

It can be observed in Table 3 that the average Froude 
number of  the flow is higher than the minimum Froude number 
required for roll wave generation. Additionally, the cut-off  
frequency indicates that waves generated in the Acquabona case 

were characterized by low frequencies, while exhibiting high 
amplitudes and long periods T (in the order of  100 s), as it can 
be seen in Figure 7.

Lastly, Figure 8 presents the behavior of  the dimensionless 
cut-off  frequency ( )cω  in function of  the Froude number, using 
the simulated data of  the Newtonian and the non-Newtonian 
fluids (Table  2) and those of  the Acquabona case (Table  3). 
The generation criteria discussed in this technical note are even 
more distinguishable in Figure 8, which visually details the domains 
for roll wave generation and non-generation with basis on the Fr 
and cω  parameters.

Based on Figure  8, it can be noticed that the domain 
for roll wave generation related to the first criterion ( )minFr  is 
favored by the non-Newtonian trait of  the fluid, which allows 
for the generation of  roll waves even at low Froude numbers. 
It is important to emphasize, however, that this analysis refers to 
laminar flows. Based on the literature, it can be seen that, in order 
for roll waves to be generated, the Froude number should be higher 
than 0.577 for Newtonian flows under laminar regime (Benjamin, 
1957), and higher than 2.0 for turbulent regimes (Jeffreys, 1925).

Figure 5. Numerical simulations for the Newtonian fluid at different disturbance frequencies: 0.5, 1, 3. 4 and 6 Hz. Damping effect 
is observed when the frequency is higher than the cut-off  frequency.
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When it comes to the cut-off  frequency, it can be 
observed that the non-Newtonian property of  the fluid favors 
the generation of  low-frequency roll waves. Moreover, should 
the Froude number tend to infinity, the cut-off  frequency is 
asymptotic, exhibiting lower values than those for low Froude 

numbers. For the instances discussed in this work, the limit 
superior of  the cut-off  frequency is given by the Newtonian 
case and the limit inferior, by the Acquabona case (Herschel-
Bulkley fluid), whose elevated rheological properties lead to low 
characteristic frequencies ( cω , cf ).

Figure 6. Numerical simulations for non-Newtonian fluids at different disturbance frequencies: 0.8, 1.0, 2.0 and 3.7 Hz. Damping 
effect is observed when the frequency is higher than the cut-off  frequency.

Figure 7. Depths assessed on August 17th, 1998 (Berti et al., 2000). The highlighted wave train indicates a possible roll wave formation.
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FINAL CONSIDERATIONS

In this work, we presented the theoretical and numerical 
results of  experimental roll waves, generated by a disturbance 
imposed onto the uniform flow. In order for such disturbances 
develop into roll waves, two criteria must be met: the first one is 
associated with the ratio of  inertial and gravitational forces (Froude 
number), and the second is related to the disturbance frequency.

The results obtained through numerical simulations show 
a good agreement towards the analytical results for different kinds 
of  fluid. It should be noticed that, although the simulations were 
performed under a favorable domain for roll wave generation 
( minFr Fr> ), their propagation and development also depend on the 
disturbance frequency. This proves that the first criterion ( minFr ) 
is necessary but not sufficient for generating the phenomenon, 
even if  indicates that low Froude numbers are adequate for the 

occurrence of  roll waves in non-Newtonian fluids. In fact, the 
cut-off  frequencies of  the non-Newtonian fluids are lower than 
those of  the Newtonian fluids.

Based on the numerical results, it could be verified that, 
for a given fluid, the roll wave amplitudes and lengths decreased 
along with the disturbance frequency, which is in good agreement 
with the experimental observations (Cunha, 2017). Moreover, since 
the tests were carried out under distinct dynamic conditions and 
their main purpose was to numerically test the roll wave generation 
criteria, the numerical observations vouch for the fact that the 
non-Newtonian property of  the fluid always favors the generation 
of  anticipated roll waves with high amplitudes and longer lengths. 
Such effects can also be observed in simulations involving mud 
fluids flows or describing debris flows with the presence of  roll 
waves (Maciel, 2002).

Figure 8. Behavior of  the cut-off  frequency as a function of  the Froude number for the different fluid rheologies evaluated in this 
work (Table 2) and in the Acquabona case (Table 3).

Table 3. Fluid properties and minimum conditions for roll wave generation in Acquabona case (Fiorot et al., 2018).
Herschel-Bulkley model Fluid and Flow properties

( )c Paτ 762 ( )degreesθ 7

( )n
nk Pas 458 ( )0h m 0.83

n 0.3 a 1.06

- - ( ) / 3
mixture kg mρ 2,039

- - C 0.377
- - ( ) /0u m s 3.08
- - Fr 1.08
- - Re 53.20
- - f  (Hz)  ≅0.01

Generation Criteria

minFr ( )cf Hz cω  (dimensionless cut-off  frequency)
0.147 0.211 0.357
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As previously seen, the criteria for roll wave generation 
were determined through the linear stability analysis of  a depth-
averaged model (Maciel  et  al., 2013), whose results (first and 
second criteria) were also validated, without any incongruity, by 
the numerical simulations performed with full equations (Fluent 
software). Such findings corroborate the initial proposal of  this 
technical note.

