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ABSTRACT

The reservoir storage-yield-reliability (S-Y-R) curve defines the required volume to meet a specific yield. It is typically obtained through 
the historical streamflow time series; however, as an effect of  nonstationarity, the statistical properties of  a streamflow series may vary, 
which might lead to a change in the reservoir’s operational risk. In this study we explore this issue by analyzing two sets of  annual data: 
(i) natural energy flows to aggregated reservoirs, and (ii) streamflow time series of  four hydropower plants currently in operation in 
Brazil. The study is supported by Monte Carlo simulations to account for the reliability of  the S-Y-R curves. Results suggest that the 
time series from the Southern and Northeast regions exhibit upward and downward trends, respectively. Consequently, the regularization 
capacity of  the Southern reservoir decreased, however only in relative terms. On the other hand, the Northeastern reservoir had an 
actual loss of  its regularization capacity as an effect of  lower average streamflow.
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RESUMO

A curva de regularização é obtida a partir das séries históricas de vazão e determina as demandas possíveis de serem atendidas para 
diferentes volumes dos reservatórios. Contudo, como efeito da não estacionariedade as estatísticas relacionadas às séries históricas 
podem variar com o tempo, o que reflete em uma alteração no risco de operação dos reservatórios. Este estudo explora a questão 
analisando dois conjuntos de dados: (i) energias naturais afluentes a reservatórios equivalentes e (ii) séries de vazões afluentes a quatro 
usinas hidrelétricas em operação. Simulações de Monte Carlo são utilizadas para a obtenção de faixas de confiabilidade das curvas. 
Os resultados mostram que as séries temporais das regiões Sul e Nordeste do Brasil apresentaram tendências de aumento e redução, 
respectivamente. Consequentemente, a capacidade de regularização do reservatório ao Sul decaiu, mas somente em termos relativos. Por 
outro lado, o reservatório no Nordeste apresentou uma perda na capacidade de regularização por efeito do decaimento na vazão média.
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INTRODUCTION

Reservoirs are a necessary intervention of  humanity in 
nature. Water supply, water storage, energy generation, flood 
containment, and agriculture irrigation, are some of  their main 
uses (Carvalho, 2015). The water storage capacity is fundamental 
for the development of  societies and countries, promoting the 
meeting of  the population’s water and energy needs (Briscoe, 
2011). In Brazil, water resource represents about 60% of  the 
country’s electric matrix (Agência Nacional de Energia Elétrica, 
2022), which is essential for maintaining the matrix predominantly 
renewable. Such a percentage is comprised of  about 165 large 
hydropower plants (HPPs) (with more than 30 MW of  installed 
capacity) currently in operation; among them, 72 have reservoirs 
with an over-year storage capacity (Operador Nacional do Sistema 
Elétrico, 2020).

A common method to associate water supply yields with 
a certain reservoir’s active volume is the storage-yield-reliability 
curve (S-Y-R). It consists of  a nonlinear function that relates a 
constant release rate with the required storage for a given reliability 
(Loucks & van Beek, 2005, p. 344). The S-Y-R relationship was 
thoroughly studied by R. Vogel and collaborators circa 1980-90 
in a series of  papers that explored its statistical properties (Vogel 
& McMahon, 1996; Vogel & Bolognese, 1995; Vogel & Stedinger, 
1987, 1988) and applications in the United States (Vogel et al., 
1995, 1997, 1999). More recently, the S-Y-R curve has been 
widely used not only for designing purposes (Silva & Portela, 
2013; McMahon et al., 2007) but also as a tool for understanding 
the operating rules of  existing reservoirs (Aljoda & Jain, 2021; 
Srivastava & Awchi, 2009; Vogel et al., 2007). Moreover, Kuria 
& Vogel (2015) employed the S-Y-R relationship to evaluate the 
uncertainty of  water supply reservoir yields.

The streamflow time series is the main input to define 
the S-Y-R curve, thereby any changes in this series can produce 
variations in the curve as well. In this sense, anthropogenic climate 
change (Milly et al., 2015), land-use modifications (Mo et al., 2020; 
Levy et al., 2018), or a combination of  both (Guo et al., 2020), 
are frequently highlighted as inductors of  nonstationarities in 
streamflow time series. Climate change is referred to an increase in 
temperature triggered by the growth of  greenhouse gas emissions 
(Gleick, 1989). The consequence is a modification in the precipitation 
patterns, with an increase in the occurrence of  extreme events 
(wet and dry) in diverse regions of  the globe (Dore, 2005). In turn, 
land-use transformations alter the terrestrial-related phases of  the 
hydrological cycle (Brown et al., 2005). Nonetheless, separating 
these causes is a challenging task in hydrological research; for 
example, Wang et al. (2013) list several studies that attempt to do 
so by using diverse approaches that include statistical, climate-
based, and hydrological models. The authors themselves obtained 
consistent results by applying three different approaches to a 
study case in China. However, they emphasized that errors and 
uncertainties are non-neglectable in the processes.

