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Abstract
Psychiatric disorders are highly prevalent all over the world with a great impact on public health. Altered homocysteine
metabolism is implicated in the pathogenesis of many of these disorders, as it can interfere in normal methylation of
subcellular components, promote neuroexcitotoxicity, and induce oxidative stress and inflammation. There are cumulative
data implicating these mechanisms in the development of autism, schizophrenia, depression, bipolar disorder, and Alzheimer
disease. Altered homocysteine metabolism is multifactorial in its origin. On one hand, genetic factors act as predisposing factors
through brain development and function, and on the other hand, environmental factors give the opportunity for nutritional
interventions improving metabolic status and possibly also clinical parameters. This article provides a review on the association of
1-carbon metabolism and autism, schizophrenia, depression, bipolar disorder, and dementia and goes through studies on the role
of different cofactors and metabolites involved in this pathway.
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Introduction

The importance of mental diseases in global health is unques-

tionable. A meta-analysis of 85 studies from 39 countries

between 1983 and 2013 revealed a 29.2% prevalence of com-

mon mental disorders in the adult population across lifetime

and 10% to 20% in children and adolescents suffering from

mental disorders worldwide.1,2

Homocysteine (Hcy) and correlated folate metabolic path-

ways have received considerable attention in recent decades

regarding its association with psychiatric disorders. Elevated

level of Hcy is considered a well-established risk factor for

Alzheimer disease (AD),3,4 and alterations in this pathway have

been also associated with mental disorders such as autism,

schizophrenia, depression, and bipolar disorder.5-8

Homocysteine is formed from the metabolic demethylation of

dietary methionine. In this pathway, S-adenosylmethionine

(SAM) is synthesized and can participate in a large number of

methylation reactions, including DNA, RNA, phospholipids, and

the synthesis of neurotransmitters.9 After transmethylation reac-

tions, SAM is converted into S-adenosylhomocysteine (SAH)

and then hydrolyzed to adenosine and Hcy. Homocysteine can

follow 2 paths: to enter the transsulfuration route and produce

cysteine, which may be further used in glutathione (GSH) synth-

esis, or to be remethylated to methionine by ubiquitously dis-

tributed methionine synthase (MS), a cobalamin-dependent

enzyme. During remethylation dependent of MS, Hcy receives

the methyl group from 5-methyltetrahydrofolate (5-MTHF),

the product of methylenetetrahydrofolate reductase (MTHFR)

reaction.10 In the liver and kidney of some species, betaine–

homocysteine methyltransferase uses betaine as a methyl donor

to convert Hcy to methionine.11

Environmental factors such as folate and cobalamin deficien-

cies are associated with high levels of Hcy, as well as mutations

and polymorphisms in key enzymes in the metabolic pathway,

such as MS, MTHFR, and cystathionine b-synthase (CBS).10,12

Furthermore, the reduced folate carrier 1, involved in the

5-MTHF cell influx, is associated with low folate level, changes

in DNA methylation pattern, and DNA repair capacity.13

Beyond altered methylation of cellular components,

Hcy and psychopathology may be connected by other
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mechanisms. Literature data strongly suggest that Hcy has neu-

