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Abstract
Genetic homocystinurias are a group of inborn errors of metabolism that result in the massive excretion of homocysteine (Hcy) 
in the urine due to Hcy accumulation in the body, usually causing neurological and cardiovascular complications. The three 
most frequent causes are classical homocystinuria [deficiency of cystathionine beta-synthase (CBS)], methylmalonic aciduria with 
homocystinuria, cblC type (cblC deficiency) and severe methylenetetrahydrofolate reductase (MTHFR) deficiency. In this review, 
we highlight the similarities and differences among these disorders. Briefly, their joint manifestation is the accumulation of tHcy, 
however, the other sulfur amino acids show various and even invers profiles. Vascular disease, developmental delay and seizures 
are found in all homocystinurias, nevertheless, the complications of CNS differ in a wide variety of presentations and severities 
and are apparently less pronounced in CBS deficiency. Moreover, patients with remethylation defects typically do not present 
ectopia lentis and bone disturbances, tall stature and osteoporosis. Whereas hematological alterations, such as megaloblastic 
anemia, thrombocytopenia neutropenia and life-threatening microangiopathy, are specific findings of cblC deficiency.
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Background

Hyperhomocysteinemia (tHcy >15 μM)[1] can be caused by 
environmental (such as nutritional deficiency of vitamins B12 or 
folate) or genetic factors, including inborn errors of metabolism 
(Table 1). Mild or moderate forms of hyperhomocysteinemia 
are present in 5–10% of the population.[2] The severe form of 
hyperhomocysteinemia (tHcy>50 μM) is rare, and typically 
associated with severe vitamin B12 or folate deficiency or 
inherited defects in Hcy metabolism.[3] Total Hcy (tHcy) consists 
of free Hcy (reduced plus oxidized Hcy in the non-protein 
fraction of plasma) and protein-bound Hcy.

Hcy is a sulfur-containing amino acid not used in 
protein synthesis and is considered toxic at increased levels. 
Hcy is formed as a product of methyl-transfer reactions in 
methionine (Met) metabolism. In this process, Met is activated 
by ATP into S-adenosylmethionine (SAM), which is the 
universal methyl group donor, resulting in the formation of 
S-adenosylhomocysteine (SAH). SAH is converted to Hcy 
and adenosine through S-adenosyl-L-homocysteine hydrolase 

(SAHH). The equilibrium of the reaction favors the formation 
of SAH. As a consequence, increased Hcy should result in a 
pronounced accumulation of SAH, which is a potent inhibitor of 
many methyltransferase reactions. While methylation is essential 
for cellular functions in all organs, Hcy is formed in all tissues, 
but its elimination via CBS (EC 4.2.1.23), in the transsulfuration 
pathway, is considered to only occur in the liver and kidney. 
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Thus, in  all other tissues, such as the vascular system and 
the brain, the only available possibilities to eliminate Hcy are 
remethylation by methionine synthase (MTR - EC 1.16.1.8) or 
exportation out of the cell.[4] In remethylation, Hcy receives a 
methyl group from 5-methyltetrahydrofolate (5MTHF), which 
is formed from 5,10-methylenetetrahydrofolate by MTHFR 
(methylenetetrahydrofolate reductase - EC 1.5.1.20) (Figure 1). 
Notably, 5MTHF is the circulating form of folate in blood and 
cerebrospinal fluid (CSF).  

The active elimination of Hcy from the body is the main 
regulator of Met and methylation homeostasis and occurs in the 
liver and kidney via degradation by CBS. The liver and kidney 
also contain betaine-homocysteine methyltransferase (BHMT 
- EC 2.1.1.5), which is an alternative way of Hcy remethylation 
(Figure 1). SAM is the main regulator of Met, Hcy and so 
methylation status. In the liver excess of Met increases SAM, 
which activates CBS and inhibits MTHFR, causing Hcy to be 
primarily and irreversibly converted to cystathionine.[5,6] If Met 
is low then CBS is not activated and MTHFR is not inhibited by 

SAM, causing Hcy to be mainly remethylated back to Met.[7,8] 
Vitamin B12, as methylcobalamin (Mecbl), is involved as a 
cofactor for MTR, which catalyzes the remethylation of Hcy into 
Met in the cytosol. Adenosylcobalamin (Adocbl) is the cofactor 
for methylmalonyl-CoA mutase, which converts methylmalonyl-
CoA into succinyl-CoA in mitochondria (Figure 2).  

This paper reviews the clinical and biochemical findings 
and management of the three most frequent genetic causes of 
homocystinurias: CBS deficiency or classical homocystinuria 
(HCU), methylmalonic aciduria with homocystinuria cblC 
type, and severe MTHFR deficiency. These three disorders all 
present with severe hyperhomocysteinemia, while Met levels are 
increased in HCU and decreased or normal in cblC and MTHFR 
deficiency, and methylmalonic acid (MMA) is increased only in 
cblC[9] (Table 1). Folate and Hcy metabolism are intertwined. 
As a consequence, defects in Hcy metabolism influence folate 
homeostasis. In CBS deficient patients at diagnosis folate is often 
deficient likely due to the inhibition of MTHFR resulting in 
decreases of 5MTHF, the circulation form of folate. In MTHFR 

Table 1. Summary of genetic homocystinurias 

Disease (OMIM number) Deficient Enzyme Gene (Locus) Pattern of 
Inheritance

Classical homocystinuria (# 236200) Cystathionine beta-synthase (CBS - EC 4.2.1.23) CBS (21q22.3) AR