Even with an incomplete understanding of  the causes 
that lead river regimes to change, trends in streamflow time series 
have been detected worldwide (Gudmundsson et al., 2019) and in 
diverse regions in Brazil. For example, Chagas & Chaffe (2018) 
identified a general increase in annual mean flow in the southern 
region of  the country, with statistically significant trends in Iguazu 

and Uruguay river basins. Overall, these changes followed an 
increase also observed in the mean annual rainfall in the region. 
However, the authors show that the increase rate of  the streamflow 
is higher than the rainfall, suggesting that land-use modifications 
may also be relevant. Silva et al. (2019) obtained similar results 
for the Paraná River basin at the Itaipu HPP location. On the 
other hand, the authors detected decreasing trends in the São 
Francisco River streamflow at the Sobradinho and Xingó HPPs 
locations. Interestingly, such changes were not detected for the 
rainfall time series. In turn, de Jong et al. (2018) pointed out that 
the São Francisco River has consistently been showing decreasing 
streamflows since the early 90s because of  the combination of  
rainfall reduction and water withdrawals for irrigation purposes.

Freitas (2020) also detected negative trends in inflows 
to two of  the four reservoirs of  the Cantareira system, in the 
Metropolitan Region of  São Paulo. This is an important water 
supply system that suffered from extreme drought in 2013-2015, 
with severe socioeconomic consequences. Even so, no trends were 
detected in precipitation; hence, land-use changes were pointed 
as the main cause for streamflow reduction. In northern Brazil, 
Heerspink et al. (2020) detected both increasing and decreasing 
trends in streamflows of  the Amazon River basin. The explanation 
relied on an interaction between climatic and land-use changes, 
with a contribution of  groundwater storage variation due to 
deforestation.

As seen by the cited references, several studies have been 
conducted on streamflow nonstationarity, aiming at pointing at 
possible explanations. Nevertheless, only a few addressed its 
impacts on the reservoir’s operation and reliability. For instance, 
Ehsani et al. (2017) showed that the variation in the statistical 
parameters can increase the reservoirs’ operational risk. The 
authors advocate that the importance of  dams will increase in a 
climate change scenario. Moreover, in studying the Oroville Dam 
(California, United States), Aljoda & Jain (2021) argued that the 
reservoir performance is affected significantly by streamflow 
nonstationarity. Both studies were conducted locally, and it is 
our understanding that the link between S-Y-R relationships and 
trends in the streamflow time series needs further investigation. 
This is particularly important in Brazil, for its strong dependence 
on hydropower plants.

Hence, this paper investigates the possible impacts of  the 
nonstationarity on the hydropower plants reservoir’s S-Y-R curves, 
analyzing the regularization capacity variability over the years. First, 
we consider a territorial-wide analysis, using the energy equivalent 
reservoirs (EER) approach (Larroyd et al., 2017). It is a solution 
commonly adopted in Brazil that aggregates all hydropower plants 
in four EERs (Southeast/Central-West, South, Northeast, and 
North subsystems). In this sense, the streamflows are converted 
to natural energy flows (ENAs, average MW – MWa) and reservoirs 
are represented in average energy units (MW-month). Then, we 
deepen the analysis to four relevant reservoirs that operate in all 
subsystems, namely: Foz do Areia (South, Iguazu River), Ilha Solteira 
(Southeast/Central-West, Paraná River), Sobradinho (Northeast, 
São Francisco River), and Tucuruí (North, Tocantins River). In this 
latter analysis, we consider the originally designed S-Y-R relationship 
and compare it with an updated S-Y-R relationship. In both cases, 
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trends and breakpoints in ENAs  and streamflows are assessed by 
Mann-Kendall and Pettitt tests (Fleming & Weber, 2012).

METHODS

To perform the analyses, we followed the steps of  the 
workflow depicted in Figure 1. They are similar for both EER 
and individual reservoir cases, with an additional step for the 
EER case regarding the determination of  the ENAs time series. 
First, the nonstationarity of  each time series is assessed by v 
applying statistical inferences. If  necessary, a correction procedure 
is applied to the series in order to feed stationary inputs into a 
stochastic model based on an autoregressive [AR(p)] formulation. 
It is worth noting that we must submit stationary series to the 
stochastic model because it follows a formulation that is stationary 
by definition. Although nonstationary stochastic linear models 
are available (e.g. ARIMA models, see Box et al., 2008), they are 
not suitable for synthetic series generation, since the variance of  
the nonstationary process tends to infinity (Salas et al., 1985, p. 
281). Once the synthetic series are generated, the S-Y-R curves 
are obtained and analyzed.

