
Introduction

Experimental animals are usually applied in the 
study of human health and disease, including the use 
of rodents as experimental models for the investigation 
of biological phenomenon similar to those observed in 
humans.1-3 Among them, the SHR is widely used as a 
model for the investigation of essential hypertension.3-5 
For those working with these experimental animals, it 

is obvious and mandatory to adopt a control group in 
their experiments.

In this way, two experimental strains are nowadays used 
as SHR’s controls, namely Wistar rats (WIS)6-8 or Wistar 
Kyoto rats (WKY).4,5,9 It is a well-known fact that WKY 
was the SHR background and most used strain as SHR 
control in scientific research.8,10,11 However, the WIS strain 
has also been used.4,5,9,12 Moreover, some previous studies 
have pointed out limitations in the use of both strains.13-18
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Abstract

Background: There are divergences in the literature regarding the experimental model (Wistar-WIS or Wistar 
Kyoto-WKY) to be used as a Spontaneously Hypertensive Rat (SHR) control. The characterization of these models 
in terms of cardiovascular parameters provides researchers with important tools at the time of selection and 
application in scientific research. 

Objective: The aim of this study was to evaluate the use of WIS and WKY as a Spontaneously Hypertensive 
Rat (SHR) control by assessing the long-term behavior of blood pressure and cardiac structure and function 
in these strains.

Methods: To this end, WIS, WKY, and SHR underwent longitudinal experiments. Blood pressure and body mass 
were measured every two weeks from the 8th to the 72nd. Echocardiographic analysis was performed in all groups 
with 16, 48, and 72 weeks of life. After having applied the normality test, the Two-Way ANOVA of repeated 
measures followed by the Tukey post hoc test was used. A significance level of 5% was established .

Results: The WIS group showed higher body mass (p<0.05), while the WKY and SHR presented higher body mass 
variation over time (p<0.05). SHR exhibited increased values of systolic, diastolic, and mean blood pressure when 
compared to WKY and WIS, whereas the WKY generally showed higher values than WIS (p<0.05). Regarding the 
cardiac function, SHR showed reduced values, while the WKY presented an early decrease when compared to WIS 
with aging (p<0.05).

Conclusion: WIS is a more suitable normotensive control for SHR than WKY in experiments to test blood pressure 
and cardiac structure and function. 

Keywords: Hypertension; Laboratory animals; Blood pressure; Heart.
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Methods

Animals

Male WIS, WKY, and SHR rats, in their 8th to 72nd 
week of life, were used for all experiments. Each 
experimental group was composed of eight animals 
(n=8), and this number was defined using the sample 
calculation proposed by Armitage and Berry.23 The 
animals were housed in collective cages and allocated in 
a controlled environment with a light/dark cycle (12/12h), 
temperature at 22 ± 2°C, and had free access to food and 
water (ad libitum). The animals were obtained from the 
central biotery of the Federal University of Viçosa (UFV).

Ethical approval

The experiments were conducted in accordance with 
the Guide for the Care and Use of in Laboratory Animal 
principles and approved by the UFV Ethics Committee 
on the Use of Animals (logged under protocol number 
09/2018). All procedures were conducted by a veterinarian.

Body mass

Body mass (g) was obtained every two weeks, from 
the 8th to the 72nd week of life, on an electronic scale 
(Rochelle, model 3252). To monitor the animals’ weight 
gain behavior, body mass variation (Δ) was calculated.

Blood pressure

Systolic Blood Pressure (SBP in mmHg) and Diastolic 
Blood Pressure (DBP in mmHg) were measured using the 
noninvasive method of tail plethysmography (LE5001; 
Panlab, Barcelona- Spain), as previously described.24 
Briefly, animals were adapted to a tail cuff and a heating 
apparatus during five consecutive days. After, animals 
underwent blood pressure measurements each two 
weeks. Each measurement was performed three times 
and the median value was used. All measurements were 
performed by the same researcher in a quiet environment.25 
Mean Arterial Pressure (MAP in mmHg) was calculated 
by the following equation: DBP + 1/3(SBP-DBP). 