Severe methylenetetrahydrofolate reductase 
(MTHFR) deficiency (# 236250) Methylenetetrahydrofolate reductase (MTHFR - EC 1.5.1.20) MTHFR (1p36.22) AR

Methylmalonic aciduria and homocystinuria, 
cblC type (# 277400) 

Methylmalonyl-CoA mutase (MUT - EC 5.4.99.2) 
and methionine synthase (MTR - EC 1.16.1.8) MMACHC (1p34.1) AR

Methylmalonic aciduria and homocystinuria, 
cblC type, digenic (epi-cblC #277400)

Methylmalonyl-CoA mutase (MUT - EC 5.4.99.2) 
and methionine synthase (MTR - EC 1.16.1.8)

PRDX1 (1p34.1)
MAHCC (1p34.1) AR

Methylmalonic aciduria and homocystinuria, 
cblD type (# 277410) 

Methylmalonyl-CoA mutase (MUT - EC 5.4.99.2) 
and methionine synthase (MTR - EC 1.16.1.8) MMADHC (2q23.2) AR

Homocystinuria-megaloblastic anemia, cblE 
type (# 236270) Methionine synthase reductase (MTRR - EC 2.1.1.135) MTRR (5p15.31) AR

Methylmalonic aciduria and homocystinuria, 
cblF type (# 277380) 

Methylmalonyl-CoA mutase (MUT - EC 5.4.99.2) 
and Methionine synthase (MTR - EC:2.1.1.13) LMBRD1 (6q13) AR

Homocystinuria-megaloblastic anemia, cblG 
type (# 250940) Methionine synthase (MTR - EC:2.1.1.13) MTR (1q43) AR

Methylmalonic aciduria and homocystinuria, 
cblJ type (# 614857) 

Methylmalonyl-CoA mutase (MUT - EC 5.4.99.2) 
and Methionine synthase (MTR - EC:2.1.1.13) ABCD4 (14q24.3) AR

Methylmalonic acidemia and homocystinuria, 
cblX type (# 309541) 

HCF-1; Transcriptional regulation of MMACHC. 
Methylmalonyl-CoA mutase (MUT - EC 5.4.99.2) 
and methionine synthase (MTR -EC 1.16.1.8)

HCFC1 (Xq28) XLR

Methylenetetrahydrofolate dehydrogenase 
(MTHF) deficiency (# 617780) 

5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5), 
5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), 
and 10-formyltetrahydrofolate synthetase (EC 6.3.4.3)

MTHFD1 (14q23.3) AR

Transcobalamin II (TC) deficiency 
(# 275350)

Transcobalamin; Cellular delivery of cbl. Methylmalonyl-CoA 
mutase (MUT - EC 5.4.99.2) 
and methionine synthase (MTR -EC 1.16.1.8)

TCN2 (22q12.2) AR

Methylmalonic aciduria and homocystinuria, 
TcblR type (# 613646) 

TCblR; Cellular receptor for TC. Methylmalonyl-CoA 
mutase (MUT - EC 5.4.99.2) 
and methionine synthase (MTR - EC 1.16.1.8)

CD320 (19p13.2) AR

cbl = cobalamin, AR = autosomal recessive, XLR= X-linked recessive.



Diagramação e XML SciELO Publishing Schema: www.editoraletra1.com.br | letra1@editoraletra1.com.br

Hoss et al. 3
﻿

Figure 1. Overview of homocysteine metabolism. MAT: methionine adenosyltransferase; SAM: S-adenosylmethionine; SAH: 
S-adenosylhomocysteine; SAHH: S-Adenosyl-homocysteine hydrolase; CβS: cystathionine β-synthase; CγL: cystathionine γ-lyase;  MTR: 
methionine synthase; THF: tetrahydrofolate; MTHFR: 5,10-methylene-THF reductase; SHMT: serine-hydroxymethyltransferase; BHMT: betaine-
homocysteine methyltransferase; MMACHC: methylmalonic aciduria and homocystinuria type C protein; Enzymes are shown in capitals, and 
their cofactors in italics.
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deficiency folate is severely deficient, whereas in cblC defect all 
folates accumulate as 5MTHF resulting in functional cellular 
folate deficiency.

Classical Homocystinuria

Clinical presentation

CBS deficiency or classical homocystinuria (HCU; OMIM 
+236200) is the most common type of homocystinuria. The 
prevalence of HCU dramatically varies between regions from 
1:240 at the Orchid Island to less than one in one million in the 
Taiwanese Han population.[10] The worldwide prevalence is 
estimated at 1:100,000 to 1:344,000 individuals.[11,12] 

Four organ systems are primarily affected in HCU: ocular, 
vascular, central nervous (CNS) and skeletal[13] (Table 2). The 
hallmark study of Mudd et al. in 1985 concerns a cohort of over 
600 patients. According to this survey, eye disease, particularly 
lens dislocation (ectopia lentis), was the main reason for HCU 

investigation (85% of the cases) and commonly the first symptom, 
manifesting after the age of two years old and affecting more 
than 50% of non-treated patients at the age of 10 years old.
[14] Other ocular abnormalities that might occur in HCU 
include high myopia, iridodonesis, glaucoma, optic atrophy, 
retinal degeneration, retinal detachment, cataracts and corneal 
abnormalities.[11,15–17]