rotoxic properties such as activation of N-methyl-D-aspartate

receptor subtype, which activation leads to neuronal cell death

via Ca2þ cell influx and resultant phosphorylation of extracel-

lular signal-regulated kinase and mammalian family of

mitogen-activated protein kinase.14 Additionally, elevated

level of Hcy increases oxidative stress and is closely related

to accumulation of asymmetric dimethyl arginine, an endogen-

ous nitric oxide synthase inhibitor.15 Nitric oxide is an impor-

tant mediator of many physiological phenomena, such as blood

vessel relaxation, neurotransmission, and pathogen suppres-

sion.16 Additionally, Hcy has potential mechanisms of protein

modification, the N-homocysteinylation, that may induce pro-

tein and cell damage, activation of adaptive immune response,

and synthesis of autoantibodies against N-Hcy-proteins.17

Autism

Autism spectrum disorders are a heterogeneous group of neu-

rodevelopmental disorders manifested before 3 years of age,

compromising social and language skills, associated with repe-

titive behaviors, restricted interests, and gastrointestinal and

immunologic comorbidities. Its actual incidence reaches 1 in

every 68 children in the United States, with a 4:1 male to female

prevalence.18,19

Although autistic behavior can be present in many chromo-

somal, genomic (microdeletions, insertions, and imprinting),

monogenic, dysmorphic, and metabolic syndromes, most of the

cases are multifactorial in origin, with some susceptibility loci

already described.20-22 In such scenario, brain dysfunction can

be in some extent related to hypomethylation of subcellular

components and to damage due to oxidative stress, both patho-

genic mechanisms implicating altered Hcy metabolism as an

associated factor, as mentioned before.

Indeed, altered remethylation of Hcy to methionine and trans-

sulfuration of Hcy to cysteine were described in children with

autism by James et al in 2004.5 The metabolic phenotype denoted

decreased plasma concentrations of methionine, SAM, Hcy,

cysteine, and total GSH and increased concentrations of SAH,

adenosine, and oxidized GSH as compared to control children.5

Opposite results were reported by Tu et al23 in China and by

Ali et al24 in Oman, where children with autism presented

increased plasma Hcy levels when compared to an age- and

gender-matched control group. In these studies, reduced plasma

folate concentration has been demonstrated in children with aut-

ism, and in the study by James et al,5 the cases studied were

receiving folinic acid and vitamin B12 supplementation, which

may explain the different results. Ali et al24 also found reduced

plasma vitamin B12 concentration in cases as compared to con-

trols. Increased urine Hcy concentration was also described for

nonsupplemented children with autism in Poland.25

Studying Hcy metabolism in different autistic spectrum dis-

order subtypes, Paşca et al demonstrated an impairment of this

metabolic pathway across nonspecified pervasive disorders

and prototypic autistic disorder with increased metabolic

derangement in more severe cases. Mild cases presented only

remethylation impairment (decreased methionine and a-ami-

nobutyric acid plasma concentrations), and the most severe

cases presented transsulfuration disturbances (decreased

methionine, a-aminobutyric acid, cysteine, and total GSH

plasma concentrations). Interestingly, no metabolic changes

were observed in Asperger syndrome,26 a specific autistic

syndrome with a less severe impairment of intelligence and

linguistic skills.27

Nutritional factors may be implicated in altered Hcy meta-

bolism in autism, as many children may experience food refu-

sal and selectivity, with varied protein and vitamins intake,28-30

but genetic polymorphisms in genes involved in this metabolic

pathway can also be important. James et al31 found a functional

polymorphism (A80G) in reduced folate carrier able to increase

40% the risk of autism in the offspring of heterozygous (AG)

and homozygous mothers (GG), independent of the child

genotype.31 Methylenetetrahydrofolate C677T or A1298C,

MS reductase A66G, and transcobalamin II C776G polymorph-

isms were also studied and inconsistently associated with

autism risk.26,31-34

Vitamin supplementation has been recommended for treat-

ing autistic spectrum disorders based both on the altered meta-

bolic profile of these patients and also in studies that

demonstrated attenuation of these metabolic alterations in vita-

min supplemented patients. In a pilot study, James et al5

observed increased methionine and improved SAM:SAH ratio

after a month of methyl cobalamin supplementation. The same

group demonstrated improved antioxidant capacity in a 3-

month folinic acid and methyl cobalamin supplementation

open-label trial.35 Urinary Hcy excretion was also reduced after

3-month pyridoxine and cobalamin supplementation and fur-

ther reduced when folic acid was included in the protocol36 for

the same period.

Furthermore, Hendren et al37 reported improved clinical

status in children with autism after an 8-week randomized,

placebo-controlled trial of methyl cobalamin supplementation,

with improved Clinical Global Impressions–Improvement

score and improved social motivation in Social Responsiveness

Scale.