On an important note, we do not intend to explain the 
causes of  the detected nonstationarities. Rather, we focus on the 
possible effects of  these phenomena on the S-Y-R relationships. 
Hence, any investigation involving climate or land-use changes in 
the studied catchments is out of  the scope of  this paper. For the 
reader interested in such topics, we recommend the references 
cited in the introductory section.

The following sections provide the equations and 
methodological details for each step.

Considered dataset

For this paper, we obtained all the datasets from the SINtegre 
web portal (https://sintegre.ons.org.br), which is maintained by 

the Electric System National Operator (ONS). The data includes 
all 165 HPPs’ information and the streamflow data, the latter 
ranging from 1931 to 2020, on an annual time scale. The annual 
scale was used to agree with the over-year regularization capacity 
of  the considered reservoirs. Also, it is the common scale adopted 
in S-Y-R analyses (Vogel & McMahon, 1996; Vogel & Bolognese, 
1995; Vogel & Stedinger, 1987, 1988).

Streamflow time series are associated with the damming 
locations. It is worth mentioning that ONS provides naturalized 
streamflow data, in which the dam effects on the rivers, HPPs 
operation, water withdrawals, and lake evaporation losses are 
disregarded (see Braga et al., 2009). Also, in rivers with several 
reservoirs (e.g. cascade of  reservoirs), the cumulative effects of  
the HPPs are taken into account as well.

As mentioned earlier, we first analyzed the ENAs time series 
for the four main EER reservoirs that constitute the Brazilian 
National Interconnected System (SIN). The ONS also provides 
ENAs time series for the same periods of  the streamflow time series, 
however, it does not describe which HHPs are considered in the 
process. To avoid consistency problems regarding the HPPs set 
used in our and ONS studies, we chose to recalculate the ENAs 
time series for each EER.

The ENA time series (MWa) for the subsystem s is obtained 
by applying Equation 1 (Neira, 2005):
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, ,

1

9,81

1000

sU
u u

s t u t
u

h
ENA Q

η

=

=∑
 


 (1)

where sU  is the total number of  HPPs of  the subsystem s, and uh  
(m) and uη  (dimensionless) are the net head and turbine-generator 
efficiency of  the HPP u, respectively. ,u tQ  (m3/s) is the (natural) 
affluent streamflow of  the HPP u at time t.

We also investigated the S-Y-R relationships of  four SIN 
HPPs, located in different parts of  the Brazilian territory (Figure 2 
and Table 1). To choose the HPPs, we elected plants with large 
generation and useful storage capacities in each of  SIN’s subsystems. 

Figure 1. Workflow of  the proposed methodology. The procedure is applied individually for each considered time series.

Table 1. HPPs main information.

HPP Basin Opening date Operator Generation 
capacity (MW)

Useful storage 
capacity (hm3)

Ilha Solteira Paraná 1973 CESP 3444 12828
Foz do Areia Iguazu 1981 COPEL 1676 3805
Sobradinho São Francisco 1979 CHESF 1050 28669

Tucuruí Tocantins 1984 ELETRONORTE 8730 11293



RBRH, Porto Alegre, v. 27, e35, 20224/14

Influence of  nonstationarity on reservoir storage-yield-reliability relationships

Besides, they are submitted to distinct hydrologic regimes. Table 1 
also provides the opening date of  each HPP, which we use as a 
reference for our analysis.

Nonstationarity assessment

The ENA and streamflow time series were submitted to 
Mann-Kendall (Mann, 1945; Kendall, 1975) and Pettitt (1979) tests 
to check for nonstationarity. The Mann-Kendall test considers all 
elements of  a series tz  as equiprobable. If  the null hypothesis is 
rejected, the existence of  a trend cannot be disregarded. The test 
statistic MK is obtained from Equation 2:

1

1 1
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n n

j i
i j i

MK z z
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= = +
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Next, a standard normal variable is obtained by applying:
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where,
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=    (5)

The null hypothesis is rejected if  /2z za≥  for a given 
significance level a.

In turn, the Pettitt test checks for breakpoints in the series, 
which is also an indicator of  nonstationarity. The test statistic is 
computed from Equation 6:

( )
1 1

sgn
n

j i
i j

PT z z
τ

τ

τ
= = +

 = − ∑∑  (6)

where τ  represents the change point in a series tz . Note that sgn     
is obtained by the same Equation 3 previously shown. The test 
significance 0a  is determined by the approximation shown in 
Equation 7:

Figure 2. SIN’s subsystems and HPPs location. The four studied HPPs are highlighted.
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where,

( ) ,   1 PT MAX PT nτ τ= ≤ ≤  (8)

The null hypothesis is rejected if  0a a< , for a given 
significance level a. In this paper, we considered 0.05a =  for both 
Mann-Kendall and Pettitt tests.

It is worth noting that we checked all series for significant 
autocorrelation before applying the tests. It is well-known that 
the persistence of  a series, if  relevant, may indicate nonexistent 
nonstationarities (i.e., type I error) (Fleming & Weber, 2012). In 
such situations, we applied a prewhitening procedure (Yue et al., 
2002) to remove the dependence structure of  the series.