Another common feature of HCU is vascular disease. 
Thromboembolic events can occur at any age and at any vein.
[14,18–21] Although it is less common than eye disease, 50% of 
non-treated patients presented a thromboembolic event at age 
29, and the importance of this disease is demonstrated by the 
high mortality rate from vascular complications. In Mudd’s 
survey[14], over 70% of the deceased patients died because of 
thromboembolism. Special circumstances, such as pregnancy, 
surgery and association with mutations in Factor V, seem to 
increase the risk of vascular events.[22–24] Interestingly, recent 
studies showed that vascular manifestations can be the sole 
symptom and can appear even after the second or third decade 
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﻿ Figure 2. Overview of B12 metabolism. MMA: methylmalonic acid; MUT: methylmalonyl CoA mutase; Mut -: partial loss of MUT function; 
Mut 0: complete loss of MUT function; Adocbl: adenosylcobalamin; cbl: cobalamin; MMAA: Methylmalonic aciduria type A; MMAB: 
Methylmalonic Aciduria cblB Type; MMADHC: methylmalonic aciduria and homocystinuria type D; MMACHC: methylmalonic aciduria and 
homocystinuria type C protein; LMBRD1: gene that encodes a lysosomal membrane protein that may be involved in the transport and 
metabolism of cobalamin affected in cblF; ABCD4: gene ATP binding cassette subfamily D member 4 related to cblJ; HCFC1: gene host cell 
factor C1 related to cblX; OH-cbl: hydroxocobalamin; CN-cbl: cyanocobalamin; TCN2: transcobalamin 2; MTRR: gene methionine synthase 
reductase related to cblE; Mecbl: Methylcobalamin and MTR: methionine synthase related to cblG.
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of life, especially in patients homozygous for the CBS c.833 T>C 
(p.Ile278Thr) mutation.[18, 25]

Cognitive impairment is also considered a common CNS 
manifestation of HCU. In Mudd’s survey, a wide range of IQ’s 
from 10 to 138 was reported, with a median of 78.[14] A recent 
study from Qatar observed that patients early diagnosed by 
neonatal screening had significantly higher intelligence quotient, 
quality of life, and adherence to treatment when compared with 
the late diagnosed patients.[26] In addition to the direct toxicity 
of Hcy on CNS, recurrent strokes can also impact cognitive 
skills.[11,22] Seizures occur in nearly 20% of the patients.[14] 
Psychiatric disorders are also highly prevalent, affecting up to 
50% of patients.[27] Schizophrenia, anxiety and depression 
are well documented in HCU.[11,27–30] The most common 
symptoms observed by Abbott et al., (1987) in 63 patients include 

episodic depression (10%), chronic behavior disorders (17%), 
chronic obsessive-compulsive disorder (5%), and personality 
disorders (19%).[27] Additionally, psychiatric disorder as an 
isolated symptom of HCU has been reported.[31, 32]

The skeletal features of HCU include osteoporosis and 
osteopenia, scoliosis, dolichostenomelia, tall stature, genu valgum, 
sternal deformities and arachnodactyly.[14,33] The most frequent 
finding is osteoporosis, which affects approximately half of non-
treated patients in their second decade of life.[14] In addition to 
eye abnormalities (ectopia lentis), the bone deformities (with the 
exception of osteoporosis) resemble those observed in Marfan 
Syndrome, what has led to misdiagnosis in the past.[34] Other 
clinical findings reported in HCU include hypopigmentation 
of the hair and skin and malar flush, and there is a case report 
on acute pancreatitis and chronic diarrhea.[35–38] 
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Table 2. Biochemical presentation and clinical manifestation of non-treated homocystinuria disorders due to CBS, cblC and MTHFR defects 

CBS cblC MTHFR

Homocysteine ↑↑ ↑↑ ↑↑

Methionine  ↑↑* Normal or ↓ Normal or ↓

Cystathionine  ↓↓* ↑↑ ↑↑

Methylmalonic acid Normal    ↑↑** Normal

Cysteine ↓↓ ↓ ↓

Clinical findings in common

Central nervous system Seizures, psychiatric disorders, 
mental retardation.

Early onset: seizures, 
mental retardation

Late onset: psychiatric disorder, 
mental retardation.

Early onset: seizures, 
mental retardation

Late onset: psychiatric 
disorder, mental retardation.

Cardiovascular, Vessels 
and hematology Thromboembolism Thromboembolism Thromboembolism

More specific clinical findings

Central nervous system Sequelae of thromboembolic 
events*

Early onset: Microcephaly, 
hydrocephalus, cortical atrophy**, 

hypotonia, lethargy, developmental delay.
Late onset: Acute neurologic 
decompensation, extrapyramidal 

symptoms and tremor.

Early onset: Hypotonia, lethargy, apnea***, 
paresthesias***, feeding problems*** and 

eventually microcephaly.
Late onset: progressive encephalopathy, 

ataxia, spasticity.

Eye Ectopia lentis*, myopia* 
and glaucoma*

Pigmentary retinopathy**, 
nystagmus** and decreased visual acuity. –

Bone Normal to tall stature and 
generalized osteoporosis* – –

Cardiovascular, Vessels and 
hematology – Megaloblastic anemia**, thrombocytopenia** 

and neutropenia** –

Treatment

Pyridoxine, folinic acid, dietary 
Met restriction, betaine, 

acetylsalicylic acid for patients 
with high thrombosis risk.

