A portrait of gestational diabetes mellitus in Brazil: A systematic review and meta-analysis

Betine Pinto Moehlecke Iser¹ https://orcid.org/0000-0001-6061-2541

Caroline Stein² https://orcid.org/0000-0003-4777-1630

Luisia Feichas Alves³ https://orcid.org/0000-0002-8400-6148

Morgana Lourenço de Souza Carvalho² https://orcid.org/0000-0001-8171-503X

Sergio Angelo Rojas Espinoza² https://orcid.ora/0000-0001-7664-2948

Maria Inês Schmidt² https://orcid.org/0000-0002-3837-0731

ABSTRACT

The diagnostic criteria for gestational diabetes mellitus (GDM), a transient hyperglycemic state during pregnancy, has varied remarkably over time, resulting in a diversity of prevalence rates. The aim of this systematic literature review was to provide estimates of prevalence rates of GDM in Brazil according to different diagnostic criteria. We identified, reviewed, and extracted data from the scientific literature on studies estimating the prevalence of diabetes in pregnant women living in Brazil. The databases searched were PubMed, LILACS, SciELO, Embase, Web of Science, and Cochrane Library. We grouped studies by the source of information assessing GDM, patients' age, and criteria used to diagnose GDM. When three or more studies were available in a group, we calculated the pooled prevalence. The Joanna Briggs Institute (JBI) appraisal tool was used to assess the risk of bias. The data were reported according to the 2020 PRISMA recommendations. The study protocol was registered in PROSPERO. We identified 1,328 records and selected 21 studies involving 122,635 pregnant women. Studies in adults only, with primary data and laboratory measurements, and using the IADPSG criteria (n = 3) had a GDM prevalence of 18.0% (95% confidence interval [CI]: 16.0-20.1%) and included 6,243 participants. Estimates of self-reported GDM (n = 3; 10,136 participants of all ages) had a pooled GDM prevalence of 2.1% (95% CI: 1.5-5.2%), with high heterogeneity (I² = 85.0%, p < 0.01). Studies including adolescents had consistently low prevalences. The prevalence of GDM in Brazil varied, was greater when the IADPSG criteria were applied, and depended on the methods used to obtain the GDM information and the age structure of the sample.

Keywords

Gestational diabetes; Brazil; prevalence; epidemiology

¹ Universidade do Sul de Santa Catarina, Programa de Pós-graduação em Ciências da Saúde, Tubarão, SC, Brasil ² Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Medicina, Porto Alegre, RS, Brasil ³ Universidade Federal do Rio Grande do Sul (UFRGS), Biblioteca Central, Porto Alegre, RS, Brasil

Correspondence to:

Betine Pinto Moehlecke Iser Universidade do Sul de Santa Catarina, Programa de Pós-graduação em Ciências da Saúde Av. José Acácio Moreira, 787, Bairro Dehon 88704-900 – Tubarão, SC, Brasil betinee@gmail.com

Received on Dec/22/2022 Accepted on July/17/2023

DOI: 10.20945/2359-4292-2022-0521

INTRODUCTION

Gestational diabetes mellitus (GDM), a transient hyperglycemic state diagnosed in pregnancy, is associated with adverse maternal and fetal outcomes (1). Although the concept of GDM is generally consensual, the diagnostic criteria for GDM have experienced marked heterogeneity over time, resulting in diverse prevalence rates, as attested by systematic reviews across different countries, regions, and even globally (2-4).

In Brazil, routine detection of GDM was incipient before the implementation of the national health unified

system (*Sistema Único de Saúde* [SUS]). Screening for GDM was generally restricted to university centers and usually followed the guidelines of the American Diabetes Association (ADA) based on pregnancyspecific criteria. These guidelines were derived from a series of studies conducted methodically by O'Sullivan's group (5). The ADA position was reiterated in 1979 by the National Diabetes Data Group (NDDG), when the diagnostic criteria for diabetes and other categories of glucose intolerance were defined (6). The recommended diagnostic procedure for GDM was based on a two-stage screening in which the patients initially underwent a 50-g glucose challenge, and those with a positive result underwent a 100-g oral glucose tolerance test (OGTT) with samples collected at fasting and at 1, 2, and 3 hours. The diagnosis of GDM was defined as the presence of at least two abnormal plasma glucose results. While agreeing with most NDDG recommendations, a World Health Organization (WHO) panel in 1980 defined GDM using the same criteria applied outside pregnancy for impaired glucose tolerance (7), without specifying a cutoff value for fasting glucose levels.

Confronted with this diagnostic controversy, the Brazilian Ministry of Health conducted a national study - the Brazilian Study of Gestational Diabetes (8). In the study, the protocol for GDM diagnosis involved a 2-hour 75-g OGTT, with samples collected at fasting and at 1 and 2 hours. During a workshop, the panel recommended adopting a two-stage screening, in which the patient would first undergo measurement of fasting plasma glucose level and, if elevated, a 2-hour 75-g OGTT, defining GDM according to the same criteria established for impaired glucose tolerance outside pregnancy (9). While adopting the same criteria established for impaired fasting glucose outside pregnancy ($\geq 100 \text{ mg/dL}$ or 110 mg/dL) (10), the panel also considered including this category in the definition of GDM (9).

In 2008, new data on GDM emerged with the publication of the study Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) (11), which involved more than 23,000 women across nine countries. The study's results compelled a committee of experts - The International Association of the Diabetes and Pregnancy Study Groups (IADPSG) - to develop and validate the diagnostic criteria for GDM based on adverse pregnancy outcomes. The procedures and criteria proposed were agreed upon during international meetings and were published in 2010 (12). The main recommendation from the committee was to adopt universal screening with a 2-hour 75-g OGTT (fasting and 1 and 2 hours) and consider the diagnosis of GDM when one or more values were abnormal. These criteria have been increasingly adopted (13-15), but the controversy around them persists.

In 2014 in the United Kingdom, the National Institute for Health and Care Excellence (NICE) (16) proposed a two-stage screening for women at high risk for GDM based on a 2-hour 75-g OGTT. Although their definition of GDM included the cutoff value considered for impaired glucose tolerance outside pregnancy (as recommended by the 1979 WHO panel), the NICE recommendations also incorporated the cutoff value of 100 mg/dL for fasting plasma glucose.

In the United States, a consensus from a 2012 National Institutes of Health (NIH) conference recommended maintaining the two-stage screening procedure based on O'Sullivan's criteria (with Carpenter and Coustan corrections) (5). The ADA maintained this recommendation but also included the option of universal screening based on IADPSG procedures and criteria (17).

The debate continues. A comparison of these two screening criteria – IADPSG and Carpenter-Coustan – showed a substantial increase in GDM prevalence with the IADPSG criteria but did not detect improvement in pregnancy outcomes (5,6).

In Brazil, a 2016 consensus panel proposed two strategies for GDM screening and diagnosis, to be chosen according to the financial viability and technical resources in different regions of the country (18).

Given the diversity of diagnostic criteria that emerged over the last decades and the long experience in GDM screening in Brazil, we aimed to conduct a systematic review of the pertinent literature on the prevalence of GDM in the country, establishing no limit for the year of publication.

MATERIALS AND METHODS

The study protocol was registered in PROSPERO (February 14, 2022) under the title "Prevalence of gestational diabetes in Brazil: a systematic review" and can be accessed online using the record ID CRD42022300767 (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=300767).

We used the following search strategy to conduct the systematic literature review of original studies on the prevalence of GDM in pregnant women in Brazil. First, we searched the PubMed database (US National Library of Medicine, NIH). Then, we replicated the search in other databases, specifically, LILACS (*Literatura Latino-Americana e do Caribe em Ciências da Saúde*), SciELO, Embase, Web of Science, and Cochrane Library. For the search, we included free text words and indexed vocabulary (DeCS Health Science Descriptors) for articles published in Portuguese and used Medical Subject Headings (MeSH) terms for the Medline/ PubMed search. The initial terms were: (prevalence OR prevalence [MeSH Terms] OR survey OR epidemiology OR incidence) AND (diabetes mellitus [MeSH Terms] OR diabetes OR hyperglycemia) AND (pregnant* OR gestation* OR gravid*) AND (brasil OR brazil). The complete PubMed search strategy is available in the Supplementary Material.

Selection of studies

The search was limited to studies in humans, without restriction of publication language or year, from the oldest records available until November 2021. A library with all the records found in the search was created by the researcher LFA using the software Zotero (https://www.zotero.org/). After removing duplicates, we uploaded the file into the software Rayyan to organize the references and share the file among the researchers for study selection and data extraction.