Finally, in cases where nonstationarity cannot be rejected 
(i.e., rejection in any Mann-Kendall or Pettitt tests), we performed a 
correction procedure based on Detzel et al. (2011). In this approach, 
streamflow (or ENA) time series are accumulated over time and 
the angular coefficients are obtained for the periods before ( 1c ) 
and after ( 2c ) the breakpoint indicated by the Pettitt test. Next, 
the accumulated series from the first period is multiplied by the 
ratio between the angular coefficients ( 1 2/c c ).

S-Y-R relationship computation

The first step to obtaining the S-Y-R relationship for 
a reservoir is the determination of  its regularization curve. 
Mathematically, the regularization curve can be represented by a 
function ( )Z f V= , where a different storage level V  leads to a certain 
firm yield Z. For the purpose of  this paper, both storage and yield 
can be expressed either in volume or energy units (m3 and m3/s 
or MWa, respectively). In any case, the yields are established as 
a function of  the regularization index δ, defined by Equation 9:

, 0 1Z
Z

δ δ= ≤ ≤  (9)

where Z  is the mean of  Z. Physically, Equation 9 expresses that 
the maximum regularization capacity of  any reservoir is the long-
term mean of  its inflows. To compute the different storage levels 
V  (and respective yields Z), we applied the sequent peak analysis 
method (Loucks & van Beek, 2005, p. 343), which is based on 
the maximum cumulative deficit D:

max tV D=  (10)

where,

1

0
maxt

t t
D

D Z Zδ−

= 
− +

 (11)

In Equation 11, Z can assume either streamflow or ENAs 
time series.

To measure the reservoir’s reliability through the regularization 
curves, we used a Monte Carlo approach based on synthetic 
series generation with an autoregressive model [AR(p)] applied 
to all the series. The fitting process was performed following the 
Box-Jenkins iterative identification-estimation-validation method 
for stochastic linear model building (Box et al., 2008). First, as 

a requirement for applying Box-Jenkins formulation, all series 
were tested for normality. For the series that were not normal, 
logarithmic transformation was applied (Table 2).

Next, autocorrelation (FAC) and partial autocorrelation 
(FACP) functions were plotted to identify the order of  the models. 
Figure 3 depicts such functions for the ENAs time series. From a 
visual analysis, the FAC and FACP of  the Southeast/Central-west 
subsystem (Figure 3a) suggest a first-order autoregressive model 
[AR(1)] (exponential decay of  the FAC and the significant first lag 
of  the FACP). For the Northeast subsystem (Figure 3b), the similar 
behavior of  the FAC and FACP functions suggests that a moving 
average term should be included in the model; however, its order 
is unclear. Moreover, the analysis of  functions of  the remainder 
subsystems was inconclusive, since all the autocorrelations and 
partial autocorrelations lay inside the 0.05 significance band. The 
results for the HPP’s streamflows were similar and not shown.

To support the decision regarding the model to be adopted, 
their goodness-of-fit was further investigated with information 
criteria metrics, such as the Akaike (AIC) and Bayesian Information 
Criteria (BIC) (Akaike, 1974; Schwartz, 1978). Since first-order 
models are common in modeling annual streamflow for reservoir 
storage-related studies (Vogel & McMahon, 1996), AIC and BIC 
were calculated for AR(1) and ARMA(1,1) models. As a result, AR(1) 
model was pointed as the best formulation in all cases (Table 3).

Table 2. P-values of  the normality test applied to the SIN EERs 
and studied HPPs. Bold p-values indicate null hypothesis rejection 
at a 0.05 significance level. For the non-normal series, logarithmic 
transformation was applied and submitted to the same test for 
normality confirmation.

ENA/HPP Original 
Series

Log-transformed 
series

Southeast/Central-west 0.13 -
South < 0.01 0.06

Northeast < 0.01 0.76
North 0.57 -

Foz do Areia 0.02 0.14
Ilha Solteira < 0.01 0.08
Sobradinho 0.02 0.79

Tucuruí 0.02 0.98

Table 3. AIC and BIC for AR(1) and ARMA(1,1) models fitted 
to ENAs and HPPs time series. The best model is the one that 
results in the minimum value of  each criterion (in bold).