High dose of OHcbl, betaine, 
Met supplementation

Betaine, OHcbl, folinic acid, 
Met supplementation, riboflavin 

and pyridoxine.  

*Specific of CBS deficiency; ** Specific of cblC deficiency; *** Specific of MTHFR deficiency. Met: methionine; OHcbl: hydroxycobalamin.

Diagnosis

Markedly high tHcy (>50 µmol/L in children; tHcy >100 µmol/L 
in adults) together with increased Met and low cysteine in plasma 
are the classical biochemical features of HCU (Table 2). However, 
these biochemical abnormalities may be less pronounced in 
patients with milder forms of HCU or those taking vitamin 
supplements[22, 38, 39].

 Confirmation can be made via the measurement of CBS 
activity (typically in fibroblasts). Since this method is not 
broadly available, molecular genetic analysis is most often used 
for confirmation of the diagnosis. DNA analysis can also be 
performed, especially in high-risk populations, for newborn 
screening and families with known CBS mutations. The human 
CBS gene is located at chromosome 21q22.3[40], and more 
than 200 disease-causing mutations have been identified [41].
{Stenson, 2017, The Human Gene Mutation Database: towards a 
comprehensive repository of inherited mutation data for medical 

research ,̀ genetic diagnosis and next-generation sequencing 
studies}{Stenson, 2017, The Human Gene Mutation Database: 
towards a comprehensive repository of inherited mutation data 
for medical research ,̀ genetic diagnosis and next-generation 
sequencing studies} The most frequent mutations (p.Ile278Thr, 
p.Thr191Met and p.Gly307Ser) account for nearly half of the HCU 
alleles worldwide (http://cbs.lf1.cuni.cz/index.php). Prenatal 
diagnosis can be achieved by molecular genetic analyses or the 
extraction and culture of cells from amniotic fluid to measure 
CBS activity.[11, 42, 43]

Newborn screening has been performed, especially in 
countries with high incidences of HCU, such as Ireland and 
Qatar.[44, 45] The most common method is the measurement of 
Met in dried blood spots, but a high proportion of false negatives 
have been obtained by using this method.[46–48] The accuracy 
of Met to detect HCU is low since, in particular, the pyridoxine-
responsive forms of HCU do not develop hypermethioninemia 
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in the first days of life. In addition, other diseases can also lead 
to increased Met concentrations.[49] To increase sensitivity, 
reducing the cutoff for Met has been suggested.[49] In high-risk 
populations, the direct measurement of tHcy in DBS or analyses 
of CBS mutations should be performed.[50–52] 

Management

CBS deficiency results in markedly increased plasma levels of tHcy 
and Met and low cysteine.[11,22] The main goal in HCU treatment 
is to reduce tHcy (<50 μmol/L for pyridoxine responsive and 
<100 μmol/L for non-responsive patients[13]). The first strategy 
in the treatment is to test whether the patient is pyridoxine 
responsive. Pyridoxal phosphate, the active form of pyridoxine, is 
a co-factor of CBS and high dose of pyridoxine administrations 
markedly decreases tHcy in approximately 50% of HCU patients.
[14,53] Dosages from 100 to 500 mg/day in adults can be used.
[9, 38] Typically, patients who are responsive to pyridoxine 
present delayed and less severe clinical symptoms and these 
individuals may not even require any additional treatment.[13,14] 
In addition to pyridoxine, oral folinic acid supplementation (1 to 5 
mg/day) should be administered because many patients are folate 
deficient at the time of diagnosis. Pyridoxine responsiveness 
should only be tested under normal folate levels.[9,39,54,55]

If pyridoxine plus folate is not able to reduce tHcy levels to the 
target values, then additional therapies should be used. A very 
efficient strategy to lower tHcy is dietary Met restriction. Met 
is an essential amino acid and a diet low in Met will result in a 
significant decline of tHcy. To meet protein and micronutrient 
requirements, a free-Met amino acid-based formula should be 
taken daily. The amount of Met tolerated per patient varies from 
15 to 60 mg/kg/day.[56] Poor compliance to diet is common, 
especially in adults and late diagnosed patients.

Betaine acts in the remethylation route through a pathway 
independent of folate.[5] Oral betaine supplementation (6 - 9 
g/day or 150 - 250 mg/kg/day) can reduce tHcy more than 
70%, but this treatment results in an even more pronounced 
increase in Met. High levels of Met are acceptable, as long as 
this molecule does not exceed 1000 µmol/L, as levels higher 
may cause cerebral edema.[39,52,54]  

Cobalamin (cbl) or vitamin B12 participates in the 
remethylation route together with folate, and its deficiency 
is common in HCU; thus, vitamin B12 should be monitored 
and supplemented when deficient.[9,39] N-acetylcysteine may 
be administered to increase cysteine levels.[13] For patients 
with high thrombosis risk (previous thromboembolic event 
or mutations in factor V), salicylic acid is recommended.[39]

Good metabolic control from the neonatal period and 
thereafter is capable to prevent the clinical manifestations of 
HCU.[14, 26, 57, 58] In late diagnosed patients, treatment can also 
significantly prevents morbidity and mortality.[44] Even when 
tHcy remained higher than the target values, a major reduction 
in vascular disease risk is observed in HCU patients.[20]