Schizophrenia

Schizophrenia is a chronic, frequently disabling multifactorial

mental disorder that affects 1% of the global population.38

Clinically, it is recognized by the presence of positive symp-

toms (hallucinations, paranoia, and delusions), negative symp-

toms (reduced motivation, impoverished speech, blunted

affect, and social withdrawal), and cognitive impairment.39,40

Regland et al41 were the first to associate increased blood

Hcy concentrations with schizophrenia in 1995. The associa-

tion was latter subject of a meta-analysis in 2006 by Muntje-

werff et al42 who collected data from 8 case–control studies and

demonstrated a 70% increase in the risk of schizophrenia for

every 5 mM increase in Hcy concentration and many other

studies since then have corroborated this hypothesis,43-52

although negative results are also present in the literature.53
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Genetic factors associated with Hcy metabolism are also

associated with schizophrenia risk. Muntjewerff meta-

analysis implicated C677T MTHFR polymorphism as a

genetic risk factor for the disease,42 as recently corroborated

in another meta-analysis by Nishi et al47 according to gender

analysis and by Yadav et al54 in African, Asian, and Cauca-

sian subgroup population. MS A2756G, trifunctional folate

enzyme 5,10-methylenetetrahydrofolate dehydrogenase,

5,10-methenyltetrahydrofolate cyclohydrolase, and 10-

formyltetrahydrofolate synthetase G1958A, reduced folate

carrier A80G, MTHFR A1298C, MS reductase A203G, and

folate hydrolase T484C polymorphisms were also associated

with increased schizophrenia risk.55-57 CBS 844ins68 poly-

morphism was evaluated in 1 study and demonstrated to be a

protective factor.58

Nutritional factors can also play a role in this association. Low

folate concentrations are associated with increased Hcy levels

and schizophrenia.48,50 Low betaine plasma concentrations have

also been demonstrated in patients with first-episode schizophre-

nia and can influence Hcy metabolism in these individuals.59

The link between Hcy metabolism and schizophrenia can be

related to fetal hypoxia, altered DNA methylation, and partial

antagonistic effect on N-Methyl-D-aspartate (NMDA) glutama-

tergic neurons.60 In fetal life, maternal hyperhomocysteinemia

(hHcy) can be linked to schizophrenia risk by reducing placen-

tal blood supply and inducing fetal hypoxemia. Brown et al61

found increased third-trimester Hcy in case mothers as com-

pared to controls, but no differences in first and second trime-

sters of pregnancy.

Kinoshita et al62 found hHcy to be correlated with altered

DNA methylation in neutrophils of patients with chronic schi-

zophrenia under multiple antipsychotic treatments: 15.8% of

these changes were located in cytosine-phosphate-guanine

(CpG) islands and 34.9% of which located in promoter regions,

including promoter regions of genes already associated with

schizophrenia, such as solute carrier family 18 member A2,

G protein subunit alpha L, potassium voltage-gated channel

subfamily, and netrin G2.

Few studies on Hcy-lowering strategies have been per-

formed in patients with schizophrenia.39,63 Roffman et al64

reported a multicenter randomized controlled trial in which a

16-week folate and vitamin B12 supplementation in chronic

patients resulted in improved negative symptoms, evaluated

by the Scale for Assessment of Negative Symptoms and the

Positive and Negative Syndrome Scale.

