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Automatic identifi cation of tuberculosis mycobacterium
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Abstract Introduction: According to the Global TB control report of 2013, “Tuberculosis (TB) remains a major global 
health problem. In 2012, an estimated 8.6 million people developed TB and 1.3 million died from the disease. 
Two main sputum smear microscopy techniques are used for TB diagnosis: Fluorescence microscopy and 
conventional microscopy. Fluorescence microscopy is a more expensive diagnostic method because of the high 
costs of the microscopy unit and its maintenance. Therefore, conventional microscopy is more appropriate for 
use in developing countries. Methods: This paper presents a new method for detecting tuberculosis bacillus 
in conventional sputum smear microscopy. The method consists of two main steps, bacillus segmentation 
and post-processing. In the fi rst step, the scalar selection technique was used to select input variables for the 
segmentation classifi ers from four color spaces. Thirty features were used, including the subtractions of the 
color components of different color spaces. In the post-processing step, three fi lters were used to separate bacilli 
from artifact: a size fi lter, a geometric fi lter and a Rule-based fi lter that uses the components of the RGB color 
space. Results: In bacillus identifi cation, an overall sensitivity of 96.80% and an error rate of 3.38% were 
obtained. An image database with 120-sputum-smear microscopy slices of 12 patients with objects marked as 
bacillus, agglomerated bacillus and artifact was generated and is now available online. Conclusions: The best 
results were obtained with a support vector machine in bacillus segmentation associated with the application 
of the three post-processing fi lters.
Keywords: Tuberculosis, Automatic bacillus identifi cation, Neural network, Support vector machine.

Introduction
The World Health Organization publishes an annual 

report on the global control of tuberculosis (TB) with the 
purpose of providing a comprehensive and up-to-date 
assessment of the TB epidemic. According to the 
Global TB control report of 2013 (World…, 2013), 
“Tuberculosis (TB) remains a major global health 
problem. In 2012, an estimated 8.6 million people 
developed TB and 1.3 million died from the disease 
(including 320 000 deaths among HIV-positive 
people). The number of TB deaths is unacceptably 
large given that most are preventable.”

The Millennium Development Goals (MDGs) 
were proposed by the United Nations Development 
Programme (United…, 2010) and adopted by world 
leaders in 2000. They provide concrete, numerical 
benchmarks for extreme poverty and its many 
dimensions and aim to be achieved by 2015. The 
program identifi es 8 millennium development goals 
with 21 targets that are measured by 60 indicators. 
TB falls under the 6th goal related to fi ghting disease 
epidemics, aiming to “Combat HIV/AIDS, Malaria and 
other diseases”. Within this goal, the following target 
refers to TB: “Halt and begin to reverse the incidence 
of malaria and other major diseases”. Related to this 

target, the following indicators refer to TB: “halt 
and begin to reverse TB incidence by 2015; reduce 
prevalence and deaths of TB by 50% compared to 
the 1990 baseline”.

To achieve these goals, the WHO adopted a 
Partnership Global Plan to Stop TB (World…, 2010), 
launched in January 2006, which includes smear 
sputum microscopy as the main diagnostic tool. One 
of the targets of this plan is “A treatment success rate 
among sputum smear positive cases of 90%”. Sputum 
smear microscopy is the main non-invasive technique 
employed for TB diagnosis. Other non-invasive 
techniques include culture and chest radiography.

There are two main reasons why sputum smear 
microscopy is appropriate for TB diagnosis. Special 
dyes allow for differentiating the bacillus from 
the background, and there is a positive correlation 
between the number of bacilli in the smear and the 
probability of them being identifi ed by microscopy 
(David, 1976, as cited in Toman, 2004a).

Two techniques are used for TB diagnosis with 
sputum smear microscopy: fl uorescence microscopy 
and conventional microscopy. Fluorescence microscopy 
uses an acid-fast fl uorochrome dye (e.g., auramine O 
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or auramine-rhodamine) and an intense light source, 
such as a halogen or high-pressure mercury-vapor 
lamp. Conventional microscopy uses the carbolfuchsin 
Ziehl-Neelsen - ZN or Kinyoun acid-fast stains and 
a conventional artificial light source.

Fluorescence microscopy has several advantages 
over conventional microscopy. Fluorescence 
microscopy uses a lower-power objective lens 
(typically 25x), whereas conventional microscopy 
uses a higher-power objective lens (typically 100x). 
Fluorescence microscopy allows the identical area of 
a smear to be scanned in a much shorter time than 
conventional microscopy (Bennedsen and  Larsen, 
1966); Fluorescence microscopy is approximately 
10% more sensitive than conventional microscopy 
(Steingart et al., 2006).

The main shortcomings of fluorescence microscopy 
are the high costs of the microscopy unit and its 
maintenance and the advanced technical skills required 
for handling and maintenance of the optical equipment 
(Toman, 2004b).