ENA/
HPP

AR(1) ARMA(1,1)
AIC BIC AIC BIC

Southeast/
Central-west

-245.80 -245.43 -246.32 -243.60

South 1554.32 1554.68 1556.43 1559.15
Northeast -154.74 -154.37 -160.85 -158.13
North 1488.66 1489.02 1490.71 1493.43
Foz do 
Areia

590.54 590.22 592.81 594.16

Ilha Solteira 641.97 641.43 644.16 645.07
Sobradinho -85.84 -86.21 -83.91 -82.66
Tucuruí -96.12 -96.37 -95.11 -93.62
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Figure 3. Autocorrelation (left panel) and partial autocorrelation (right panel) functions for the ENAs of  SIN’s subsystems (a) 
Southeast/Central-west, (b) South, (c) Northeast, and (d) North.
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Once the models were fit to the series, the residuals were 
tested for normality, homoscedasticity, and independence, following 
the procedures suggested by Salas et al. (1985). The results in 
Table 4 show no rejections of  any of  the assumptions for a 0.05 
significance level. Hence, the AR(1) model was confirmed as an 
appropriate method for the synthetic series generation.

Finally, to obtain the S-Y-R we followed the step-by-step 
iterative framework depicted below:

1. Generate N synthetic series with size 'n

2. Adopt a return period rT

3. Adopt a regularization index δ

4. Calculate the storage levels for the N  generated series. The 
results may be organized in a vector NV

5. Sort the resulting NV  vector in ascendent order

6. Calculate the probability of  success p associated with rT  
by applying:

11
m

r
p

T
 

= −  
 

 (12)

where m is the reservoir lifespan. Here, the probability of  success 
is referred to as the success of  the reservoir to meet its demand. 
Also, p expresses the reservoir reliability.

7. Search in the sorted NV  vector the element of  order 
( )'n p . This element is the storage level associated with 
the regularization index δ  for the adopted rT

8. Change δ  and return to step 3

9. Change rT  and return to step 2.

For this work we adopted 1000N = , δ  varying in 10% intervals, 
50m =  years, and a set of  { }10, 25, 50,1 00, 200, 250, 500rT =  years. As 

with 'n , for the ENAs we generated synthetic series of  the same 
size as the historical dataset (90 years). For the streamflows, we 
generated two independent sets of  scenarios: (i) with the AR(1) 
model estimated considering the historical time series ranging 
from 1931 until the opening date of  each HPP (see Table 1); (ii) 
with the AR(1) model estimated with the entire dataset. With this 
approach, we intend to compare the S-Y-R relationships in two 
distinct moments in each reservoir’s history.

RESULTS AND DISCUSSIONS

Nonstationarity

Table 5 shows the results of  the nonstationarity tests applied 
to the four EERs. The South and Northeast subsystems presented 
significant trends, as indicated by the Mann-Kendall test p-values. 
A further investigation of  these trends revealed that the trend 
direction is opposite for the EERs: while the South ENA presented 
an increasing trend, the Northeast ENA is decreasing over time. 
In the first case, this behavior is well-known and was indicated in 
earlier studies such as Detzel et al. (2011). More recently, Lee et al. 
(2018) argued that such changes are a consequence of  land-use 
transformations that have been taking place in the Paraná River 
basin over the last 40 years. Conversely, Abou Rafee et al. (2022) 
suggest that the climate shift that occurred between 1974 and 1977, 
played a major role in the changes observed in the mean annual 
streamflow of  the Upper Paraná River Basin. It is worth noting that 
the Pettitt test indicated a significant breakpoint exactly in 1970.

On the other hand, the decreasing trend of  the Northeast 
ENA was only statistically detected recently (Silva et al., 2019). The 
region suffered a severe drought episode in the 2010s (Jong et al., 
2018), which may justify such results. However, the Pettitt test 
indicated a breakpoint roughly 20 years earlier. We argue that this 
result should be explored in further studies, as it suggests that 
changes in Northeast ENA might have been taking place longer 
than the studies have shown.

Finally, the Southeast/Central-West and North did not show 
any nonstationarities. Nonetheless, this result does not discard 
the possibility of  nonstationarities of  individual streamflow time 
series, as the aggregation procedure for obtaining the time series 
might cover up such occurrences.

In turn, Table 6 shows the results of  the nonstationarity 
tests applied to the four HPPs. The results for the individual HPPs 

Table 4. P-values for normality, homoscedasticity, and independence 
tests applied to the residuals obtained from the fitted AR(1) for 
all series. No rejections were found for a 0.05 significance level.

ENA/HPP 
(residuals) Normality Homoscedasticity Independence

Southeast/
Central-west

0.67 0.21 0.76

South 0.09 0.81 0.53
Northeast 0.86 0.29 0.23
North 0.09 0.37 0.56
Foz do Areia 0.48 0.43 0.20
Ilha Solteira 0.63 0.14 0.54
Sobradinho 0.10 0.82 0.78
Tucuruí 0.49 0.26 0.70

Table 5. P-values of  the nonstationarity tests applied to the SIN EERs. Bold p-values indicate null hypothesis rejection at a 0.05 
significance level. The signs in Mann-Kendall test results suggest increasing (+) or decreasing (−) trends.