Echocardiogram

An echocardiographic analysis was performed in all 
groups with 16, 48, and 72 weeks of life. The animals 
underwent an anesthesia inhalation (Isoflurane 1.5% 

Regarding these limitations, Kurtz & Morris (1987) 
studied the biological variability of WKY and SHR in 
two laboratories in the USA over a 20-week period. 
Differences in growth rate and mean arterial pressure 
(MAP), i.e., in biological variability in the WKY, were 
found.17 In a second study, the same group tested the 
genetic variability of these strains through genomic 
analysis and found differences between the WKY of 
different laboratories and even among animals from the 
same laboratory.16 Evidence also points to the presence 
of increased sympathetic activity in WKY, as shown 
by baseline resting catecholamine concentrations 
similar to the levels found in SHR.14,19 In another study, 
Aiello et al. performed a series of experiments in the 
myocardium of WIS, WKY, and SHR, and found higher 
left ventricle mass: body mass ratio in WKY when 
compared to WIS, indicating a hypertrophic process.13 
The study also found an increase in diastolic papillary 
muscle stiffness and fibrosis in the left ventricle in the 
WKY, which was similar to SHR but higher than WIS.13 

By contrast, limitations have also been highlighted 
against the use of WIS. First, it is a fact that WIS is 
not the SHR background.10 Furthermore, WIS have 
higher body mass values compared to WKY and 
SHR.20 This difference brings to light an experimental 
paradigm when selecting the control group, since 
when choosing WIS as a control, the researcher will 
assume that there are two groups with different body 
weights.21.To understand the growth behavior between 
WIS, WKY, and SHR, a previous study analyzed their 
physical development immediately after birth, during 
suckling and weanling.22 It was found that WIS showed 
a higher body mass than WKY and SHR. Additionally, 
WKY presented a body mass similar to SHR at birth and 
a higher body mass between the 1st and the 6th weeks 

of life.22 Searching the literature, there is a lack of data 
that characterizes the two strains to help scientists to 
select the appropriate control for their experiments. 
For example, to the best of our knowledge, no study 
has been conducted to specifically evaluate the use of 
WIS as an alternative control for WKY. 

Therefore, the present study aimed to evaluate the 
use of WIS and WKY as an SHR control by assessing the 
long-term behavior of blood pressure, cardiac structure, 
and function in these strains. We hypothesized that WIS 
is a more suitable normotensive control for SHR than 
WKY in experiments to test blood pressure and cardiac 
structure and function.
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and 100% O2 at constant flow rate of 1L/min controlled 
by calibrated vaporizer; Isoflurane, BioChimio, RJ- 
Brazil) and placed in a lateral decubitus position. Two-
dimensional tests were performed with rapid sampling 
rate (frame rate) of 120 fps and M-mode, using the 
ultrasound system (MyLabTM30 - Esaote, Genoa- Italy) 
and 11.0 MHz nominal frequency transducers (phased 
array). Two-dimensional transthoracic echocardiography 
and M-mode were obtained at a scanning speed of 
200 mm, adjusted according to heart rate. The images 
were collected according to the recommendations of 
the American Society of Echocardiography and stored 
for further analysis.26 The left ventricle diameter in 
diastole (LVDd in mm), left ventricle diameter in systole 
(LVDs in mm), interventricular septum in diastole 
(IVSd in mm), interventricular septum in systole (IVSs 
in mm), posterior wall thickness in diastole (PWd in 
mm), posterior wall thickness in systole (PWs in mm), 
heart rate (HR in bpm), ejection fraction (EF in %), and 
shortening fraction (FS in %) were measured using a 
modified method recommended by the American Society 
of Echocardiography for three consecutive cardiac cycles. 
The examinations were performed by a trained researcher 
through a single-blinded method. Left ventricle mass 
(LVM in g) was calculated as follows:27 LVM= 0.8 (1.04 
(IVSd + LVDd + PWd)3 – (LVDd)3) 0.14. The ratio of LVM 
to body mass (LVM:BM in mg:g) was calculated as an 
index of ventricular hypertrophy. 

Statistical analysis

The Shapiro-Wilk test was applied to analyze data 
normality. Two-Way ANOVA of repeated measures, 
followed by Tukey post hoc tests, was used to analyze 
body mass, Δ body mass, blood pressure, and 
echocardiographic results. A significance level of 5% 
was established. Data are presented as mean ± standard 
deviation (SD). Statistical procedures were performed 
using the SAEG (System for Statistical Analysis) software, 
version 9.1, from UFV.