Using the list of references, two researchers (MLSC, SARE) independently screened the studies by reading the titles and abstracts using the following inclusion criteria (PICO framework): (A) Population: general population of pregnant women living in Brazil, regardless of gestational age, sample size, or study

setting; (B) I: diagnostic methods applied, including fasting plasma glucose (FPG), OGTT, glycated hemoglobin (HbA1c), previous self-reported diagnosis of GDM, or direct evaluation of medical record; (C) Outcome measure: prevalence of GDM diagnosed according to screening methods; (D) Study design: observational study estimating prevalence data. Since our study aimed to describe the population's GDM prevalence, we did not include the "C" (comparison or control) from the PICO acronym. We excluded studies conducted on groups with specific pathologies, review articles, editorials, case-control studies, and studies with incomplete data estimating prevalence. In cases of disagreement, we consulted the full-text papers with the help of a third researcher experienced in the field (BPMI). In doubtful cases, the record was considered eligible for full-text reading.

After the initial screening, the full text was read independently by two researchers (MLSC, SARE) and later revised by two other researchers (BPMI, CS). During the full-text reading, we excluded studies that did not meet all the eligibility criteria or those that selected women at high risk for GDM (due to lifestyle and medical factors) or from high-risk prenatal centers, as detailed in Figure 1.

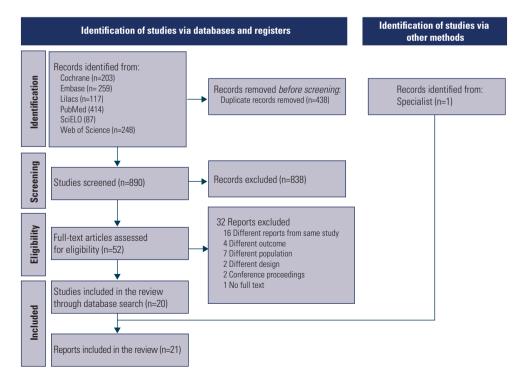


Figure 1. PRISMA flow diagram.

Arch Endocrinol Metab, 2023, v.67(6), 1-13, e220521.

Copyright® AE&M all rights reserved

Data extraction

The primary outcome for analysis was the prevalence of GDM in pregnant women living in Brazil, regardless of gestational age. We extracted the data using a standard form built into a Google Spreadsheet containing items of interest to the review for use by the reviewers after initial training (BPMI, MLSC, SARE). The data, compiled for each study, included the following: first author, year of publication, study or cohort name (when available), location (city, state, region), year of data collection, method used for sample selection, study design, sample size, method used to define the outcome (self-reporting, medical record, or primary laboratory data), diagnostic criteria used to analyze the medical record or laboratory data, number of cases diagnosed with GDM, and prevalence rate reported in each study. If more than one study used the same database or population, we included only the study with the largest sample size or complete information. In case of disagreement, we consulted a senior researcher (MIS).

The data were reported according to the 2020 Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) recommendations. The inclusion/exclusion process is described in Figure 1.

Methodological quality appraisal

The researchers BPMI, MLSC, and SARE assessed the studies' quality and risk of bias using the Joanna Briggs Institute (JBI) appraisal tool checklist for prevalence studies. For the evaluation, we considered the appropriateness of the sample frame and recruitment of participants, adequacy of the sample size, description of the subjects and settings, validity of the identification method, standardization of the condition measured, adequacy of the statistical analysis, and rate of responses. We adapted the evaluation of these parameters for the specific setting of our GDM question, considering also scales used in similar systematic reviews, such as those used by Hoy and cols. (19) and Muche and cols. (4). We adapted the criteria of representativeness to the setting of studies of GDM, usually conducted within the health services. We considered a sample to be drawn from the general population of pregnant women when the source covered the majority of the population, such as population registries, general practice registries, or registries of clinics for pregnant women.

We considered the sample size adequate when it was calculated a priori. We considered the description of the subjects and settings adequate if the participants' mean age and body mass index (BMI) were available. We considered having a low risk of bias those studies that used methods to identify GDM based on a laboratory test (e.g., OGTT, FPG, HbAlc) or laboratory data from medical records. We considered other methods (such as those from medical records with no specification of the test used or self-reported GDM) as having a high or uncertain risk of bias. The identification method was considered standardized when it used the same approach for data collection for all patients (a unique criterion) and training of the researchers on data extraction for each study. We considered the response rate adequate when $\geq 75\%$ (4,19), considering the study's total target population when described. We considered the statistical analysis adequate when the study provided values for the total sample size (denominator) and total number of GDM cases (numerator) to allow for the estimation of prevalence. When the information provided was insufficient, we agreed to grade that item as unclear (uncertain).

Analysis

We initially grouped the studies according to the methods they used to identify GDM into (A) primary data and laboratory measurements, (B) medical records, and (C) self-reporting. If individual studies reported multiple prevalence rates based on different diagnostic criteria, we included each specific finding for the initial grouping. Then, based on the number of events and sample size obtained for each study, we calculated the pooled prevalence using a random effects model for each subgroup whenever three or more studies were available. We chose the random effects model to combine studies due to the nature of observational studies and the certainty of heterogeneity among them, even between studies with the same diagnostic criteria. We built forest plots to visualize the extent of the heterogeneity between studies. We considered the presence of heterogeneity when I^2 was $\geq 50\%$ and the Cochran's Q test and its respective p value was < 0.05. We conducted analyses using R language in RStudio (RStudio PBC, Boston, MA, USA) and the packages meta and metafor. Copyright⁶

RESULTS

Description of the studies included in the review

The database search identified 1,328 records from January 1, 1965 (when the first document was available) to November 30, 2021. After removal of duplicates (n = 438) and exclusions by title and abstract (n = 838), 52 studies were considered eligible for full-text reading. Of these, 29 were excluded as they duplicated reports of studies already included (n = 16) or had a different outcome (n = 4), population (n = 7), or study design (n = 2). We also excluded records based on conference proceedings (n = 2) and those without full text accessible online (n = 1). One study published recently was added by an expert (BPMI) due to its potential relevance. Altogether, we extracted results from 21 studies. The PRISMA flowchart of study identification is presented in Figure 1.

We evaluated the 21 studies according to the method they used to assess the occurrence of GDM, *i.e.*, primary data with laboratory measurements (FPG, OGTT, or a combination of both; n = 10) (8,20-28), self-reported GDM diagnosis (n = 3) (29-31), self-reported diabetes during pregnancy without specifying the type of diabetes (n = 1) (32), medical records with previous diagnostic tests (such as a medical chart or prenatal card; n = 6) (31,33-37), and data collected using other systems (including the International Classification of Diseases [ICD]), for which specific criteria could not be identified (n = 2) (38,39). We considered the studies using the two latter methods as having poorly defined criteria. Two studies (31,34) compared different criteria and provided data for both. The characteristics of the included studies and the methods they used to identify GDM are shown in Table 1.

Of the 10 studies based on primary data and measurement of laboratory tests, nine used a universal approach to identify GDM, and one used a two-step approach for this purpose. In the universal approach, the diagnostic test is applied to all study participants, while in the two-step approach, the diagnostic test is applied only to those with a positive result in the first test. Among the studies using the universal approach, most (six) used the IADPSG criteria, two used the 1999 WHO criteria, and one used Carpenter-Coustan values. Studies adopting a two-step approach used FPG or a 50-g glucose challenge as the first test. Finally, we included one study that used the 1999 WHO criteria and the presence of impaired FPG. Although the report of GDM prevalence was not the primary aim of most studies, they all provided the values (numerators and denominators) required for the calculation of prevalence. The sample size varied widely, from 120 to 79,368 participants, with a median of 792, resulting in the inclusion of 122,635 women in the systematic review. Two studies were conducted at a national level (32,33), while two were conducted in six capitals (8,21) and one in five capitals (20). Ten studies originated in the South and Southeast regions of Brazil.

Quality of the studies

Table 2 summarizes the risk of bias in each study. We categorized the studies according to their overall risk of bias, considering six studies as having a low risk, 13 as having a moderate risk, and two as having a high risk. We considered a high risk of bias when the method used to identify GDM was invalid or when three or more items in the study were considered potentially biased.

Forest plots

The meta-analysis included 16,379 pregnant women. We grouped the studies according to the diagnostic criteria they used to identify GDM and the participants' age (*i.e.*, whether the study included pregnant women of all ages or just adults aged \geq 18 years). Studies with primary data and laboratory measurements including only adult women and adopting the IADPSG criteria (n = 3) had a pooled GDM prevalence of 18.0% (95% CI: 16.0-20.1%) and 6,243 participants (Figure 2). This estimate was not heterogenous (I² = 0%, p = 0.62) and was comparable to that found in studies using the IADPSG criteria based on medical records (18.3%).