EER Prewhitening Mann-Kendall Pettitt
p-value Trend sign p-value Breakpoint (year)

Southeast/Central-west Yes 0.33 + 0.09 1970
South Yes 0.01 + 0.03 1970

Northeast Yes 0.03 − 0.02 1991
North No 0.29 − 0.55 1997
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are similar to the results for the EERs in which they operate, 
with subtle differences in the p-values. Foz do Areia shows a 
significant positive trend, however no significant breakpoint. In 
Sobradinho both p-values for the Mann-Kendall and Pettitt tests 
indicate nonstationarity. The latter suggested 1992 as the year of  
the breakpoint. Lastly, the overall stationarity condition of  Ilha 
Solteira and Tucuruí time series was maintained.

In EERs or HPPs with significant trends is natural to 
expect changes in the S-Y-R relationships, as the regularization 
index explicitly considers the long-term mean on its equation 
[see Equation 9]. Hence, increasing trends in series may lead 
to a decrease in the regularization capacity and vice-versa. This 
question is investigated in the S-Y-R relationships results section.

Synthetic series validation

Prior to the determination of  the S-Y-R relationships, the 
generated synthetic series were validated by exploratory data analysis. 
The employed metrics were mean (M), standard deviation (SD), 
coefficient of  variation (CV), skewness (SK), minimum streamflow 
(min), maximum streamflow (max), and first-order autocorrelation 
(AC1). In addition, two drought-related statistics were calculated: 
longest drought period (LD) and maximum deficit (MD). All the 

metrics were computed for both historical and generated series, 
for comparison purposes. Yet, for the nonstationary series, the 
statistics of  the original and corrected time series are both shown. 
Table 7 and Table 8 exhibits the results for ENAs and streamflow 
time series, respectively.

For all the series, the AR(1) model performed well in 
reproducing the metrics. Minor inaccuracies were detected in the 
skewness of  the synthetic scenarios obtained for the South and 
North ENAs, and for Foz do Areia HPP. For the nonstationary 
time series, it is important to recall that the stochastic models were 
estimated using the corrected series. In such cases, the synthetic 
series metrics are compared to the stationary historical series.

In that regard, is worth noting that the differences between 
the original and corrected historical series metrics are relevant. For 
the South ENAs and Foz do Areia streamflows (increasing trends), 
the larger discrepancies are in the mean and autocorrelation. 
Moreover, Foz do Areia also exhibits a significant difference in 
the maximum deficit. In turn, the Northeast ENAs and Sobradinho 
streamflows (decreasing trends) produced divergences in the 
mean, standard deviation, and maximum deficits. The latter is 
notable mainly in the Northeast ENAs, representing a period with 
a significant energy deficit. These findings are important for the 
S-Y-R results to be discussed in the next section.

Table 6. P-values of  the nonstationarity tests applied to the studied HPPs. Bold p-values indicate null hypothesis rejection at a 0.05 
significance level. The signs in Mann-Kendall test results suggest increasing (+) or decreasing (−) trends.

HPP Prewhitening Mann-Kendall Pettitt
p-value Trend sign p-value Breakpoint (year)

Ilha Solteira Yes 0.47 + 0.32 1971
Foz do Areia Yes 0.04 + 0.06 1968
Sobradinho Yes 0.04 − 0.04 1992

Tucuruí Yes 0.73 − 0.72 1976

Table 7. ENAs synthetic series validation. Results for the South and Northeast subsystems are also shown for the original nonstationary 
series, for comparison.

Series M (m3/s) SD (m3/s) CV SK min 
(m3/s)

max 
(m3/s) AC1 LD (years) MD 

(m3/s)
Southeast/Central-west

Historical 41900 7183 0.17 0.44 28240 77520 0.38 9 54940
Synthetic 41820 6810 0.16 0.44 27710 61650 0.36 8.6 54710

South
Historical 
(original)

9185 3249 0.35 0.82 3148 21720 0.24 7 17850

Historical 
(stationary)

10380 3356 0.32 0.52 4299 21720 0.11 8 16960

Synthetic 10360 3328 0.32 -0.01 2121 18590 0.10 6.3 20030
Northeast

Historical 
(original)

7795 2578 0.33 0.72 2525 15130 0.53 11 36380

Historical 
(stationary)

5928 1666 0.28 0.57 2525 10140 0.41 8 16290

Synthetic 5910 1672 0.28 0.77 2889 11320 0.41 9.8 14370
North

Historical 12360 2358 0.19 0.17 5838 18660 0.19 8 16520
Synthetic 12360 2329 0.19 -0.02 6888 17760 0.16 6 13630
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S-Y-R relationships

EERs case

Considering that the ENA time series of  the South and 
Northeast EERs presented evidence of  nonstationarity in 
Mann-Kendall and Pettitt tests, we limited the application of  the 
correction technique to these cases before obtaining the S-Y-R 
relationship. For the remainder two subsystems, we generated the 
S-Y-R curves using the original time series. (Figure 4).