Results

Body mass and body mass variation. Figure 1A shows the 
results for body mass. A strain effect for all groups was 
found. WIS presented a higher body mass than WKY and 
SHR during the entire period. Moreover, between the 8th 
and the 20th weeks, WKY presented a higher body mass 
when compared to SHR. Figure 1B shows the results for 
body mass variation. A strain effect for all groups was 

found. SHR showed higher variation than WIS from the 
22nd to the 72nd week and higher variation than WKY at 
32th - 50th and 54th - 58th weeks. It was also observed that 
WKY presented higher variation than WIS at 12th - 16th, 
24th - 30th, 34th - 44th, and 60th - 64th weeks.

Blood pressure. There was a strain effect for all groups. 
Figure 2A exhibits the results of SBP. SHR presented 
higher SBP than WIS and WKY during the entire 
experimental period. WKY also presented a higher SBP 
between the 10th and 16th weeks and in the 20th, 26th and 
30th weeks, as well as between the 34th and 72nd weeks. 
Figure 2B shows the results for DBP. SHR presented 
a higher DBP than did WIS and WKY in the 8th week. 
From the 16th week, SHR showed a higher DBP than 
WIS. In the 18th week, and in-between the 22nd and 72nd 
weeks, SHR showed a higher DBP than did WKY. WKY 
presented a higher DBP than did WIS from the week 40 
on, specifically in the 40th, 42nd, 46th – 50th, 56th – 62nd, and 
70th and 72nd weeks. Figure 2C shows the MAP results. 
SHR presented a higher MAP value than did WIS during 
the entire experimental period. Compared to WKY, and 
in the 8th, 14th, 18th, 22nd, 24th, and 30th – 72nd weeks, SHR 
presented an increased MAP. WKY presented a higher 
MAP than did WIS in the 20th, 26th, 28th, 32nd, 40th – 48th, 
54th – 58th, 70th, and 72nd weeks. Finally, in the SHR group, 
a time-dependent increase was observed in SBP, DBP, 
and MAP from the 28th week on.

Echocardiographic parameters. Figure 3 displays the 
representative echocardiographic images of animals with 
16, 48, and 72 weeks of life. Tab. 1 shows structural and 
functional echocardiographic results. Concerning cardiac 
structure, there was a strain effect for all groups for LVDd. 
WKY presented a lower LVDd than did WIS and SHR in 
the 16th week. In the 48th and 72nd weeks, WIS presented 
a higher LVDd than WKY. An aging effect was also 
observed. WIS and WKY showed an increase in LVDd in 
the 48th and 72nd weeks when compared to the 16th week. 
For LVDs, both strain and aging effects were observed. 
SHR showed higher LVDs than WIS and WKY. WKY 
presented lower LVDs when compared to WIS in the 16th 
week. WIS and WKY presented increased LVDs in the 
48th and 72nd weeks as compared to the 16th week. A strain 
effect was observed for PWd. WKY and SHR presented a 
higher PWd when compared to WIS in the 48th and 72nd 
weeks. No differences were observed for PWs. When 
analyzing the thickness of the interventricular septum, 
no differences were found. For LVM, both strain and 
aging effects were found. SHR presented higher LVM 
when compared to WIS and WKY in the 16th, 48th, and 
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72nd weeks. WKY and SHR showed increased LVM in 
the 48th and 72nd weeks when compared to the 16th week. 
A strain effect was found for LVM:BM. SHR presented 
higher LVM:BM when compared to WIS and WKY in the 
16th, 48th, and 72nd weeks. Related to HR, no differences 
were observed.	

Figure 4 presents the cardiac function. Both strain and 
aging effects were found for EF (Figure 4A). SHR displayed 
a lower EF when compared to WIS and WKY at the 16th 

week. WIS showed a decreased EF in the 72nd week when 
compared to the 16th week, while WKY had a lower EF in 
the 48th and 72nd weeks when compared to the 16th week. 
Regarding SF (Figure 4B), both strain and aging effects were 
observed. SHR presented a lower SF when compared to 
WIS and WKY in the 16th week. WKY exhibited a decreased 
SF in the 48th and 72nd weeks when compared to the 16th 
week, while WIS presented a decrease in SF only in the 72nd 
week as compared to the 16th and 48th weeks.	