For studies based on medical records (n = 5) and using other diagnostic criteria, the overall estimates were 4.3-9.1%, depending on the age of the participants and diagnostic criteria used. Estimates of prevalences in studies using self-reported GDM (n = 3), which included 10,136 participants of all ages, were even lower, with a pooled prevalence of 2.1% (95% CI: 1.5-5.2%). For this pooled estimate, we found significant heterogeneity (I² = 85.0%, p < 0.01) when we summarized the GDM prevalence. As expected, studies that included women of all ages had a lower prevalence of GDM due to the lower prevalence of this condition among adolescents.

ics are and incs are are and incs are	Age (years) Sample Setting mean (SD) or age selection groups	Universal/two Sample steps	Cases	%
Alves JG, 2020 Recife – FE 2016-2018 Hospital Barbieir, P, 2016 Riveire – FE 2011-2012 Primary Health Care Nascimento GR, 2016 Riveire – FE 2011-2013 Primary Health Care Nicolosis E, 2020 (SAMBA) Five Brazilian 2019-2018 Primary Health Care Nicolosis E, 2020 (SAMBA) Stazilian 1991-1995 Prenatal Clinics Vernini JM, 2020 Botucatu – SP 2014-2016 Primary Health Care 96 Vith Santos EMF, 2012 Sheazilian 1991-1995 Prenatal Clinics 96 Vith Santos EMF, 2012 Sheazilian 1991-1995 Prenatal Clinics 96 Vith Santos EMF, 2012 Sheador BA 2007-2008 Primary Health Care 96 Vith Vanian Warth Primary Health Care Primary Health Care 96 Vith Vanian Warth Primary Health Care Primary Health Care 97 Natedor - BA 2007-2008 Primary Health Care 98 With Brasilian Primary Health Care 99 Numes RD, 2020 Palnoga - RS 2017-2018 99 Numes RD, 2020 Palnoga - RS 2017-2018 99 Numes RD, 2020 Palnos Primary Hea				
Barbiair P, 2016 Ribeirão Preto - SP 2011-2012 Primary Health Care and Nascimento GR, 2016 Nascimento GR, 2016 Recife - PE 2011-2018 Prenatal Clinics Nicolosi BF, 2020 (SAMBA) Five Statilan 2015-2018 Prenatal Clinics Nicolosi BF, 2020 (SAMBA) Five Statilan 1991-1995 Prenatal Clinics Sofmith M, 2001 (EBDG) Six Brazilian 1991-1995 Prenatal Clinics Sofmith M, 2001 (EBDG) Six Brazilian 1991-1995 Prenatal Clinics Sofmith M, 2001 (EBDG) Six Brazilian 1991-1995 Prenatal Clinics Sofmith M, 2001 (EBDG) Six Brazilian 1991-1995 Prenatal Clinics Sofmith M, 2001 (EBDG) Six Brazilian 1991-1995 Prenatal Clinics Sofmith M, 2001 (EBDG) Six Brazilian 1991-1995 Prenatal Clinics Sofmith M, 2001 (EBDG) Six Brazilian 1991-1995 Prenatal Clinics Sofmith M, 2005 Campo Grande 1997-1999 Prenatal Clinics Prenatal Clinics Campo Grande 1997-1999	Hospital 26.1(5.8) Convenience	Universal 518	87	16.8
Inscrimento GR, 2016 Recife – FE 2011-2014 Prenatal Clinics Nicolosi BF, 2020 (SAMBA) Five Brazilian 2015-2018 Prenatal Clinics Tujillo J, 2014 (EBDG) Skatilian 1991-1995 Prenatal Clinics 99 Vernini JM, 2020 Botucatu – SP 2014-2016 Prenatal Clinics 99 Vernini JM, 2020 Botucatu – SP 2014-2016 Prenatal Clinics 99 Vernini JM, 2020 Botucatu – SP 2014-2016 Prenatal Clinics 99 Vernini JM, 2020 Botucatu – SP 2014-2016 Prenatal Clinics 99 Virhi Samos EMF, 2012 Salvador – BA 2007-2008 Prenatal Clinics 99 Virhi Samos EMF, 2012 Salvador – BA 2007-2008 Prenatal Clinics 99 Virhi Santos EMF, 2012 Salvador – BA 2007-2008 Prenatal Clinics 99 Virhi Branda Crande 1997-1999 Prenatal Clinics 99 Virhi Branda Vireatils 2007-2018 Prenatal Clinics 99 Virhi Branda Vireatils 2007-2018 Prenatal Clinics 99 Vernatils Vernatils 2007-2018 Prenatal Clinics 99 Vernatils Vernatils 2007-2018<	Primary Health Care >20 Convenience	Universal 799	151	18.9
Nicolosi BF, 2020 (SAMBA) Five Brazilian 2015-2018 Primary Health Care and critics* Tuylilo J, 2014 (EDG) Six Brazilian 1991-1995 Prenatal Clinics 99° Vernini JM, 2020 Botucatu – SP 2014-2016 Primary Health Care and Prenatal Clinics 99° Schmidt MI, 2001 (EDG) Six Brazilian 1991-1995 Prenatal Clinics 99 (with Santos EMF, 2012 Salvador – BA 2007-2008 Primary Health Care 99 (with Santos EMF, 2012 Salvador – BA 2007-2008 Prenatal Clinics 99 (with Valladares CG, 2008 Brasilia – DF 2007-2008 Prenatal Clinics 99 (with Valladares CG, 2008 Brasilia – DF 2007-2008 Prenatal Clinics 99 (with Valladares CG, 2008 Brasilia – DF 2007-2008 Prenatal Clinics 99 (with Valadares CG, 2008 Brasilia – DF 2007-2008 Prenatal Clinics 99 (with Brandao T, 2020 Campo Grande 1997-1999 Prenatal Clinics 99 (with Valadares CG, 2008 Brasilia – DF 2007-2008 Prenatal Clinics 99 (with Brandao T, 2020 Brandao T, 2020 Prenatal Clinics Prenatal Clinics 99 (with Brandao T, 2020 Brandao T, 2020 Prenatal	Prenatal Clinics 26.2 (5.8); 18-40 Convenience	Universal 841	95	11.3
Turjillo J. 2014 (EBDG) Six Brazilian 1991-1995 Prenatal Clinics capitals ⁴ 98	Information not available	Universal 1,008	142	14.1
Matrix Vernini JM, 2020 Botucatu - SP 2014-2016 Primary Health Care and renatal Clinics B9 (with Santos EMF, 2012 Salvador - BA 2007-2008 Prenatal Clinics B9 (with Santos EMF, 2012 Salvador - BA 2007-2008 Prenatal Clinics B9 (with Santos EMF, 2012 Salvador - BA 2007-2008 Prenatal Clinics B9 (with Valadares CG, 2008 Brasilia - DF 2005-2006 Primary Health Care B9 (with Valadares CG, 2008 Brasilia - DF 2007-2008 Prenatal Clinics B9 (with Valadares CG, 2008 Brasilia - DF 2007-2008 Prenatal Clinics B9 (with Brandao T, 2020 (Mascer no Brasil) Brasilia - DF 2007-2008 Prenatal Clinics B1 Brandao T, 2020 (Mascer no Brasil) Brasilia 2011-2012 Hospital B1 Nunes RD, 2020 Palhoga - SC 2017-2018 Prenatal Clinics B1 Nunes RD, 2020 Palhoga - SC 2017-2018 Prenatal Clinics B1 Nunes RD, 2020 Palhosa - SC 2017-2018 Prepatal B1 Nunes RD, 2020 Caxias do Sul - RS 2017-2018 Prepatal B1 Oliveira ACM, 2015 Riberia o Peco 2013-2017 Primary Health Car	Prenatal Clinics 27.8 (5.4); ≥20 Census	Universal 4,926	883	17.9
B0 ^a Schmidt MI, 2001 (EBDG) Six Brazilian 1991-1995 Prenatal Clinics B9 (with Santos EMF, 2012 Salvador – BA 2007-2008 Hospital B9 (with Valladares CG, 2008 Brasilia – DF 2005-2006 Primary Health Care B9 (with Valladares CG, 2008 Brasilia – DF 2005-2006 Primary Health Care B9 (with Valladares CG, 2008 Brasilia – DF 2005-2006 Primary Health Care P1 Marco T, 2020 Campo Grande 1997-1999 Prenatal Clinics P4 Brandao T, 2020 Masol, 2009 Palnoga 2011-2012 Hospital P4 Brandao T, 2020 Rib de Janeiro 2011-2017 Primary Health Care P4 Brandao T, 2020 Rio de Janeiro 2014-2017 Primary Health Care P4 Brandao T, 2020 Rio de Janeiro 2014-2017 Primary Health Care P4 Brandso T, 2020 Rio de Janeiro 2014-2017 Primary Health Care P4 Brandso T, 2020 Morais NS, 2020 Rio de Janeiro 2014-2017 <	Primary Health Care and All ages Convenience Prenatal Clinics	Universal 506	46	9.1
96 (with Santos EMF, 2012 Salvador – BA 2007-2008 Hospital 99 (with Valladares CG, 2008 Brasilia – DF 2005-2006 Primary Health Care 91 (with Valladares CG, 2008 Brasilia – DF 2005-2006 Primary Health Care 91 (with Valladares CG, 2008 Brasilia – DF 2005-2006 Primary Health Care 91 (with Vach W, 2006 Campo Grande 1997-1999 Prenatal Clinics 91 (with Brandao T, 2020 (Mascer no Brasil) Brasilia 2011-2012 Hospital 91 (with Brandao T, 2020 (Mascer no Brasil) Brasilia 2011-2012 Hospital 91 (with Brandao T, 2020 (Mascer no Brasilia) 2011-2012 Hospital Hospital 91 (with ACM, 2015 Palhoga – SC 2019 Hospital Hospital 91 (with ACM, 2015 Maceió – AL 2014-2017 Primary Health Care 91 (with ACM, 2015 Maceió – AL 2014 Hospital 91 (with ACM, 2015 Maceió – AL 2014-2017 Primary Health Care 91 (with ACM, 2015	Prenatal Clinics ≥20 Census	Universal 4,977	357	7.2