Methylmalonic Aciduria and 
Homocystinuria, Cblc Type

Clinical Picture

Methylmalonic aciduria and homocystinuria cblC type (MIM# 
277400) is rare but remains the most common inborn error 
of cbl metabolism.[59] Newborn screening studies suggest 
that the incidence of cblC deficiency was higher than the 
previous estimate of 1/200,000 births.[60] A neonatal screening 
program in New York state estimates the incidence of cblC as 
approximately 1:100,000 live births.[61] and according to Han 
et al. (2015), the incidence of cblC was approximately 1:3,920 
in Shandong Province, China.[62]

 In 1969, the first case was reported by Mudd et al., concerning 
an infant with homocystinuria, methylmalonic aciduria, 
cystathioninemia, and hypomethioninemia. The infant died 
at 7.5 weeks of age. In vitro analysis identified a defect in the 
two reactions in which vitamin B12 derivatives function as 
coenzymes: 1) Met formation from 5MTHF and Hcy by MTR, 
and 2) the isomerization of methylmalonyl-CoA to succinyl-
CoA (MUT) (Figure 2). Since vitamin B12 was present at normal 
concentrations in the liver, these authors concluded that the 
gene-determined defect involved the conversion of B12 to the 
active coenzymes.[63] 

Individuals with cblC deficiency often suffer from a wide 
range of clinical complications, including developmental, 
metabolic, hematologic, neurologic, ophthalmologic and 
dermatologic findings.[64] Although considered a disease of 
infancy or childhood, patients can present at any time from 
the neonatal period to adulthood and can even be intrauterine 
affected. The disease has been classified into early-onset 
(infantile) and late-onset (noninfantile) forms.[65] Patients with 
early-onset disease, defined by the onset of symptoms before the 
age of one year, in general have severe systemic involvement. 
Symptoms include feeding difficulties, hypotonia, failure to 
thrive, seizures, microcephaly and developmental delay. Acidosis 
was observed in some patients. Progressive CNS findings were 
prominent and included hydrocephalus and neuroimaging 
evidence of cortical atrophy. Other systems became progressively 
involved. Nystagmus, pigmentary retinopathy, and decreased 
visual acuity were common. Hematological findings included 
thrombocytopenia, macrocytic anemia, megaloblastic marrow 
and/or hypersegmented polymorphonuclear neutrophils, 
leukopenia and neutropenia, probably all related to cellular folate 
deficiency. Also renal complications occur, which are not induced 
by increased MMA but are rather due to microangiopathy, 
resulting in hemolytic-uremic syndrome.[64] Mild facial 
anomalies have also been described in cblC patients; features 
included a long face, high forehead, large, floppy, and low-set 
ears, and flat philtrum. The morphologic characteristics became 
more evident after three years of age.[66]
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The late-onset of the disease seems rarer than the early-onset 
form. In addition to mild or even no hematological abnormalities, 
the clinical course is characterized by behavioral and psychiatric 
disturbances and rapid mental deterioration with confusion and 
disorientation, dementia, delirium, and psychosis.[67] Although 
its occurrence is rare, late-onset combined methylmalonic 
aciduria and homocystinuria, cblC type, should be considered 
when making a differential diagnosis in patients who present 
with neurological symptoms that are not consistent with 
common neurological diseases, especially when cognition, the 
pyramidal tract and peripheral nerves are involved.[68] Taken 
together, patients can be easily misdiagnosed or even missed.

Rosenblatt et al. (1997) reviewed 50 cblC patients who 
could be classified into the two broad phenotypes: 44 patients 
had early-onset, and six patients had later-onset diseases. 
The 44 patients presented in the first year of life with feeding 
difficulties, hypotonia, developmental delay, seizures, 
pigmentary retinopathy, and anemia. The outcome is often 
poor, as approximately one-fourth of the patients died, and 
those who survived suffered in general from severe neurological 
impairment.[64]

Diagnosis

CblC should be suspected when both tHcy and MMA are 
markedly elevated. CblC is a disorder of intracellular cbl 
metabolism caused by homozygous or compound heterozygous 
mutations in the MMACHC gene on chromosome 1p34. This 
disorder results in the impaired delivery of intracellular cbl 
to its two metabolically active forms, Mecbl and Adocbl. The 
decreased activity of these two enzymes causes elevations of 
tHcy and MMA as well as low-normal or reduced Met.[63,64] 
The overflow of Hcy into the transsulfuration pathway causes 
increases of cystathionine. In addition to overt B12 deficiency, 
other genetic defects in cbl metabolism, such as deficiency of 
cblD, cblF and cblJ, also result in increased of tHcy and MMA. 
The differential diagnosis is mainly based on gene analyses but 
may also be performed with functional complementation studies 
in cultured fibroblasts.  

 Because biochemical abnormalities are present in neonates, 
the diagnosis of cblC could be made by newborn screening, 
enabling the initiation of treatment prior to the development 
of notable pathology.[69] Key investigations for the diagnosis 
include measurements of plasma tHcy, MMA and Met and 
urinary organic acids. In acylcarnitine profiling, cblC patients 
often show increased propionylcarnitine (C3). Newborn 
screening can detect affected infants through decreased Met 
and elevated C3 or C3/C0 and C3/C2 ratios measured by tandem 
mass spectrometry (MS/MS). MMA and/or tHcy by MS/MS can 
be applied in second-tier analyses[61,70], although in theory, 
these analyses could be used directly in newborn screening. 