Major Depressive Disorder

Major depressive disorder (MDD) is a severe and complex

psychiatric illness, characterized by loss of interest or pleasure

(anhedonia) in all or nearly all activities, depressed mood, and

significant distress.65 Alterations in the brain neuroanatomy,

neurotransmitters, and neuroendocrine systems are related to

the cause of MDD, along with strong evidence for genetic

factors.66,67 According to World Health Organization, MDD

is the third most disabling disorder worldwide, affecting 1%

to 2% of preadolescent children and 0.9% to 42% of elderly

patients in Caucasian population.68,69

Evidence for the association between Hcy and depression

comes from several studies that found elevated Hcy levels in

patients with depression.7,70 Moreover, folate deficiency was

observed in up to one-third of patients with severe depres-

sion.71 It is relevant to notice that evaluations addressing this

topic have conflicting results, since most studies analyzing Hcy

levels are performed in elderly patients and there is an increase

in both Hcy levels and depression onset with aging.68,69

Folate deficiency in these patients is frequently attributed to

poor diet. In addition, some medicines used for depression

treatment can potentially interfere with folate and Hcy meta-

bolism.72 However, whether the deficiency is primary or sec-

ondary to depression, low level of folate limits the response to

antidepressants.73 Furthermore, previous studies consistently

support the efficacy of folate replacement on enhancing recov-

ery of the mental state and showed an antidepressant function

of SAM, probably via the 1-carbon metabolism pathway that

produces methyl groups required for the synthesis of serotonin,

dopamine, and norepinephrine, neurotransmitters imbalanced

in patients with depression.9,74,75

Bipolar Disorder

Bipolar disorder, also known as an idiopathic mood disorder, is

characterized by episodes of depression and mania and affects

approximately 2% to 4% of the global population.76,77 High

levels of Hcy may potentially be toxic to dopaminergic systems,

and dysfunction of dopamine neurons has been associated with

bipolar disorder.78,79 Moreover, increased concentration of Hcy

and decreased concentration of folate and vitamin B12 levels are

observed in patients with bipolar depression in both acute epi-

sode and euthymic phase8,80; poor appetite observed in these

patients could be associated with decreased intake of B vitamins

and consequent hHcy. Despite this, the mechanisms underlying

hHcy in bipolar disorder are not fully understood and seem to

involve not only nutritional intake but also reduced glomerular

filtration and mood-stabilizing medications use.72,81,82

Valproic acid and lamotrigine used for bipolar disorder treat-

ment can interfere with folate and Hcy metabolism through

methionine adenosyltransferase and dihydrofolate reductase inhi-

bition.83,84 However, evaluations of Hcy levels in patients with

epilepsy treated with mood stabilizers do not present consistent

results. A study published by Gidal et al85 did not show increased

Hcy levels in patients with epilepsy treated with sodium valproate

and lamotrigine, but the meta-analysis published by Ni et al86

associated sodium valproate monotherapy with increased levels

of Hcy in patients with epilepsy. Genetic background related to

enzymes involved in 1-carbon metabolism could explain the

increased Hcy in bipolar patients on mood stabilizers therapy or

even indicate Hcy as an independent risk factor for the develop-

ment of bipolar disorder. Indeed, studies show an association

between 2 common polymorphisms in the MTHFR (C677T and

A1298C) gene and a risk of developing bipolar disorder.87,88

However, other meta-analysis studies did not find an association
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between these polymorphisms and bipolar disorder.89,90 Consid-