96 (with Valladares CG, 2008 Brasilia – DF 2005-2006 Primary Health Care ** Ayach W, 2006 Campo Grande 1997-1999 Prenatal Clinics ** Ayach W, 2006 Campo Grande 1997-1999 Prenatal Clinics ** Ayach W, 2006 Campo Grande 1997-1999 Prenatal Clinics #1* Brandao T, 2020 (<i>Nascer no Brasil</i>) Brasil 2011-2012 Hospital 99 Dode MASO, 2009 Pelotas - RS 2007-2008 Hospital 8*: Coustan Nunes RD, 2020 (<i>Nascer no Brasil</i>) Brasil 2011-2012 Hospital 99 Nones RD, 2020 Pelotas - RS 2019 Hospital Constan 8: Coustan Morais NS, 2020 Rio d-Janeiro 2014-2017 Primary Health Care 01/erita ACM, 2015 Maceió – AL 2013 2014-2017 Primary Health Care 6 defined Teikeira CRS, 2013 Ribeirão Preto – SP 2014 Primary Health Care 10 defined Teikeira CRS, 2015 Ribeirão Preto – SP 2013 Primary Health Care	Hospital 26(6.4); All ages (13-42) Convenience	Two-steps 183	9	3.3
Filt Ayach W, 2006 Campo Grande 1997-1999 Prenatal Clinics Irecord MS MS Penatal Clinics Irecord MS 2011-2012 Hospital 99 Dode MASO, 2009 Pelotas - RS 2007-2008 Hospital 99 Nunes RD, 2020 Palhoga - SC 2019 Hospital 99 Nunes RD, 2020 Palhoga - SC 2019 Hospital 99 Nunes RD, 2020 Rio de Janeiro 2014-2017 Primary Health Care 91 Morais NS, 2020 Rio de Janeiro 2014-2017 Primary Health Care 91 Oliveira ACM, 2015 Maceió - AL 2013 Primary Health Care 92 Oliveira ACM, 2015 Maceió - AL 2013 Primary Health Care 93 Clustan 2014-2017 Primary Health Care 94 Diveira ACM, 2015 Maceió - AL 2013 Primary Health Care 95 Diveira ACM, 2015 Maceió - AL 2013 Primary Health Care 95 Diveira ACM, 2015 Tubarão - SC 2013 Primary Health Care 96 Diveira ACM, 2015 Ribeirão Preto - SP 2013 Primary Health Care 97 Dibaráo Score CM, 2015 Primary He	Primary Health Care Information not Convenience available	Universal 290	19	6.6
Inecond Art Brandao T, 2020 (<i>Nascer no Brasil</i>) Brasil 2011-2012 Hospital 99 Dode MAS0, 2009 Pelotas - RS 2007-2008 Hospital and Prenatal Clinics 99 Nunes RD, 2020 Palhoça - SC 2019 Hospital and Prenatal Clinics 90 Nunes RD, 2020 Rio de Janeiro 2014-2017 Primary Health Care 91 Morais NS, 2020 Rio de Janeiro 2014-2017 Primary Health Care 91 Oliveira ACM, 2015 Maceió - AL 2013 Hospital 92 Oliveira ACM, 2015 Maceió - AL 2013 Hospital 93 Santos PA, 2020 Caxias do Sul - RS 2016 Hospital 94 Teixeira CRS, 2013 Ribeirão Preto - SP 1998-2007 Hospital 95 Zapelini RM, 2015 Tubarão - SC 2013-2014 Hospital 90 Adota SO, 2009 Pelotas - RS 2017-2008 Hospital 90 Adota SO, 2009 Pelotas - RS 2007-2008 Hospital 90 Lima RJCP, 2018 Relotas - RS 2007-2008 Hospital 90 Lima RJCP, 2018 Relotas - RS 2007-2008 Hospital	Prenatal Clinics All ages Census	Universal 341	13	3.8
4t ⁺ Brandao T, 2020 (<i>Nascer no Brasil</i>) Brasil 2011-2012 Hospital 99 Dode MAS0, 2009 Pelotas - RS 2007-2008 Hospital 91 Nunes RD, 2020 Palhoça - SC 2019 Hospital and Prenatal Clinics 97-0046 Munes RD, 2020 Rio de Janeiro 2014-2017 Primary Health Care 97-0047 Morais NS, 2020 Rio de Janeiro 2014-2017 Primary Health Care 97-0047 Morais NS, 2020 Caxias do Sul - RS 2016 Primary Health Care 97-017 Diveira ACM, 2015 Maceió - AL 2013 Hospital 97-017 Tubarão - SC 2016 Primary Health Care 98 Tobarão - SC 2013 Propriat 98 Tubarão - SC 2013-2014 Hospital 98 Zapelini RM, 2015 Tubarão - SC 2013-2014 Hospital 98 Dode MASO, 2009 Pelotas - RS 2007-2008 Hospital 99 Dode MASO, 2009 Pelotas - RS 2004 Hospital 90				
99 Dode MASO, 2009 Pelotas -RS 2007-2008 Hospital n*-Coustan Nunes RD, 2020 Palhoça - SC 2019 Hospital and Prenatal Clinics n*-Coustan Morais NS, 2020 Rio de Janeiro 2014-2017 Primary Health Care n former Morais NS, 2020 Rio de Janeiro 2014-2017 Primary Health Care - RJ Oliveira ACM, 2015 Maceió - AL 2013 Hospital Constan Caxias do Sul - RS 2016 Primary Health Care Catias do Sul - RS 2016 Primary Health Care Catias do Sul - RS 2016 Primary Health Care Catias do Sul - RS 2016 Primary Health Care Catias do Sul - RS 2016 Primary Health Care Catias do Sul - RS 2013-2014 Hospital Capelini RM, 2015 Tubarão - SC 2013-2014 Hospital Indr Dode MASO, 2009 Pelotas - RS 2007 Hospital Dode MASO, 2009 Pelotas - RS 2007 Hospital Lima RJCP, 2018 (BRISA) São Luís - MA 2010 Hospital	Hospital >20 Convenience	18,953	1 725	9.1
Numes RD, 2020 Palhoça – SC 2019 Hospital and Prenatal Clinics refered Morais NS, 2020 Rio de Janeiro 2014-2017 Primary Health Care -RJ Oliveira ACM, 2015 Maceió – AL 2013 Hospital Constan Oliveira ACM, 2015 Maceió – AL 2013 Hospital Santos PA, 2020 Caxias do Sul – RS 2016 Primary Health Care Carias do Sul – RS 2016 Primary Health Care Zapelini RM, 2015 Tubarão – SC 2013-2014 Hospital Iont Zapelini RM, 2015 Tubarão – SC 2013-2014 Hospital Iont Dode MASO, 2009 Pelotas – RS 2007 Hospital Iont Dode MASO, 2009 Pelotas – RS 2007 Hospital Lima RJCP, 2018 (BRISA) São Luís – MA 2010 Hospital	26.7;	869	37	4.3
nr-Coustan -r-U 2014-2017 Primary Health Care 1 defined Morais NS, 2020 Rio de Janeiro 2014-2017 Primary Health Care - RJ Oliveira ACM, 2015 Maceió - AL 2013 Hospital Santos PA, 2020 Caxias do Sul - RS 2016 Primary Health Care I defined Teixeira CRS, 2013 Ribeirão Preto - SP 1998-2007 Hospital I defined Teixeira CRS, 2013 Ribeirão Preto - SC 2013-2014 Hospital I defined Teixeira CRS, 2013 Ribeirão Preto - SC 2013-2014 Hospital I defined Teixeira CRS, 2013 Ribeirão Preto - SC 2013-2014 Hospital I defined Teixeria CRS, 2013 Ribeirão Preto - SC 2013-2014 Hospital I defined Tubarão - SC 2013-2014 Hospital I defined Inbarán Salo Luís - MA 2007-2008 Hospital I Lima RJCP, 2018 (BRISA) Salo Luís - MA 2010 Hospital	Hospital and Prenatal Clinics 27.3 (7.0) Convenience	120	22	18.3
tdefined Morais NS, 2020 Rio de Janeiro 2014-2017 Primary Health Care -RJ Oliveira ACM, 2015 Maceió - AL 2013 Hospital Santos PA, 2020 Caxias do Sul - RS 2016 Primary Health Care Santos PA, 2020 Caxias do Sul - RS 2016 Primary Health Care Idefined Teixeira CRS, 2013 Ribeirão Preto - SP 1998-2007 Hospital Zapelini RM, 2015 Tubarão - SC 2013-2014 Hospital Iont Dode MASO, 2009 Pelotas - RS 2007-2008 Hospital Lima RJCP, 2018 (BRISA) São Luís - MA 2010 Hospital		120	7	5.8
Oliveira ACM, 2015 Maceió – AL 2013 Hospital Santos PA, 2020 Caxias do Sul – RS 2016 Primary Health Care Santos PA, 2020 Caxias do Sul – RS 2016 Primary Health Care I defined Teixeira CRS, 2013 Ribeirão Preto – SP 1998-2007 Hospital Zapelini RM, 2015 Tubarão – SC 2013-2014 Hospital Iont Dode MASO, 2009 Pelotas – RS 2007 Hospital Lima RJCP, 2018 (BRISA) São Luís – MA 2010 Hospital Sours CM 2020 Pelotas – RS 2007-2008 Hospital	Primary Health Care 18-35 Convenience	214	32	15.0
fined Teixeira CRS, 2013 Ribeirão Preto – SP 1998-2007 Hospital fined Teixeira CRS, 2013 Ribeirão Preto – SP 1998-2007 Hospital Zapelini RM, 2015 Tubarão – SC 2013-2014 Hospital Dode MASO, 2009 Pelotas – RS 2004 Hospital Dode MASO, 2009 Pelotas – RS 2007-2008 Hospital Lima RJCP, 2018 (BRISA) São Luís – MA 2010 Hospital	Hospital 24.5 (7.69); All ages Convenience	217	14	6.5
fined Teixeira CRS, 2013 Ribeirão Preto – SP 1998-2007 Hospital Zapelini RM, 2015 Tubarão – SC 2013-2014 Hospital Dode MASO, 2009 Pelotas – RS 2004 Hospital Dode MASO, 2009 Pelotas – RS 2007-2008 Hospital Lima RJCP, 2018 (BRISA) São Luís – MA 2010 Hospital Sours CM 2022 (BRISA) São Luís – MA 2010 Hospital	Primary Health Care Information not Census available	2,313	126	5.4
Zapelini RM, 2015 Tubarão – SC 2013-2014 Hospital Dode MASO, 2009 Pelotas – RS 2004 Hospital Dode MASO, 2009 Pelotas – RS 2007-2008 Hospital Lima RJCP, 2018 (BRISA) São Luís – MA 2010 Hospital Sours CM 2022 (BRISA) São Luís – MA 2010 Hospital	Hospital All ages Census	79,368	1 567	2.0
Dode MASO, 2009 Pelotas – RS 2004 Hospital Dode MASO, 2009 Pelotas – RS 2007-2008 Hospital Lima RJCP, 2018 (BRISA) São Luís – MA 2010 Hospital Sours CM 2027 (Parsilion Mational) 2013 2013 Domostio	Hospital Information not Census available	506	73	14.4
Pelotas – RS 2004 Hospital Pelotas – RS 2007-2008 Hospital São Luís – MA 2010 Hospital				
Pelotas – RS 2007-2008 Hospital São Luís – MA 2010 Hospital Provit 2013 2014 Domostio	Hospital All ages Census	4,243	125	2.9
São Luís – MA 2010 Brazil 2013 2014	26.7; ,	869	35	4.0
Brazil 2012_2014	Hospital 25.1(6) Stratified	5,024	106	2.1
DI d211 2013-2014	Domestic 18-49 Cluster	1,851	106	5.7