Figure 1 –  Long-term behavior of ejection fraction (A) and shortening fraction (B) of WIS (n=8), WKY (n=8), and SHR (n=8) at 16, 48, 
and 72 weeks. Data are presented as mean ± SD. Statistical significance (p<0.05) is shown as follows: ‡ = SHR vs. WKY; * = SHR vs. 
WIS; § = 48 vs. 16; # = 72 vs. 16; ¶ = 72 vs. 48.
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Figure 2 – Long-term behavior of SBP (A), DBP (B) and MAP (C) of WIS (n=8), WKY (n=8), and SHR (n=8). The dotted line indicates 
the moment of significant increase in SHR. Data are presented as mean ± SD. Statistical significance (p<0.05) are showed as follows: 
†= WIS vs. WKY; ‡ = WKY vs. SHR; * = WIS vs. SHR.
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Discussion

The present study assessed the long-term behavior 
of blood pressure and cardiac structure and function 
in SHR and both WIS and WKY as controls. For this 
purpose, the present study assessed blood pressure, 
cardiac structure, and function over a 72-week period. 
The results confirmed our hypothesis that, regardless of 
body weight variations, when the cardiovascular issue 
is considered to select the control group, WIS is a more 
suitable normotensive control for SHR than WKY. 

Our main findings were: 1) The blood pressure values 
in WKY were intermediate between SHR and WIS and 
close to hypertension borderline. WIS showed pressure 
values that were more consistent with those expected 
for normotensive rats; and 2) WKY presented earlier 
reductions in cardiac function when compared to WIS.

The correct choice of the control group is essential 
and has great importance, as it allows one to analyze 
one variable at a time, making it possible to isolate the 
variable of interest.28,29 For to achieve such purpose, the 
scientific research must be systematically planned and 
executed, using appropriate methods and tools.30 Usually, 
the use of SHR as a model of essential hypertension often 
requires a normotensive group as a control.4,5,31 However, 

researchers face an experimental paradigm, since they 
must choose controls that match by body mass or by 
age.4, 21, 22, 32

 Our study found important differences in the body 
mass and body mass variation among the tested strains 
over a 72-week period. During their entire life period, 
WIS presented a higher body mass than did WKY and 
SHR. However, body mass variation was higher in WKY 
and SHR strains, which indicates accentuated growth in 
these strains. A previous work evaluated the food intake 
of five experimental strains, including WIS, WKY, and 
SHR, and found increased food consumption in WKY and 
SHR, which can explain the higher body mass variation 
observed here.32 However, it is important to highlight 
that the development of hypertension in SHR is age-
dependent rather than body mass-dependent.21 

 According to Okamoto and Aoki (1963), the reference 
value to classify rats as hypertensive is SBP above 150 
mmHg.10 The experimental animals in the present study 
were classified as follows: WIS – normotensive (116-126 
mmHg); WKY – normotensive (132-146 mmHg); and 
SHR - hypertensive (155-203 mmHg). This profile was 
also reflected in altered MAP results. Despite the fact 
that WIS and WKY were classified as normotensive, 
it is important to note that the WKY presented higher 

Figure 3 – Representative echocardiographic images of animals at 16, 48, and 72 weeks of life. A= WIS16; B= WIS48; C= WIS72; D=
WKY16; E= WKY48; F= WKY72; G= SHR16; H= SHR48; I= SHR72.
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SBP values than WIS and, more importantly, close to 
a hypertension borderline. It is well-known that the 
chronic increase in blood pressure can lead to such 
consequences as left ventricular concentric hypertrophy, 
arterial stiffness, stroke, myocardial infarction, and heart 
failure.33-36 Moreover, previous studies have shown 
divergent blood pressure variability among the WKY 
from different laboratories.16,17 Such differences have 
been confirmed by several studies that classified WKY 
as both normotensive8,13 and hypertensive.6,7,11,20,37 It is 
noteworthy that no previous work was found when 

assessing the biological variability of WIS. Thus, the 
long-term behavior of blood pressure observed in the 
WKY group allows for its use, though it draws attention 
and requires caution in the use of these animals as an 
SHR control.