Some common mutations are found in the MMACHC 
gene: c.271dupA (p.Arg91Lysfs*14), c.331C>T (p.Arg111Ter) 
and c.394C>T (p.Arg132Ter).[71, 72] The p.Arg91Lysfs*14 and 

p.Arg111Ter mutations were associated with early-onset disease, 
while the p.Arg132Ter mutation is primarily associated with 
late-onset disease.[73,74] Wang et al. (2010) reported that the 
c.609 G>A (p.W203X) mutation, which results in a premature 
termination codon at amino acid residue 203 located in the 
C-terminal region of MMACHC, was detected in 39 of 46 patients, 
or 85% of alleles, making this mutation the most frequent in 
Chinese cblC patients.[70] Recently, it was reported a cblC patient 
who was heterozygous for the c.271dupA (p.Arg91Lysfs*14), at 
the MMACHC gene, and the c.515-1G>T, in the PRDX1 gene.
[75. Both variants were in trans. The PRDX1 gene is located at 
the same locus than MMACHC, but transcribed in the opposite 
strand. The c.515-1G>T is considered an epimutation, since it 
leads to a hypermethylated sequence encompassing the promoter 
and first exon of MMACHC gene.

Management

The main goal in cblC treatment is to reduce plasma levels of 
MMA and tHcy and normalize levels of Met. Treatment typically 
consists of a combined approach that utilizes mega-dose vitamin 
B12 IM., preferably in the form of hydroxycobalamin (OHcbl). In 
a guideline for the diagnosis and management of remethylation 
disorders, Huemer et al. (2017) recommended a starting dose 
of 1 mg of OHcbl daily and administered parenterally.[76] 
Oral betaine is provided to enhances the remethylation via 
an alternative pathway and oral folinic acid ameliorates folate 
trapping.[67,71,77] Protein restriction to reduce MMA is 
contraindicated because it results in a great reduction of Met.[78]

In a retrospective analysis of 50 patients with cblC disease, 
Rosenblatt et al. (1997) described a shorter interval between 
the onset of symptoms and the diagnosis in patients who died, 
likely because these individuals were sicker and progressed 
more rapidly than those who survived. The overall mortality 
rate was 30% (13/44) in early-onset cblC, and the six patients 
with late-onset cblC survived with good neurological outcomes. 
Although treatment systemic symptoms improved, neurological 
and ocular impairments persisted. OHcbl was used in 80% of the 
patients, and patients treated with cyanocobalamin presented 
no biochemical improvement.[64]

In a review of published case reports and case series, Weisfeld-
Adams et al. (2015) reported that maculopathy and nystagmus 
with abnormal vision affect a majority of children with early-
onset cblC, and strabismus and optic atrophy present at relatively 
high frequency. The treatment fails to prevent ocular disease, 
even with prenatal treatment through OHcbl administered 
to the mother, despite apparently adequate plasma Met levels 
and moderately elevated plasma tHcy. This study suggested a 
correlation between the severity of the ocular phenotype and 
the biochemical phenotype.[79]

Andersson, Marble and Shapira (1999) described the clinical 
and biochemical features of eight cblC patients who were treated 
for an average of 5.7 years. The age at diagnosis was between 
1 week and 11 months, and treatment consisted of OHcbl IM. 
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and daily oral carnitine supplementation. The earliest treated 
patient had one of the most severe developmental delay, showing 
that early treatment is no guarantee for better outcome. All 
patients presented with poor growth, feeding problems and/
or seizures.[80

More recently, in a retrospective study, Fischer et al. (2014) 
described 76 cblC patients with early-onset and 12 patients with 
late-onset diseases. The number of males affected was almost 
twice as high as the number of affected females. In early-onset 
group, 43 of the 76 patients presented symptoms in the first 
month of life. Parenteral OHcbl was prescribed to approximately 
90% of the patients, but even after treatment, neurological and 
ophthalmological problems remained, such as developmental 
delay, seizures, failure to thrive, microcephaly and optic atrophy. 
Ten patients (11.4%) died, and these individuals were primarily 
non-treated with OHcbl.[71]

Severe 5, 10-Methylenetetrahydrofolate 
Reductase (Mthfr) Deficiency

Clinical Picture

Severe methylenetetrahydrofolate reductase (MTHFR) deficiency 
is inherited as an autosomal recessive metabolic disorder of 
folate metabolism caused by mutations in the MTHFR gene 
on chromosome 1p36.3.[81] Homozygous or compound 
heterozygous loss-of-function mutations in MTHFR result in 
systemic 5MTHF deficiency and so hampered Hcy remethylation 
(Figure 1). This rare disorder is associated with slow brain 
growth, severe neurological disability, and untimely death.[82]

Homocystinuria due to MTHFR deficiency (OMIM ID: 
236250) was first described in 1972 by Mudd et al.[11,83] 
in a 16-year-old boy with muscle weakness, seizures and 
abnormal encephalographic signs, a 17-year-old girl with 
mental degradation and schizophrenia and her sister. These 
three patients had homocystinuria but normal levels of Met, 
normal CBS activity in fibroblasts and low MTHFR activity. 
Severe MTHFR deficiency is biochemically characterized 
by hyperhomocysteinemia, homocystinuria, increased 
cystathionine, and low or low-normal Met, in contrast with 
CBS deficiency, which presents with elevated Met. In cultured 
fibroblasts, residual activity is less than 20% of the mean control 
value[76,82,84] (Table 2). 