Table 1. Summary and characteristics of the studies included in the systematic review

Abbreviations: ADA, American Diabetes Association; AL, Alagoas; AM, Amazonas; BA, Bahia; BRISA, Brazilian Ribeirão Preto and São Luís Birth Cohort Studies; GE, Ceará; DF, Distrito Federal; EBDG, *Estudo Brasileiro de Diabetes Gestacionat*, MA, Maranhão; 0GTT, oral glucose tolerance test; PE, Pernambuco; RJ, Rio de Janeiro; RS, Rio Grande do Sul; SC, Santa Catarina; SD, standard deviation; SP, São Paulo; WHO, World Health Organization. *Fortaleza – CE, Recife – PE, Porto Alegre – RS, Botucatu – SP, Campinas – SP; Porto Alegre – RS, Botucatu – SP, Campinas – SP; Porto Alegre – RS, Salvador – BA, Fortaleza – CE, and Manaus – AM. * The International Association of the Diabetes and Pregnancy Study Groups (IADPSG); 75-g OGTT; fasting 292 mg/dL, 1 hour ≥180 mg/dL, 2 hours ≥153 mg/dL. ** Carpenter-Coustan: 100-g OGTT; fasting 295 mg/dL, 1 hour ≥180 mg/dL, 2 hours ≥163 mg/dL, 2 hours ≥160 mg/dC, 2 hours ≥160 mg/dC, 2 hour 2155 mg/dL, 3 hours 2140 mg/dL. #ADA 2004: 100-g 0GTT: fasting 295 mg/dL, 1 hour 2180 mg/dL, 2 hours 2155 mg/dL.

Study	Sample frame	Study participants	Sample size	Study subjects description	Data analysis coverage	Valid methods of identification*	Measurement standardized	Appropriate statistical analysis	Adequate response rate	Overall risk of bias
Primary data with laboratory data	data									
Alves JG (2020)	Л	~	∍	7	~	7	~	~	~	Low
Barbieiri P (2016)	Z		≻	×	~	≻	~	≻	~	Moderate
Nascimento GR (2016)	×	Z		×	z	×	7	7	7	Moderate
Nicolosi BF (2020)	Л		≻	z	~	≻	П	≻	~	Moderate
Trujillo J (2014)	×	≻	¥	×	~	×	~	≻	1	Low
Vernini JM (2020)	Π		¥	×	~	×	~	≻	≻	Low
Schmidt MI (2001)	×	7	7	×	~	≻	~	7	~	Low
Santos EMF (2012)	z	⊃	⊃	~	⊃	≻	~	≻	~	Moderate
Valladares CG (2008)	×	7		z	~	×	7	7	×	Moderate
Ayach W (2006)	Π		≻	z	~	≻	~	≻	~	Moderate
Medical record										
Brandao T (2020)	7	~	7	7	~	~		7	~	Low
Dode MASO (2009)*	×			×	~	n	z	≻	×	Moderate
Nunes RD (2020)	z			~	⊃	≻	~	⊃	n	Moderate
Morais NS (2020)	N	7	Z	×	Π	n	Π	7	~	Moderate
Oliveira ACM (2015)	П	≻	≻	×	~	≻	П	≻	~	Low
Santos PA (2020)	X	¥	¥	×	Л	×	Π	Э	Z	Moderate
Teixeira CRS (2013)	×	≻	¥	n	~	z	П		П	High
Zapelini RM (2015)	X			z	Л	≻	П	¥	Z	Moderate
Self-report										
Dode MASO (2009) ⁺	X	Y	Y	X	7	n	Л	Z	×	Moderate
Lima RJCP (2018)	×	Π	¥	×	~	N	Z	¥	×	Moderate
Souza CM (2022)	7	≻	D	7	Л	z	Π	≻	~	High