It is also important to mention the abrupt increase 
in SBP, DBP, and MAP in SHR in the 28th week. Such 
results may be explained by understanding the disease 
progression in SHR.3,38 Previous results show blood 
vessel hypertrophy in the 4th week of life as the first 
event related to the disease, although the SBP values are 

Figure 4 – Long-term behavior of ejection fraction (A) and shortening fraction (B) of WIS (n=8), WKY (n=8) and SHR (n=8) with 16, 48 
and 72 weeks. Data are presented as mean ± SD. Statistical significance (p<0.05) are showed as follows:  ‡ = SHR vs. WKY; * = SHR vs. 
WIS; § = 48 vs. 16; # = 72 vs. 16; ¶ = 72 vs. 48.
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still more normotensive in nature.39 Additionally, the 
prehypertension stage can last up to 4th months of life.3 
After, compensated hypertension sets in, in which the 
SHR reaches the SBP of 150 mmHg with an increase in the 
thickness of the cardiac walls coupled with the reductions 
in the left ventricular internal diameter. This structural 
rearrangement occurs to cope with the stress imposed 
by pressure overload on the cardiac walls and promote 
maintenance of systolic function, and may last until the sixth 
month of life.40,41 Our data show that around the 6th to ,7th 
month established and balanced hypertension is observed, 
characterizing the stage of decompensated hypertension.38,41 
With disease progression, between the 18th and 24th months 
of life, SHR reaches the heart failure stage.41 In fact, 20-week-
old SHR presents a higher SBP when compared to that of 
12-week-old animals,42 and equivalent results have already 
been demonstrated by others.39,42

Regarding the cardiac structure assessed by 
echocardiography, it was observed that WKY at 16 
weeks presented lower LVDd and LVDs when compared 
to WIS and SHR. Moreover, LVDd was also lower in 
WKY than in WIS animals at 48 and 72 weeks of life. 
Both WIS and WKY presented increased LVDd and 
LVDs with aging. In addition, WKY and SHR showed a 
higher PWd when compared to the WIS in weeks 48 and 
72. Left ventricular remodeling is a process by which 
the cardiac chamber undergoes changes in its shape, 
size, and function, and may occur as a result of either 
physiology (i.e. physical training) or pathophysiology 
(i.e. hypertension stimuli).43 Pathophysiological 
hypertrophy is normally caused by a high blood 
pressure overload in the cardiac chambers, leading to 
reductions in the left ventricular diameter, accompanied 
by increases in the ventricular walls’ width.44 

Morphological  changes direct ly affect  the 
cardiovascular function. The long-term pathological 
hypertrophy causes cardiac adverse remodeling of the 
extracellular matrix, such as increases in collagen content, 
which promote tissue stiffening, thus affecting the 
diastolic function and leading to a systolic dysfunction.45 
The left ventricle is responsible for blood ejection 
and its morphology is crucial for pump appropriated 
functioning.40,46 We demonstrated that the SHR group 
presented higher values for LVM than did WIS and WKY. 
With aging, both WKY and SHR exhibited significant 
increases in LVM when compared to the 16th week. To 
confirm the pathological hypertrophic process, the LVM/
BM ratio was calculated,45 and hypertrophy was not 
found in the WKY strain. Thus, probably the overload 

imposed by the increased SBP was not enough to promote 
pathological hypertrophy in WKY. However, a previous 
work found that the hemodynamic cardiac load is more 
evident in isolated cardiomyocytes than in an entire 
ventricle.7 In addition to left ventricle analysis, the PWd 
of the WKY and SHR was larger when compared to the 
WIS at weeks 48 and 72.

Concerning cardiac function, different from another 
study that showed late decreases in the cardiac function 
of SHR over lifetime,31 in the present study, we found 
decreases in both EF and FS in SHR from the 16th week on. 
The WKY, however, presented normal values for EF and 
FS in the 16th week, followed by reductions in the 48th and 
72nd weeks. This finding is in agreement with previous 
studies, showing that WKY had diastolic dysfunction as 
a consequence of increased pressure overload.13 Finally, 
cardiac dysfunction was observed in WIS only in the 
72nd week.

This work has some limitations. Since our proposal was 
to verify the animals’ echocardiographic parameters in the 
16th week of life, we did not perform an echocardiographic 
examination in the 8th week, the pre-hypertensive stage. 
Unfortunately, the lack of this information did not allow 
the discussion of our results to expand into a broader age 
range. Furthermore, the animals’ food intake was not 
monitored, and this factor may have affected the weight 
gain of the animals. It is possible that differences observed 
in the body mass may well be related to different values 
of food intake. However, to confirm such a possibility, 
future experiments of this nature are warranted.

Conclusions

In conclusion, Wistar rats are a more suitable 
normotensive control for SHR than Wistar Kyoto rats 
in experiments to test issues related to blood pressure, 
cardiac structure, and function in different ages inasmuch 
as Wistar Kyoto rats exhibit early reductions in cardiac 
function and blood pressure values in the upper limit of 
normal blood pressure.
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