A classical presentation suggestive of MTHFR deficiency is a 
neonate with acute neurological distress, including generalized 
muscular hypotonia, feeding problems, failure to thrive, lethargy, 
apnea, and eventually microcephaly.[7, 85] Patients may also 
present with late-onset disease during childhood and even in 
adulthood. The latter patients have a more variable picture, 
encompassing delayed developmental milestones, cognitive 
impairment and/or gait abnormalities, as well as mental 
degradation and progressive encephalopathy, compatible 
with myelopathy or ataxia, spasticity behavioral problems, an 

unspecific spectrum of psychiatric symptoms, and occasionally 
thrombosis. Megaloblastic and/or macrocytic anemia is typically 
absent.[7, 85, 86]

In contrast to the defects blocking MTR function, the block in 
the conversion of methylene-THF to methyl-THF does not result 
in the trapping of folates, as methyl-THF and does not interfere 
with the availability of reduced folates for purine and pyrimidine 
synthesis. This finding explains why patients do not have 
megaloblastic anemia and do not suffer from microangiopathy.
[7] As the product of MTHFR methyl-THF is the circulating 
form of folate, MTHFR deficiency results in reduced folate levels, 
especially in the brain. Cerebral folate deficiency is a common 
finding in this inborn disorder.[87] Another interesting finding 
in the brain of patients with remethylation defects, compared to 
controls, is that choline, a precursor of betaine and so a source 
of methyl groups, seems deficient. The choline decreased levels 
is possibly a side effect of methyl groups depletion that should 
be produced by the transmethylation pathway.[88]

Age of presentation and clinical pattern correlate with 
residual enzyme activity.[7] In a review of 33 patients, Huemer 
et al. (2016) showed the median age at onset of symptoms was 
1.25 months (mean 21; range 0.1 to 216 months). In 14 patients, 
the first symptoms were observed within the first month of 
life; and in another 11 patients, the symptoms were observed 
by the 6th month of life. The remaining five patients became 
symptomatic at the ages of 2, 5, 11, 13 and 18 years.[89]

In summary, MTHFR deficiency is a severe disease primarily 
affecting the CNS, likely due to the reduced availability of methyl-
THF and Met, causing reduced cerebral methylation as suggested 
by decreased SAM levels in CSF.[90,91] MRI imaging of the 
brain often reveals white matter disease and brain atrophy.[89]

Diagnosis

Froese et al. (2016) reported more than 100 different mutations 
in over 170 patients with severe MTHFR deficiency. Most 
mutations in the MTHFR gene are restricted to one or two 
families.[92] The c.665C>T (p.Ala222Val) is a polymorphism 
leading to a thermolabile MTHFR variant with a propensity for 
monomer dissociation and flavin adenine dinucleotide binding 
loss, showing a 70% and 35% reduction of enzyme activity in 
lymphocytes in homozygotes and heterozygotes, respectively, 
when compared with wild-type controls.[93] Notably, this 
SNP does not cause severe MTHFR deficiency. However, this 
common variant is a fascinating gene-environment example 
because in homozygotes with low-normal folate levels, this 
variant hampers Hcy and folate homeostasis, causing moderate 
hyperhomocysteinemia. This variant has been associated with 
many common diseases, such as cardiovascular disease and 
neurodegenerative disorders, but so far only confirmed as a 
risk factor in neural tube defects.[84,94]

Neonatal screening for MTHFR deficiency is feasible by 
detecting a decreased Met and Met-to-phenylalanine ratio in 
dried blood spots, followed by analysis of tHcy. To what extent 
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are patients detected or missed remains obscure.[49] Direct 
measurement of MTHFR-specific activity can be performed in 
the liver tissue, leukocytes, lymphocytes and cultured fibroblasts. 
There is a rough inverse correlation between the specific activity 
of the reductase in cultured fibroblasts and clinical severity.[95]

Management

Untreated patients show progressive developmental delay and 
mental retardation, whereas some patients may also present with 
epilepsy and neurological disease (abnormal gait, spasticity).[7] 
The goal of treatment is to reduce plasma tHcy, normalize the levels 
of Met and folate, especially in CSF, and so presumably alleviate 
clinical symptoms. Treatment involves the administration 
(suggestive doses) of betaine (100–250 mg/kg/day in children 
and 5–20 g/day in adults) to provide an alternative pathway for 
Hcy remethylation. In addition, OHcbl (1-2 g/d) and folinic acid 
(400 mg/d) are prescribed. Pyridoxine, as a cofactor for CBS, 
may be administered to maximize the transsulfuration pathway 
and riboflavin as cofactor of the MTHFR enzyme. Met may 
be supplemented if its level remains low, despite treatment; in 
general, treatment improves the disease course in early-onset 
cases.[7, 82, 96, 97] Some studies have shown that treatment with 
folinic acid, Met, pyridoxine, and different cbl preparations but 
without betaine has generally been considered unsuccessful 7. In 
a systematic review, including 36 patients, the positive impact of 
early betaine treatment on the outcome in early-onset patients 
was shown: all five early treated patients survived with normal 
psychomotor development, while nine of ten non-treated and 
two of 21 late-treated patients died. In families with one or more 
deceased siblings, none of the treated but all of the untreated 
children died. Psychomotor development was impaired in all 
children with delayed treatment onset, despite the stabilization 
observed from the introduction of betaine treatment.[85]