The sensitivity of tuberculosis diagnosis through 
sputum smear analysis reported in the literature varies 
greatly. Reported sensitivities of conventional microscopy 
range from 0.32 to 0.94, and reported sensitivities of 
fluorescence microscopy range from 0.52 to 0.97. 
The specificity of fluorescence microscopy is similar 
to that of conventional microscopy and ranges from 
0.94 to 1.0 (Steingart et al., 2006).

In addition to the large variability in sensitivity, 
the manual screening for bacillus identification is a 
labor-intensive and time-consuming task that takes 
between 40 minutes and3 hours, depending on 
the patient’s level of infection. Approximately 40-
100 images must be analyzed (Sotaquirá et al., 2009).

Automatic methods for bacillus screening were 
first developed for fluorescence microscopy images 
(Veropoulos et al., 1998; Forero et al., 2003). The first 
methods for automatic bacillus screening in conventional 
microscopy were published in 2008 (Costa et al., 2008; 
Sadaphal et al., 2008; Raof et al., 2008). Recently, 
other methods for automatic bacillus screening were 
published (Forero et al., 2004, 2006; Khutlang et al., 

2010; Lenseigne et al., 2007; Makkapati, et al., 2009; 
Osman et al., 2012; Sotaquirá et al., 2009).

Some authors (Forero et al., 2006; Khutlang et al., 
2010; Sotaquirá et al., 2009) claim that the advantages 
of automatic bacillus screening over a manual screening 
include more reproducible values for sensitivity and 
specificity and a faster screening process. Table 1 reports 
the values for sensitivity, specificity and time waste for 
one image analysis using automatic methods.

The sensitivity and specificity values previously 
cited for manual screening methods refer to tuberculosis 
diagnosis. The sensitivity and specificity values for 
automatic methods shown in Table 1 refer to object 
classification as bacillus or not bacillus. A rigorous 
comparison of sensitivities and specificities between 
manual and automatic screening methods is not 
available. A rigorous performance comparison between 
automatic methods is not possible because different 
image databases are used in each report.

As shown in Table  1, only one report 
(Sotaquirá et al, 2009) cited time wasted for image 
analysis. It is necessary to consider the number of 
images required to achieve a correct diagnosis to 
compute the time consumed with a TB automatic 
diagnosis. It is necessary to analyze between 20 and 
100 fields of one slide to achieve a correct diagnosis. 
With an automatic procedure, it is also necessary to 
calculate the time spent on focusing computations, 
image acquisition and microscopy displacement. 
According to Santos (Santos et al., 1997), focusing 
computations takes 1.8s per field and acquisition takes 
0.7s, including 0.5s for slide movement. Assuming 
that no parallel processes occur, and considering the 
maximum of 100 images, we calculate time spent 
for an automatic diagnosis according to Equation 1:

 ( )100 1,87 1.8 0.7 7 minadT x= + + ≅ 	 (1)
This value is sometimes less than the 40 minutes 

required for a TB manual diagnostic with sputum 
smear microscopy.

In fluorescence microscopy images, the bacilli 
are easily separated from the background with a 
threshold operation. The segmentation is performed 
using edge detection operators, such as a Canny edge 

Table 1. Sensitivity, specificity and time for one image analysis.

Author Microscopy Sensitivity (%) Specificity (%)
Time for one 

image analysis 
(seconds)

Hardware

Veropoulos et al., 1998 Fluorescence 93.53 98.79 not cited --
Forero et al., 2006 Fluorescence 97.89 94.67 not cited --
Sotaquirá et al., 2009 Conventional 90.90 100 1.87 2 GHz Intel processor 

and 512 MB of RAM
Khutlang et al., 2010 Conventional 97.77 99.13 not cited --
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detector (Veropoulos et al., 1998; Forero et al., 2004). 
Intermediate steps for edge linking and boundary 
tracing are also employed.

In conventional microscopy images, the bacilli 
are not easily separated from the background by a 
pixel intensity threshold operation. Histogram-based 
techniques, Bayesian pixel classifiers and KNN 
pixel classifiers are the main approaches for bacillus 
segmentation in the literature. These approaches 
use color space components as input variables. 
Khutlang et al. (2010) uses the RGB color space but 
did not justify their choice. Sotaquirá et al. (2009) 
analyzed the following color spaces: RGB, YCbCr, 
Lab, YIQ and HSV. From this analysis, the authors 
conclude that RGB, HSV and YIQ are not adequate 
because they generate a high number of false positives 
after the segmentation stage. YcbCr and Lab reported 
better results. No author has combined components 
of different color spaces in the segmentation step. 
In this paper, we propose combining components of 
different color spaces.

For separating bacilli from artifacts in a post‑processing 
step, all authors use bacillus geometric characteristics. 
We improve this step by adding a Rule-based filter 
that uses the components of the RGB color space. 
This filter uses a new parameter, the color ratio 
(CR), which combines color information from pixels 
belonging to bacillus and to its neighbor.

This paper proposes a new method for bacillus 
identification in sputum smear microscopy with the 
following novel features:

•	 The input variables for the segmentation were 
selected combining components of different 
color spaces: RGB, HSI, YCbCr and Lab.