Finally, based on both models (Maciel et al., 2013 and Fluent 
software), we were able to verify the generation of  roll waves, by 
assessing their occurrence on open-channel flows, a phenomenon 
that usually increases the flow energy and, consequently, the 
likelihood to cause greater damage to the civil infrastructure and 
to the people of  affected communities.
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APPENDIX A

In the spatial stability analysis, the dispersion equation obtained with the introduction of  the disturbance is given by equation A1.

( )( )
( ) ( ) 2 2

2
n 1 2n 11 k i 2 k n 1 C i 0

n 1 nCFr
a aω ω ω

 + + − + − − + + − =   + +    
	 (A1)

Considering: r ik k ik= +  and i 0ω = , then, rω ω= . Thus, ( )rk ω  is given by equation A2.
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The spatial amplification rate is given by equation A5 and the number of  waves is described by equation A6.
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The functions ( )i rk ω  and ( )r rk ω  (equations A5 and A6) have singularities when: s
1Fr Fr
a

= = . However, when Fr 0> , sFr Fr≠  and 
( )i rk 0ω = , we obtain equation A7.

( )  2 21 c d c 0
2

ϕ
 

± + − = 
 

	 (A7)

By solving equation A7, we obtain a zero spatial amplification rate, if  mimFr Fr= , as established by Maciel et al. (2013). Numerically, it 
can be observed that mimFr Fr> , when ( )i rk 0ω − < , which means that the spatial growth rate propagates in the positive direction (Gaster, 
1962), as shown in Figure A1.

Figure A1. Behavior of  the function ( )i rk ω + (positive branch) and ( )i rk ω − (negative branch), with .0 4=n , .0 1=C  and varying Froude 
numbers.
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It is possible to observe that the spatial growth rate is asymptotic (Figure A1), being the asymptote given by equation A8. Additionally, 
it is important to notice that, for high Froude numbers (Fr →∞), the asymptote depends on the rheological properties of  the fluid ( , n C).

( )
( )
( ) /lim

r

2

i r 1 22 1
2

Fr1k
1 Fr2
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ω
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ω ϕ

a aa

−
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	 (A8)

Figure A2 shows the behavior of  the function ( )r rk ω , with .n 0 4= , .C 0 1=  and varying Froude numbers.

Figure A2. Behavior of  the function ( )r rk ω + (positive branch) and ( )r rk ω − (negative branch), with .0 4=n , .0 1=C  and varying Froude 
numbers.

Through the analysis of  Figure A2.a, it can be seen that the appropriate Froude numbers for wave generation are found in the domain 
( ) ( ) ( ){ }/ 0  0+ + +<∈ >r r r r r rk k and kω ω ω .

In Figure A2.b, minFr Fr>  is in the domain of  ( )r rk 0ω − > . Therefore, ( )r rk 0ω =  becomes a critical condition, represented by equation A8. 
The next step is to identify the critical frequency ( )cω , when ( )r ck 0ω = .
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1 12 c d c 0
1 22

Fr

aω
a
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	 (A9)

By solving equation A9, for Fr 0>  and sFr Fr≠ , the critical disturbance frequency is given by equation A10:

2
c 2

1 1 2
2 Fr

ω ω a ϑ aϑϕ
a

 = = − − 
  	 (A10)

It is important to notice that cω  is a pure imaginary number when ( )/ 2 22 1 Fraϑϕ a ϑ> − . Equation 10 assumes a real value when n 0=  
and/or C 1=  (in both cases, there is no disturbance amplification). Thus, the cut-off  frequency of  the disturbance is rewritten in the 
complex form (equation A11):

ci
c c e ωω ω ∠= 	 (A11)

Lastly, a condition for the amplification of  roll waves in the positive direction cω ω<  is determined by the algebraic resolution of  
( )r rk 0ω − > .

After determining the expression for the critical disturbance frequency ( )cω , it is necessary to investigate its behavior towards the 
rheological properties of  the fluid. Through equation A10, it is possible to notice that, for flows with low Froude numbers, the cut-
off  frequency ( cω ) depends on the Froude number and on the rheology of  the fluid. For high Froude numbers (Fr ∞→ ), though, the 
cut-off  frequency exclusively depends on the rheology of  the fluid.
Figure A3 exhibits the influence exerted by the rheological parameters ( ,  n C) on the cut-off  frequency, when minFr Fr> .
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Figure A3. Influence exerted by the rheological parameters ,n  C  on the cut-off  frequency, when > minFr Fr : (a) Influence of  parameter 
C , (b) Influence of  the flow index of  the fluid n.

Through the analysis of  Figure A3.a, it is possible to observe that an increase of  parameter C (i.e. an increase of  the yield stress of  
the fluid over the shear stress applied on the bottom) results in a decrease of  the domain of  appropriate disturbance frequencies for 
roll wave generation. Furthermore, a decrease in the flow index of  the fluid also causes a reduction of  such domain (Figura A3.b). 
This means that, under same flow conditions, roll waves propagate at lower frequencies in non-Newtonian fluids than they do in 
Newtonian fluids.