For the Southeast/Central-West EER (Figure 4a), the 
S-Y-R relation is closer to the range between 60.5% and 77.8% 
(equivalent to a recurrence between 100 and 200 years) for most of  
the storage levels and regularization indexes. This implies that the 
reliability of  this subsystem is practically constant regardless of  its 
storage level. On the other hand, the South EER corrected S-Y-R 
curve (Figure 4b) crosses distinct reliability bands for different 
storage levels and regularization indexes. The largest variation is 
observed for the 50%δ =  to 80%δ =  interval, where the reliability 
increases from 36.4% to 81.8%, equivalently to a recurrence 
period between 50 and 250 years, respectively. Then, for 80%δ >  
the reliability rises to values greater than 90%. For this EER, the 
effect of  the nonstationarity can be observed when comparing 
the relations for the original and corrected series. In all storage 
levels, the stationary S-Y-R curve yielded higher regularization 
indexes, which can be explained by the identified increasing trend 
in the ENA time series.

For the Northeast EER (Figure 4c), the corrected S-Y-R 
relationship shows a constant reliability level (> 81.8%) for all 
regularization indexes. The nonstationary influence in this series 
is also evident since the original S-Y-R curve is out of  the range 
of  the reliability levels. However, this result should be analyzed 
carefully as it is not due to high levels of  reliability (>90.5%). 
Rather, the synthetic series set was not able to mimic the most 

severe drought period (e.g., critical period) of  this EER’s time 
series, as shown previously in Table 7. Recently, Detzel et al. (2019) 
suggested that the critical period of  the HPPs operating in this 
subsystem changed from 1949-1956 to 2014-2017. Moreover, the 
severity of  this recent drought was higher than in the former period. 
Hence, even though the stochastic model did reproduce the overall 
statistics of  this time series, it failed to generate scenarios with 
droughts as severe as the recently observed. Therefore, we cannot 
assess the Northeast EER reliability levels for the original time 
series and suggest that it should be investigated in future studies.

Finally, for the North EER (Figure 4d) the S-Y-R 
relationship varies from 81.8-90.5% ( 60%δ = ), to 77.8-81.8% 
( 80%δ > ), suggesting that higher regularization indexes imply 
lower reliability levels.

HPPs case

Besides the application of  the nonstationarity correction 
technique (Foz do Areia and in Sobradinho), the results presented 
in this section are further detailed to add the S-Y-R relationship 
obtained for the opening date of  each HPP. In these cases, the 
reliability levels were calculated using the synthetic scenarios 
generated with the model estimated with the historical dataset 
censured at the opening dates of  the HPPs. In addition, a second 
set of  S-Y-R curves is shown, in which we compare the curves 
calculated using the censured and complete time series. For this 
second analysis, the reliability levels were calculated using the 
updated time series (Figure 5).

The S-Y-R for Ilha Solteira (Figure 5a) shows that the relative 
regularization capacity slightly decreased when comparing both 
periods. Given the useful storage capacity (Table 1), this reduction 
is 6.2% (from 65%δ =  to 61%δ = ). Despite this relative loss, the 
original curve (1931-1973) has not changed from its previous 

Table 8. HPPs synthetic series validation. Results for Foz do Areia and Sobradinho are also shown for the original nonstationary 
series, for comparison.

Series M (m3/s) SD (m3/s) CV SK min 
(m3/s)

max 
(m3/s) AC1 LD (years) MD 

(m3/s)
Ilha Solteira

Historical 5214 1184 0.23 0.98 2803 10680 0.42 9 9783
Synthetic 5202 1165 0.22 0.61 2949 8796 0.37 9.1 9523

Foz do Areia
Historical 
(original)

659 243 0.37 0.83 249 1528 0.24 5 513

Historical 
(stationary)

731 252 0.34 0.66 259 1528 0.14 5 1073

Synthetic 731 269 0.36 1.01 284 1680 0.11 7.6 1565
Sobradinho

Historical 
(original)

2531 840 0.33 0.73 796 4952 0.54 8 6127

Historical 
(stationary)

1942 555 0.28 0.58 796 3448 0.43 8 5466

Synthetic 1936 557 0.28 0.78 935 3744 0.43 10 4897
Tucuruí

Historical 10990 2957 0.27 0.74 6070 18880 0.34 7 24590
Synthetic 10980 2880 0.26 0.67 5858 19350 0.36 8.3 20670
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reliability band (36.4-60.5% range). However, when considering 
the updated S-Y-R relationship, we can conclude that there was 
an increase in the reliability level when compared to the original 
period (from 36.4-60.5% to 77.8-90.5%).