7

Author(year)	Data Collection	Cases	n	Р	revalence (%)	95%-CI
Studies with primary	data and laborat	ory mea	sureme	nt		
Adults, Universal, IADPS Trujillo J (2014) Barbieiri P (2016) Alves JG (2020) Random effects model Prediction interval Heterogeneity: <i>I</i> ² = 0%, <i>p</i> =	1991-1995 2011-2012 2016-2018	883 151 87	4926 799 518	*	17.9 18.9 16.8 18.0	[16.9 ; 19.0] [16.2 ; 21.8] [13.7 ; 20.3] [16.0 ; 20.1] [12.6 ; 25.0]
Adults, WHO 1999 Schmidt MI (2001)	1991-1995	357	4977		7.2	[6.5 ; 7.9]
All ages, Universal, IAD Nascimento GR (2016) Vernini JM (2020)	PSG 2011-2014 2014-2016	95 46	841 506		11.3 9.1	[9.2 ;13.6] [6.7 ;11.9]
All ages, two-step, WHC Santos EMF (2012)	2007-2008	6	183		3.3	[1.2 ; 7.0]
All ages, Carpenter Cou Ayach W (2006)	stan 1997-1999	13	341		3.8	[2.0 ; 6.4]
Studies based on me	dical records			0 0 10 10 20 20 00		
Adults, IADPSG Nunes RD (2020)		22	120		18.3	[11.9;26.4]
Adults, Carpenter Coust Nunes RD (2020)	tan	7	120		5.8	[2.4 ; 11.6]
Adults, ADA 2004 Brandao T (2020)	2011-2012	1725	18953		9.1	[8.7 ; 9.5]
All ages, IADPSG Oliveira ACM (2015) Santos PA (2020)	2013 2016	14 126	217 2313		6.5 5.4	[3.6 ; 10.6] [4.6 ; 6.4]
All ages, WHO 1999 Dode MASO (2009)	2007	37	869	0 5 10 15 20 25 30	4.3	[3.0 ; 5.8]
Studies based on self	-report					
Self-reported Dode MASO (2009) Dode MASO (2009) Lima RJCP (2018) Random effects model Prediction interval Heterogeneity: J ² = 85%, p -	2004 2007-2008 2010	125 35 106	4243 869 5024	□ ₩ ►	2.9 4.0 2.1 2.8	[2.5; 3.5] [2.8; 5.6] [1.7; 2.5] [1.5; 5.2] [0.1; 46.6]
ποτοιοχοποίες. τ = 0076, β				0 5 10 15 20 25 30		
Studies with poorly s	pecified diagnos	tic crite	ria or ag	e distribution		
Age not specified, IADP Zapelini RM (2015) Nicolosi BF (2020)	SG 2013-2014 2015-2018	73 142	506 1008	*	14.4 14.1	[11.5; 17.8] [12.0; 16.4]
Age not specified, WHO Valladares CG (2008)	1999 2005-2006	19	290		6.6	[4.0 ; 10.0]
GDM poorly defined Teixeira CRS (2013) Souza CM (2022) Morais NS (2020)	1998-2007 2013-2014 2014-2017	1567 106 32	79368 1851 214	·	2.0 5.7 15.0	[1.9 ; 2.1] [4.7 ; 6.9] [10.5; 20.4]

Abbreviations: ADA, American Diabetes Association; 95% CI, 95% confidence interval; FIGO, The International Federation of Gynecology and Obstetrics; GDM, gestational diabetes mellitus; IADPSG, The International Association of the Diabetes and Pregnancy Study Groups; IFG, impaired fasting glucose; OGTT, oral glucose tolerance test; WHO, World Health Organization.

Figure 2. Forest plot of the studies included and meta-analysis.

Copyright® AE&M all rights reserved.

DISCUSSION

The prevalence of GDM in Brazil varied widely according to the diagnostic criteria adopted in the study, with the highest prevalence found in studies using the IADPSG criteria (18.0%, 95% CI: 16.0-20.1%). Because of the heterogeneity across studies, we were unable to provide a pooled estimated prevalence of GDM in Brazil, except in studies using the IADPSG criteria and in those based on self-report. The multitude of diagnostic criteria that we described illustrates the lack of consensus in establishing the diagnosis of this condition over time. Notably, most studies originated in the Southeast and South regions of the country, which have easier access to health care facilities and more research centers.

To the best of our knowledge, this is the first study determining the prevalence of GDM in Brazil using a systematic review and meta-analysis. The variation in prevalence rates is similar to that seen in the literature, with the IADPSG criteria accounting for an almost two times higher proportion of diabetes in pregnancy (40,41). Of note, the IADPSG criteria have been adopted more recently in Brazilian studies, so the higher prevalence associated with its use can be influenced or inflated by the increasing occurrence and diagnosis of GDM in Brazil, following the increasing trend of overall diabetes in the country, as seen worldwide (42,43). However, when we considered only studies using the IADPSG criteria, we could not find a trend of increasing GDM prevalence over the years.

Our findings are consistent with results from systematic reviews conducted in other countries, which showed that the highest prevalence of GDM occurred in studies using the IADPSG criteria (44). According to data from the International Diabetes Federation, the global prevalence of hyperglycemia in pregnancy is 16.7%, of which 80.7% is due to GDM, with similar results in Central and South Latin America, where one out of six live births are affected by hyperglycemia in pregnancy. In our systematic review of Brazilian studies, the prevalence was similar (14.5%) when we analyzed studies using universal screening based on IADPSG thresholds. A global systematic review (2) evaluating the impact of diagnostic criteria on the prevalence of GDM had shown that, regardless of the type of screening criteria, the overall prevalence was 4.4% and increased to 10.6% when the IADPSG criteria were used.

Variations in prevalence rates depending on the criteria used for diagnosis of GDM have been previously

reported (40,44,45). For example, in Europe, an overall 5.4% (95% CI: 3.8-7.8%) prevalence of GDM has been reported, ranging from 6.4% (95% CI: 3.8-10.4%) to 4.7% (95% CI: 2.7-8.1%) when using, respectively, one-step or two-step screening (3). Another European study (46) that analyzed the prevalence of GDM between 2014 and 2019 across 24 European countries reported an overall weighted prevalence of 10.9% (95% CI: 10.0-11.8%, $I^2 = 100\%$).

In the Eastern Mediterranean region (47), the prevalence of GDM has been estimated at 11.7% (95% CI: 10.7-12.6%; $I^2 = 99.6\%$) and varied widely depending on the five adopted criteria, suggesting little agreement between the IADPSG (28.2%), Carpenter-Coustan (6.2%), WHO (15.2%), ADA (10.3%), and NDDG (8.1%) criteria. In studies from Africa published from 2013 to 2018 (4), the random effect pooled prevalence estimate of GDM was 13.6% (95% CI: 10.9-16.2%; $I^2 = 96.1\%$), with variations across subregions.

Additional considerations regarding the findings on GDM prevalence in Brazil are worth mentioning. First, we found the lowest prevalence in studies based on a prior self-reported diagnosis of GDM. This result was not surprising since a self-report diagnosis depends on the women's perception of their health status and related factors (48,49), including the degree of use of health care services. For example, the 2013 National Health Survey data reported a low (59%) sensitivity for self-reported diabetes, indicating a high proportion of false-negative results and a likely underestimation in prevalence rates based on self-reporting (50). Interestingly, self-reported GDM in the immediate postpartum has great sensitivity (>70%) (31), with a reported prevalence of 4.1% (95% CI: 3.0-5.5%) compared with 4.3% (95% CI: 3.2-5.7%) for diagnoses based on prenatal cards. Second, the prevalence of GDM based on prenatal care data, even considering possible quality issues, is likely to represent proper population estimates, given the high coverage of prenatal care in Brazil (98.5%) and the fact that more than 80% of the women reportedly undergo at least one measurement of blood glucose level, according to the Birth in Brazil study (51).

We must consider a few limitations in our study. First, we could not describe the prevalence rates according to some characteristics of the participants, like race or nutritional status (higher BMI), which are known to affect the prevalence of GDM in Brazil (45) and worldwide (3,4,47). Most studies did not report maternal age or BMI, limiting the possibility of adjusted analysis. Additionally, we were unable to perform subgroup analysis by Brazilian macro-regions since most of the included studies were specific to one center or region. Finally, the different settings across studies limited our ability to provide a pooled prevalence estimate. However, the heterogeneity between studies reflecting the status of GDM in Brazil over time is, by itself, an important finding of our study.

In conclusion, the diagnostic criteria of GDM varied substantially, which is the main reason for discrepancies in this condition's prevalence. The pooled prevalence was greater when we considered studies adopting the IADPSG criteria based on primary laboratory data (18.0%, 95% CI: 16.0-20.1%), followed by the use of medical records (range 4.3-9.1%) and self-reported data (2.1%, 95% CI: 1.5-5.2%). Other factors also contributed to the variation in GDM prevalence. For example, reports that included only adult women had higher prevalences than those that also included adolescents. In addition, referral centers, by having higher proportions of high-risk pregnancies, had a higher prevalence of GDM. Although global uniform criteria for GDM screening and diagnosis have been desired for a long time and will allow simplification of the guidelines and more adequate international comparisons, we have not reached this stage yet. New studies in the field may help reach this goal.

Funding: Funding for this review was provided by the Ministry of Health (TED 95/2019) and the LINDA Brasil Study (*Fundação Médica do Rio Grande do Sul*).

contributions: BPMI was involved in the Authors' conceptualization, design, selection of articles, study quality assessment, data extraction, statistical analysis, and writing of the first draft of the manuscript. CS designed the study and assisted in screening for papers, extracting data, and editing the manuscript. LFA designed the study and assisted in the selection and screening of papers and drafting of the manuscript. MLSC assisted in screening for papers, conducting data extraction, assessing study quality, performing analyses, and drafting the manuscript. SARE assisted in screening for papers, extracting data, assessing the study quality, performing analyses, and drafting the manuscript. MIS supervised all steps of the review and was involved in the conceptualization, design, study quality assessment, statistical analysis, and editing of the manuscript. All authors approved the final version of the manuscript and are responsible for its contents.