Regarding the infantile forms, the only patients who have 
done well are those who were treated from birth. Early treatment 
with betaine following prenatal diagnosis has resulted in the 
best outcome.[98] Without treatment, these early-onset forms 
may rapidly progress to coma and potentially death by central 
respiratory failure. Since MTHFR deficiency is a potentially 
treatable disease, early diagnosis is crucial and treatment, in 
particularly betaine should be administered as early as possible.[92] 
Although single reports have described a benefit of treatment 
with folinic acid[99] or Met supplementation[96], the mainstay 
of treatment is betaine.[91]

Conclusions

Homocystinurias are a group of inborn errors of sulfur amino 
acid metabolism. Their joint manifestation is the accumulation 
of tHcy, however, the other sulfur amino acids show various and 
even invers profiles. CBS deficiency shows high Met with low 
cystathionine and cysteine. Whereas in the remethylation defects, 
Met is low-normal or decreased and cystathionine increased. 
Total cysteine in plasma is reduced in all homocystinurias 
because the elevated tHcy displaces cysteine from albumin, 
which binds the major fraction of tHcy and cysteine in plasma. 
At diagnosis, folate is typically low or (functionally) deficient in 
all homocystinurias. MTHFR deficiency blocks the production 
of methyl-THF, which is the circulation form of folate. In CBS 
deficiency, folate is often deficient at diagnosis probably due 
to the inhibition of MTHFR by the increased concentration 
of SAM. In cblC deficiency, a different mechanism kicks in: a 
dysfunctional MTR results in the accumulation of all folates as 
methyl-THF, which cannot be converted back to methylene-THF 
because MTHFR is physiologically none-reversible. These result 
in a functional folate deficiency despite that plasma folate may 
be normal or even increased because of the leakage of methyl-
THF out of the cell. Intracellularly, folate is not available for 
the folate-dependent pathways. In particular, the synthesis 
of thymidylate and purine will be compromised, which will 
hamper essential cellular functions, especially in cells that 
rapidly divide, such as those in bone marrow. This functional 
folate deficiency occurs in any cell, which may explain why so 
many different organ systems can be affected in cblC patients, 
particularly when compared to the other remethylation defect 
of MTHFR deficiency, which mainly affects the CNS. 

Some clinical findings were found in all homocystinurias, 
including vascular disease, developmental delay and seizures. 
However, the complications of CNS differ in a wide variety of 
presentations and severities and are apparently less pronounced 
in CBS. Moreover, patients with remethylation defects typically 
do not present ectopia lentis and bone disturbances, tall stature 
and osteoporosis. Whereas hematological alterations, such as 
megaloblastic anemia, thrombocytopenia neutropenia and 
life-threatening microangiopathy, are specific findings of cblC 
deficiency. 

Treatment that lowers plasma tHcy in CBS deficient results 
in improved clinical outcome[13], by reducing the incidence 
of vascular events[19,20] or preventing mental retardation[57] 
and bone anomalies.[58]  Remarkably, on treatment, the levels 
of plasma Hcy in general remained clearly elevated.[19, 100] 
Treated cblC patients have in general a marked reduction of 
tHcy, but neurological and ophthalmological problems usually 
remained.[71]
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Abbreviations

Hcy: Homocysteine; CBS: Cystathionine beta-synthase; 
MTHFR: Methylenetetrahydrofolate reductase; tHcy: Total 
homocysteine; Met: Methionine; ATP: Adenosine triphosphate; 
SAM: S-adenosylmethionine; SAH: S-adenosylhomocysteine; 
SAHH: S-adenosyl-L-homocysteine hydrolase; MTR: 
Methionine synthase; 5MTHF: 5-methyltetrahydrofolate; 
CSF: cerebrospinal f luid; BHMT: Betaine-homocysteine 
methyltransferase; Mecbl: Methylcobalamin; Adocbl: 
Adenosylcobalamin; HCU: Classical homocystinuria; MMA: 
Methylmalonic acid; CNS: Central nervous; IQ: Intelligence 
quotient; DNA: Deoxyribonucleic acid; DBS: Dried blood 
spot; MUT: Methylmalonyl CoA mutase; Cbl: Cobalamin; C3: 
Propionylcarnitine; C0: Free carnitine; C2: Acetylcarnitine; MS/
MS: Tandem mass spectrometry; IM: Intramuscular; OHcbl: 
Hydroxycobalamin; SNP: Single nucleotide polymorphisms; 
AR: Autosomal recessive; XLR: X-linked recessive; CγL: 
Cystathionine γ-lyase; THF: Tetrahydrofolate; SHMT: Serine-
hydroxymethyltransferase; MMAA: Methylmalonic aciduria 
type A; MMAB: Methylmalonic Aciduria cblB Type; MMADHC: 
methylmalonic aciduria and homocystinuria type D; MMACHC: 
methylmalonic aciduria and homocystinuria type C protein; 
LMBRD1: gene that encodes a lysosomal membrane protein that 
may be involved in the transport and metabolism of cobalamin 
affected in cblF; ABCD4: gene ATP binding cassette subfamily D 
member 4 related to cblJ; HCFC1: gene host cell factor C1 related 
to cblX; TCN2: transcobalamin 2; MTRR: gene methionine 
synthase reductase related to cblE.
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