In Foz do Areia (Figure 5b) the relative regularization 
capacity loss is more evident. This case can be understood as a 
direct outcome of  the increase in the Iguazu River streamflow 
time series. As mentioned earlier, the relation between the long-
term mean and regularization index is inverse, which explains the 
result. We estimate the relative regularization capacity reduction 
to be 7.4% (from 61%δ =  to 56%δ = ), but there was no change in 
the reliability bands of  the original curve (1931-1981) over time. 
Nonetheless, it could be a direct consequence of  the nonstationary 
correction previously made in the HPP series. In fact, the increase 
in the average streamflow should allow Foz do Areia to meet its 
original yield more securely. On the other hand, if  it operates 
with the same regularization index which it was designed for, the 
storage capacity should be higher, as well as the operational risk.

Sobradinho (Figure 5c) presents two very different results 
between the S-Y-R relationships. Considering its useful storage 
capacity, the plot on the left panel reveals that the reliability level 
was in the 36.4-60.5% band when the reservoir was designed. 
In turn, the plot on the right panel suggests that this reliability 

decreased to the 13.0-36.4% band for the updated S-Y-R curves. 
Moreover, the results show a 38.5% loss in the relative regularization 
capacity (from 78%δ =  to 48%δ = ). However, these findings should 
also be analyzed with caution, as Sobradinho is in the Northeast 
subsystem and, hence, suffered from the same severe drought 
period in the 2010s mentioned earlier. The consequences of  this 
period are seen when comparing both plots since only the S-Y-R 
relationships (red curve and reliability bands) on the right panel 
were obtained with the data that contained the 2010s drought. 
Therefore, in the same fashion that the Northeast ENAs S-Y-R 
results, we argue that the updated reliability level for Sobradinho 
cannot be assessed here because of  the limitation of  the stochastic 
model in representing such a severe drought period (see Table 8).

Finally, Tucuruí’s (Figure 5d) S-Y-R curves are similar 
between periods, as expected for having a stationary streamflow 
time series. The loss in the relative regularization capacity is 1.9% 
(from 52.5%δ =  to 51.3%δ = ), which can be considered a variation 
derived from different lengths of  the time series. Nonetheless, 
when analyzing the reliability bands, the curves have not changed, 
which indicates no increase in the operational risk. Also, the 
updated S-Y-R curve practically crosses the boundary between 
the bands, which may be an effect of  the sample size variations.

Figure 4. S-Y-R relationships for each EER: (a) Southeast/Central-West, (b) South, (c) Northeast, and (d) North. The blue and green 
curves were obtained with the historical series. The shades indicate the different reliability bands for the S-Y-R curves.
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Figure 5. S-Y-R relationships for each HPP: (a) Ilha Solteira, (b) Foz do Areia, (c) Sobradinho, and (d) Tucuruí. On the left panel, the 
reliability levels were obtained with the model estimated with the historical dataset censured at the opening dates of  the HPPs. On 
the right panel, they were calculated using all the available data.



RBRH, Porto Alegre, v. 27, e35, 202212/14

Influence of  nonstationarity on reservoir storage-yield-reliability relationships

CONCLUSION

The fact that the regularization index is inversely related to 
the long-term mean of  the streamflow time series suggests that an 
increasing trend in such a mean would cause a loss in the S-Y-R 
relationships. In this paper, we show that this was the case for Foz 
do Areia HPP, as the regularization index of  its reservoir dropped 
7.4%. It should be noted, however, that this loss is relative to the 
value of  the updated long-term mean. Since this mean is higher 
than the time when the HPP was constructed, the reservoir can 
meet the original yield (in m3/s) more securely. On the other hand, 
should it be operated with the same regularization index that it 
was designed, the storage capacity should be higher, as well as the 
operational risk. In this particular case, the loss in the regularization 
capacity was not a strictly negative factor, since, as mentioned 
before, this loss was only relative to the HPP’s average streamflow. 
Furthermore, Foz do Areia HPP streamflow series presented a 
nonstationarity behavior, with an upward trend over time.

Sobradinho HPP streamflow series also presented a non-
stationarity behavior, however, unlike Foz do Areia series, the trend 
identified was downward. A non-expected result was that, for both 
series, despite the nature of  their trends, there was a relative loss in 
the regularization capacity over time. When analyzing Sobradinho’s 
updated regularization curve, it is possible to conclude that the 
reservoir had an actual loss in its regularization capacity. Since 
the HPPs’ useful storage is constant, the regularization index 
depends exclusively on the reservoir demand. Sobradinho cannot 
safely meet its original demand (e.g. original δ) without increasing 
the operational risk, once the current streamflow series mean is 
inferior when compared to the original one.

For all other cases, the study revealed that changes in the 
regularization capacity and reliability bands are expected to occur 
even with reservoirs with stationary inflows, however milder 
than the ones with non-stationarity behavior, as observed in 
Sobradinho. In that sense, the results of  trends and/or breakpoints 
in streamflow time series should not be used as a definitive 
criterion for developing analyzes regarding regularization capacity. 
Therefore, we recommend that the operational rules of  reservoirs 
should be continuously revised together with the increase in the 
time series’ lengths.
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