Availability of data and materials: all data pertaining to this study are contained and presented in this document. Additional data may be available upon request.

Ethics approval and consent to participate: not applicable.

Disclosure: no potential conflict of interest relevant to this article was reported.

REFERENCES

- Ye W, Luo C, Huang J, Li C, Liu Z, Liu F. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and metaanalysis. BMJ. 2022;377:e067946. DOI: 10.1136/bmj-2021-067946
- Behboudi-Gandevani S, Amiri M, Bidhendi Yarandi R, Ramezani Tehrani F. The impact of diagnostic criteria for gestational diabetes on its prevalence: a systematic review and meta-analysis. Diabetol Metab Syndr. 2019;11(1):11. DOI: 10.1186/s13098-019-0406-1
- Eades CE, Cameron DM, Evans JMM. Prevalence of gestational diabetes mellitus in Europe: A meta-analysis. Diabetes Res Clin Pract. 2017;129:173-81. DOI: 10.1016/j.diabres.2017.03.030
- Muche AA, Olayemi OO, Gete YK. Prevalence and determinants of gestational diabetes mellitus in Africa based on the updated international diagnostic criteria: a systematic review and metaanalysis. Arch Public Health. 2019;77(1):36. DOI: 10.1186/s13690-019-0362-0
- O'Sullivan JB. Establishing criteria for gestational diabetes. Diabetes Care. 1980;3(3):437-9. DOI: 10.2337/diacare.3.3.437
- National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes. 1979;28(12):1039-57. DOI: 10.2337/diab.28.12.1039
- World Health Organization. WHO Expert Committee on Diabetes Mellitus [meeting held in Geneva from 25 September to 1 October 1979]": second report. Geneva: WHO; 1980.
- Schmidt MI, Duncan BB, Reichelt AJ, Branchtein L, Matos MC, Costa e Forti A, et al. Gestational diabetes mellitus diagnosed with a 2-h 75-g oral glucose tolerance test and adverse pregnancy outcomes. Diabetes Care. United States; 2001;24(7):1151-5. DOI: 10.2337/ diacare.24.7.1151
- Schmidt MI, Reichelt AJ. Consenso sobre diabetes gestacional e diabetes pré-gestacional. Arq Bras Endocrinol Metab. 1999;43(1):14-20. DOI: 10.1590/S0004-27301999000100005
- The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 1997;20(7):1183-97. DOI: 10.2337/diacare.20.7.1183
- The HAPO Study Cooperative Research Group. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991-2002. DOI: 10.1056/NEJMoa0707943
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676-82. DOI: 10.2337/dc09-1848
- Hod M, Kapur A, Sacks DA, Hadar E, Agarwal M, Di Renzo GC, et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int J Gynaecol Obstet. 2015;131 Suppl 3:S173-211. DOI: 10.1016/S0020-7292(15)30033-3
- American Diabetes Association. Standards of medical care in diabetes—2010. Diabetes Care. 2010;33(Supplement_1):S11-61. DOI: 10.2337/dc10-S011
- World Health Organization. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy. Geneva: WHO; 2013.
- National Institute for Health and Care Excellence. Diabetes in pregnancy: management from preconception to the postnatal period. London: NICE; 2020.
- ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care. 2023;46(Supplement_1):S19-40. DOI: 10.2337/dc23-S002

- Organização Pan-Americana da Saúde. Rastreamento e diagnóstico de diabetes mellitus gestacional no Brasil. Brasília: OPAS; 2017.
- Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934-9. DOI: 10.1016/j.jclinepi.2011.11.014
- Nicolosi BF, Souza RT, Mayrink J, Feitosa FE, Rocha Filho EA, Leite DF, et al. Incidence and risk factors for hyperglycemia in pregnancy among nulliparous women: A Brazilian multicenter cohort study. PLoS One. 2020;15(5):e0232664. DOI: 10.1371/journal.pone.0232664
- Trujillo J, Vigo A, Reichelt A, Duncan BB, Schmidt MI. Fasting plasma glucose to avoid a full OGTT in the diagnosis of gestational diabetes. Diabetes Res Clin Pract. Ireland; 2014;105(3):322-6. DOI: 10.1016/j. diabres.2014.06.001
- Vernini JM, Nicolosi BF, Arantes MA, Costa RA, Magalhães CG, Corrente JE, et al. Metabolic syndrome markers and risk of hyperglycemia in pregnancy: a cross-sectional cohort study. Sci Rep. 2020;10(1):21042. DOI: 10.1038/s41598-020-78099-3
- Santos EMF, Amorim LP de, Costa OLN, Oliveira N, Guimarães AC. Perfil de risco gestacional e metabólico no serviço de pré-natal de maternidade pública do Nordeste do Brasil. Rev Bras Ginecol Obstet. 2012;34(3):102-6. DOI: 10.1590/S0100-72032012000300002
- Ayach W, Costa RAA, Calderon I de MP, Rudge MVC. Comparison between 100-g glucose tolerance test and two other screening tests for gestational diabetes: combined fasting glucose with risk factors and 50-g glucose tolerance test. Sao Paulo Med J. Brazil; 2006;124(1):4-9. DOI: 10.1590/s1516-31802006000100002
- Barbieiri P, Nunes JC, Torres AG, Nishimura RY, Zuccolotto DCC, Crivellenti LC, et al. Indices of dietary fat quality during midpregnancy is associated with gestational diabetes. Nutrition. United States; 2016;32(6):656-61. DOI: 10.1016/j.nut.2015.12.002
- Nascimento GR, Alves LV, Leal Fonseca C, Natal Figueiroa J, Alves JG. Dietary patterns and gestational diabetes mellitus in a low income pregnant women population in Brazil - a cohort study. Arch Latinoam Nutr. 2016;66(4):301-8.
- Valladares CG, Komka SB. Prevalência de diabetes mellitus gestacional em gestantes de um centro de saúde de Brasília - DF. Comun Ciênc Saúde. 2008;19(1):11-7.
- Alves JG, Souza ASR, Figueiroa JN, de Araújo CAL, Guimarães A, Ray JG. Visceral adipose tissue depth in early pregnancy and gestational diabetes mellitus - a cohort study. Sci Rep. 2020;10(1):2032. DOI: 10.1038/s41598-020-59065-5
- Dode MAS de O, Santos I da S dos. Fatores de risco para diabetes mellitus gestacional na coorte de nascimentos de Pelotas, Rio Grande do Sul, Brasil, 2004. Cad Saúde Pública. 2009;25(5):1141-52. DOI: 10.1590/S0102-311X2009000500021
- Lima RJCP, Batista RFL, Ribeiro MRC, Ribeiro CCC, Simões VMF, Neto PML, et al. Prepregnancy body mass index, gestational weight gain, and birth weight in the BRISA cohort. Rev Saude Publica. 2018;52:46-46. DOI: 10.11606/S1518-8787.2018052000125
- Dode MAS de O, Santos IS. Validade do auto-relato de diabete mellitus gestacional no pós-parto imediato. Cad Saúde Pública. 2009;25(2):251-8. DOI: 10.1590/S0102-311X2009000200003
- Souza CM, Malta DC, Iser BPM. Diabetes gestacional autorreferido – uma análise da Pesquisa Nacional de Saúde. Cad Saúde Coletiva. 2022; in press.
- 33. Brandao T, Padilha P de C, Nogueira da Gama SG, Leal M do C, Pimenta da Silva Araujo RG, de Barros DC, et al. Gestational weight gain and adverse maternal outcomes in Brazilian women according to body mass index categories: An analysis of data from the Birth in Brazil survey. Clin Nutr ESPEN. 2020;37:114-20. DOI: 10.1016/j. clnesp.2020.03.009
- 34. Nunes RD, Flôres ME, Seemann M, Traebert E, Traebert J. Two criteria of oral glucose tolerance test to diagnose gestational

diabetes mellitus. Rev Assoc Med Bras. 2020;66(2):139-45. DOI: 10.1590/1806-9282.66.2.139