ering that increased levels of Hcy are observed in bipolar patients,

and folate is a cofactor involved in both Hcy metabolism and

monoamine synthesis, Baek et al suggest that folate supplementa-

tion could normalize monoamine synthesis and correct mood

stabilizer–associated functional folate deficiency.72

Alzheimer Disease

Alzheimer disease is a chronic neurodegenerative disorder

characterized by the presence of brain extracellular amyloid

plaques, intracellular neurofibrillary tangles (NFT) composed

by hyperphosphorylated tau, and neuronal loss.91 Alzheimer

disease is the most common cause of disability and dementia

in the elderly population and currently affects between 30 and

45 million people worldwide.92,93

The sporadic form, or late-onset Alzheimer disease (LOAD),

accounts for 90% of the cases and is favored by both genetic and

environmental factors,94 such as higher age, female gender, and

presence of the apolipoprotein E4 allele. In addition, a moderate

elevation in plasma total Hcy is considered a potential risk factor

for AD and the total Hcy level higher than 14 μmol/L almost

doubles the risk of AD in people older than 60 years.4

Although several studies report that high levels of plasma

Hcy are an independent risk factor for the development of

dementia and AD, it is not clear whether increased Hcy is the

cause or consequence.3,4,95 A study published by Nilsson et al96

showed that elevated plasma Hcy concentration did not seem to

be a primary cause of the disease but rather a reflection of

plasma total Hcy main determinant changes in patients with

AD, such as cobalamin/folate deficiencies and renal impair-

ment. On the other hand, an animal model of AD was more

vulnerable to hHcy-inducing diet and therefore more vulnera-

ble to the 5-MTHF depletion. Moreover, the folate reduction

and hHcy seem to contribute to neurodegeneration and can also

be triggered by neurodegenerative processes, being both a

cause and consequence of neurodegeneration.97

The link between neuropsychiatric manifestations and hHcy

seems to be related to impairments in 1-carbon metabolism and

methylation process. In fact, the SAM/Hcy cycle alterations in

AD animal model and cell culture modified DNA methylation

status with consequent deregulation of genes involved in the

amyloid metabolism.98 It is reported that hHcy and decreased

SAM production might result in impaired tau protein phosphor-

ylation and NFT formation and increased production and deposi-

tion of amyloid peptides.98-100 Besides, the brain of subjects with

LOAD showed significant changes in the methylation patterns of

MTHFR and DNMT1 promoters, highlighting the possible con-

tribution of this pathway to LOAD predisposition.101 In a trans-

genic mouse model of AD, it was observed that hHcy-inducing

diet worsened the memory and learning performances, increased

amount and deposition ofb amyloid (Ab) peptides, and increased

t insoluble fraction, the 3 major pathological features linked to

AD.102 The mechanisms involved in Ab elevation and deposition

were mediated by an activation of the g-secretase pathway, and t

phosphorylation at specific epitopes was mediated by Cyclin-

dependent kinase 5 (CDK5) pathway.102

Supplementation with folic acid and cobalamin may normal-

ize Hcy levels in patients with hHcy; however, there is no clear

evidence that this improves cognitive decline.103,104 Moreover, it

seems that the positive response to intervention is only observed

in patients with AD with mild cognitive decline.105,106

Conclusion

Despite advances in our understanding about psychiatric disor-

ders, there are still many unanswered questions. However, Hcy

and correlated 1-carbon metabolism pathway seem to give impor-

tant clues to the multifactorial etiology of psychiatric disorders,

since impaired gene methylation may be a critical pathological

component in disorders such autism, schizophrenia, depression,

bipolar disorder, and AD. In fact, this association has also been

observed in other psychiatric conditions such as posttraumatic

stress disorder,107-109 obsessive–compulsive disorder,110,111

panic disorder,112 and anxiety,113 but as there are still only a few

publications concerning those conditions, they were not included

in this review. Accumulating evidence suggests altered 1-carbon

metabolism in the pathophysiology of these psychiatric disorders,

since folate and vitamin B12—which are essential cofactors of

enzymes involved in Hcy methylation to methionine—are found

to be deficient in these patients. Methionine is the precursor of

SAM, which is the most important methyl donor for numerous

cellular reactions, including proteins, phospholipids, DNA, and

neurotransmitters methylation. Nevertheless, caution is needed to

address these associations because environmental factors such as

diet disposition of precursors and pharmacological agents can

challenge these pathways and act as confounding factors.

Cause or consequence, patients with low folate status and

consequent hHcy presented poor response to antidepressants,

and an improved clinical response is observed after combining

antidepressant drug treatments with folic acid supplementa-

tion.114-116 Besides, improved clinical status in patients with

schizophrenia and children with autism is observed after vita-

min B12 and folate supplementation.37,64 Although some stud-

ies did not find improvement in the clinical condition of

patients after vitamin supplementation,105 recommendations

for the routine clinical setting for patients with psychiatric

disorders, cognitive impairment, or dementia include an assess-

ment of cobalamin and folate status and appropriate treatment

when necessary.117 Folate levels below 7.5 nmol/L and vitamin

B12 below 200 nmol/L are considered deficient. Upper refer-

ence limits for total Hcy is 10 mmol/L (children <15 years),

15 mmol/L (adults 15-65), and 20 mmol/L (elderly individuals

>65 years).117 No specific recommendation for the determina-

tion of MTHFR or other 1-carbon-related genetic polymorph-

isms is available in the context of psychiatric disorders.
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Kozarić-Kovacić D. Homocysteine and serum lipids concentra-

tion in male war veterans with posttraumatic stress disorder.

Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(1):

134-140.

110. Atmaca M, Tezcan E, Kuloglu M, Kirtas O, Ustundag B. Serum

folate and homocysteine levels in patients with obsessive-

compulsive disorder. Psychiatry Clin Neurosci. 2005;59(5):

616-620.
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