- Santos PA dos, Madi JM, Silva ER da, Vergani D de OP, Araújo BF de, Garcia RMR. Diabetes gestacional na população atendida pelo sistema público de saúde no Brasil. Prevalência e fatores de risco. Rev Bras Ginecol Obstet. 2020;42(1):12-8. DOI: 10.1055/s-0039-1700797
- Zapelini RM, Martinelli MT, João RM, Iser BPM. Critérios diagnósticos e prevalência de Diabetes Mellitus Gestacional em um hospital do sul de Santa Catarina. Rev AMRIGS. 2015;59(3):177-81.
- Oliveira ACM de, Graciliano NG. Síndrome hipertensiva da gravidez e diabetes mellitus gestacional em uma maternidade pública de uma capital do Nordeste brasileiro, 2013: prevalência e fatores associados. Epidemiol Serv Saúde. 2015;24(3):441-51. DOI: 10.5123/S1679-49742015000300010
- Teixeira CR de S, Franco LJ, Monteiro RA, Granado F. Diabetes nos partos hospitalares em sistemas de saúde público e privado. Rev Saúde Pública. 2013;47(3):460-9. DOI: 10.1590/s0034-8910.2013047003687
- Silva de Morais N, Ayres Saraiva D, Corcino C, Berbara T, Schtscherbyna A, Moreira K, et al. Consequences of Iodine Deficiency and Excess in Pregnancy and Neonatal Outcomes: A Prospective Cohort Study in Rio de Janeiro, Brazil. Thyroid. United States; 2020;30(12):1792-801. DOI: 10.1089/thy.2019.0462
- Souza CM, Iser BPM. Gestational diabetes mellitus according to different diagnostic criteria: Prevalence and related factors. Midwifery. 2022;113:103428. DOI: 10.1016/j.midw.2022.103428
- Trujillo J, Vigo A, Duncan BB, Falavigna M, Wendland EM, Campos MA, et al. Impact of the International Association of Diabetes and Pregnancy Study Groups criteria for gestational diabetes. Diabetes Res Clin Pract. Ireland; 2015;108(2):288-95. DOI: 10.1016/j. diabres.2015.02.007
- 42. Reis RCP dos, Duncan BB, Malta DC, Iser BPM, Schmidt MI. Evolution of diabetes in Brazil: prevalence data from the 2013 and 2019 Brazilian National Health Survey. Cad Saúde Pública. 2022;38(Suppl 1):e00149321. DOI: 10.1590/0102-311x00149321
- International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels: IDF; 2021.
- 44. Saeedi M, Cao Y, Fadl H, Gustafson H, Simmons D. Increasing prevalence of gestational diabetes mellitus when implementing the IADPSG criteria: A systematic review and meta-analysis. Diabetes Research and Clinical Practice. 2021;172:108642. DOI: 10.1016/j. diabres.2020.108642
- Reichelt AJ, Weinert LS, Mastella LS, Gnielka V, Campos MA, Hirakata VN, et al. Clinical characteristics of women with gestational diabetes – comparison of two cohorts enrolled 20 years apart in southern Brazil. São Paulo Med J. 2017;135(4):376-82. DOI: 10.1590/1516-3180.2016.0332190317
- Paulo MS, Abdo NM, Bettencourt-Silva R, Al-Rifai RH. Gestational diabetes mellitus in Europe: a systematic review and meta-analysis of prevalence studies. Front Endocrinol. 2021;12:691033. DOI: 10.3389/ fendo.2021.691033
- Badakhsh M, Daneshi F, Abavisani M, Rafiemanesh H, Bouya S, Sheyback M, et al. Prevalence of gestational diabetes mellitus in Eastern Mediterranean region: a systematic review and meta-analysis. Endocrine. 2019;65(3):505-14. DOI: 10.1007/s12020-019-02026-4
- Fontanelli M de M, Teixeira JA, Sales CH, Castro MA de, Cesar CLG, Alves MCGP, et al. Validation of self-reported diabetes in a representative sample of São Paulo city. Rev Saúde Pública. 2017;51:20. DOI: 10.1590/s1518-8787.2017051006378
- Goldman N. Evaluating the quality of self-reports of hypertension and diabetes. J Clin Epidemiol. 2003;56(2):148-54. DOI: 10.1016/S0895-4356(02)00580-2

- Pinheiro PC, Barros MB de A, Szwarcwald CL, Machado ÍE, Malta DC. Diferenças entre medidas autorreferidas e laboratoriais de diabetes, doença renal crônica e hipercolesterolemia. Ciênc Saúde Coletiva. 2021;26(4):1207-19. DOI: 10.1590/1413-81232021264.44582020
- Leal M do C, Esteves-Pereira AP, Viellas EF, Domingues RMSM, Gama SGN da. Prenatal care in the Brazilian public health services. Rev Saúde Pública. 2020;54:8. DOI: 10.11606/s1518-8787.2020054001458

SUPPLEMENTARY

Supplementary Table	Diagnostic criteria in the studies used to estimate the prevalence rates of gestational diabetes mellit	us

Criteria	OGTT (g)	Fasting (mg/dL)	1 hour (mg/dL)	2 hours (mg/dL)	3 hours (mg/dL)
Carpenter-Coustan	100	95	180	155	140
ADA 2004	100	95	180	155	-
WHO 1999 (with IFG)	75	110	-	140	-
WHO 1999	75	126	-	140	-
IADPSG	75	92	180	153	-
FIGO	75	92	180	153	-

Abbreviations: ADA, American Diabetes Association; FIGO, The International Federation of Gynecology and Obstetrics; IADPSG, The International Association of the Diabetes and Pregnancy Study Groups; IFG, impaired fasting glucose; OGTT, oral glucose tolerance test; WHO, World Health Organization.

Supplementary Table 2. Search strategy used in the final search on November 30, 2021

Database	Search strategy	Items found
Cochrane	#1 MeSH descriptor: [Prevalence] explode all trees #2 MeSH descriptor: [Epidemiology] explode all trees #3 MeSH descriptor: [Surveys and Questionnaires] explode all trees #4 MeSH descriptor: [Incidence] explode all trees #5 prevalence OR epidemiology OR survey OR incidence #6 MeSH descriptor: [Diabetes Mellitus] explode all trees #7 MeSH descriptor: [Diabetes Mellitus] explode all trees #8 MeSH descriptor: [Glucose Intolerance] explode all trees #9 MeSH descriptor: [Diabetes, Gestational] explode all trees #10 diabetes OR diabetic OR hyperglycemia OR "glucose intolerance" #11 MeSH descriptor: [Pregnancy] explode all trees #12 pregnan * OR gestation* #13 MeSH descriptor: [Brazil] explode all trees #14 brasil* OR brazil* OR brazil explode all trees #14 brasil* OR brazil* OR brazil explode all trees #14 brasil* OR #3 OR #4 OR #5 #16 #6 OR #7 OR #8 OR #9 OR #10 #17 #11 OR #12 #18 #13 OR #14 #19 #15 AND #16 AND #17 AND #18	203
Embase	#1 'diabetes mellitus'/exp OR 'diabetes':ti,ab,kw OR 'diabetes mellitus':ti,ab,kw OR 'diabetic':ti,ab,kw OR 'diabetes mellitus'/exp OR 'diabetes mellitus gravidarum'.ti,ab,kw OR 'diabetes, gestational':ti,ab,kw OR 'diabetes, pregnancy':ti,ab,kw OR 'gestational diabetes':ti,ab,kw OR 'gestational':ti,ab,kw OR 'gestational:ti,ab OR pregnancy':ti,ab,kw OR 'gestational:ti,ab OR pregnancy:ti,ab OR gravidez:ti,ab #4 'brazil'/exp OR 'brazil':ti,ab,kw OR 'federative republic of brazil':ti,ab,kw OR 'united states of brazil':ti,ab,kw OR brazil':ti,ab,kw OR brazil':ti,ab,kw OR 'gestation':ti,ab,kw OR 'gestati	259
LILACS	(prevalencia OR prevalence OR epidemiologia OR epidemiology OR survey OR inquérito OR incidência OR incidence) AND (pregnancy OR gestational OR gravidez) AND (diabetes OR diabete OR diabético OR diabeticos) AND (brasil OR Brazil OR brasil* OR brazil*)	117
PubMed	 #1 "prevalencia"[All Fields] OR "prevalencias"[All Fields] OR "epidemiology"[MeSH Subheading] OR "epidemiology"[All Fields] OR "prevalence"[All Fields] OR "prevalence"[MeSH Terms] OR "prevalence"[All Fields] OR "prevalences"[All Fields] OR "diabetes"[All Fields] OR "diabetes	414
SciELO	(prevalencia OR prevalence OR epidemiologia OR epidemiology OR survey OR inquérito OR incidência OR incidence) AND (pregnancy OR gestational OR gravidez) AND (diabetes OR diabete OR diabético OR diabeticos) AND (brasil OR Brazil OR brasil* OR brazil*)	87
Web of Science	 #1 TS=(prevalencia OR prevalence OR epidemiologia OR epidemiology OR survey OR inquérito OR incidência OR incidence) #2 TS=(pregnancy OR gestational OR gravidez) #3 TS=(diabetes OR diabete OR diabético OR diabeticos) #4 TS=(brasil OR Brazil OR brasil* OR brazil*) #5 #1 AND #2 AND #3 AND #4 	248

Copyright® AE&M all rights reserved.