•	 In bacillus segmentation, two classifiers were 
compared with each set of input variables: 
neural networks and support vector machines 
(SVM).

•	 In the post-processing step, a new filter 
based on rules is used to separate the bacilli 
from other artifacts in addition to geometric 
characteristics. This filter uses a new parameter 
proposed in this paper called the color ratio.

As demonstrated in this study, the sputum smear 
images can be divided in two groups according to 
the density of background: high-density background 
(HDB) images and low-density background (LDB) 
images. The HDB group is characterized by a strong 
presence of methylene blue counter stain in the 
background, and the LDB group is characterized 
by a weak presence of this same counter stain. In 
this study, we compare the behavior of the proposed 
bacillus identification method, when applied to these 
two different image groups.

Methods
The methodology for bacillus identification is 

composed of the following steps: image acquisition, 
segmentation and post-processing. In the segmentation 
step, two techniques were investigated: SVM and 
neural network classifiers. The input variables of 
these classifiers are combinations of pixel color 
characteristics selected from 4 color spaces. The best 
characteristics were selected by a scalar feature selection 
technique. The outputs of the segmentation step are 
objects that could be bacilli or artifacts. The goal of 
the post-processing step is to eliminate the objects 
considered artifacts. This task was accomplished by 
a sequence of three filtering processes.

Image acquisition
A total of 120 sputum smear images were acquired. 

The samples, from 12 patients, were prepared in the 
Laboratory of the Instituto Nacional de Pesquisas 
da Amazonia (INPA), Manaus, Brazil, using the 
Kinyoun acid-fast stain and counterstained with 
methylene blue solution. The images were captured 
using a digital camera model Canon Power Shot 
A640 of 10 megapixels. The microscope used was a 
Zeiss Axioskop 40 with a magnification of 100x and 
numerical aperture of 1.25. The PC had a Core 2 Duo 
processor 2.0 GHz with 3GB RAM attached to a 
conventional microscope model Zeiss Axioskop 4. The 
spatial resolution of the images is 2816x2112 pixels. 
The image focus was established in a previous study 
(Kimura et al., 2010).

Image groups
In a previous study (Costa Filho et al., 2012; 

Kimura et al., 2010), we verified that the density of 
background content influences the focus of the image 
by a quantitative analysis. In images with high-density 
background (HDB) content, the best focus measure 
was the variance. The best focus measure was the 
entropy for images with low-density background 
(LDB) content.

The HDB group is characterized by a strong presence 
of counter stain with methylene blue solution in the 
background. The LDB group is characterized by a weak 
presence of this same counter stain. Figure 1 shows 
image examples extracted from the two groups. 
There is a prevalent blue color in the background of 
the HDB images and a prevalent white color in the 
background of the LDB images.

The evaluation of image background density 
was performed using the Hue component of the HSI 
space. For each image, the percentage of pixels with a 
Hue component in the blue color range (0.5-0.7) was 
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obtained. To illustrate this evaluation, Figure 1(c) shows 
a bar graph of the 120 acquired images, in which the 
vertical axis corresponds to the number of image 
pixels (%) whose H component is in the range 0.5 to 
0.7. The graph depicts that an experimental threshold 
value can be obtained to separate the images into 
two groups. This threshold value, 13.56, is shown 
as a horizontal line in Figure  1(c). When the bar 
value was less than this threshold value, the image 
was assigned to the LDB group. When the bar value 
was higher than this threshold value, the image was 
assigned to the HDB group.

A visual inspection of the images shown in 
Figure 1 revealed that the strong presence of counter 
stain with methylene blue solution in the background 
of the HDB images produces more artifacts than the 
LDB images. In this study, we compare the behavior 
of the proposed bacillus identification methods when 
applied to these two different image groups.

In the 120 images, the identified objects were 
enclosed within a geometric shape by two researchers 
guided by a pathologist. A true bacillus was enclosed 

in a circular or oval shape. An agglomerated bacillus 
was enclosed by a rectangle and a doubtful bacillus 
(the image focus or the geometry did not permit a 
clear identification of the object) was enclosed by a 
polygon. These marked objects were the standards used 
to calculate the accuracy, sensitivity and specificity 
of bacillus recognition. The doubtful bacilli and 
the agglomerated bacilli (it is not possible to know 
how many bacilli there are in one agglomeration) 
were not taken into account for these calculations. 
Figure 2 depicts examples images in which objects 
were marked as previously described.

Characteristic selection for segmentation

The features used for pixel classification in the 
segmentation step were the components and the 
subtraction of components of the following color 
spaces: RGB, HSI, YCbCr and Lab. A set, F, of 
30 features was used: F = {R, G, B, R-B, R-G, G-B, 
~R, ~G, ~B, H, S, I, H-S, H-I, S-I, R-I, G-I, B-I, Y, 
Cb, Cr, Y-Cb, Y-Cr, Cb-Cr, L, a, b, L-a, L-b, a-b}. 

Figure 1. (a) Image with high density background content (HDB image); (b) Image with low density background content (LDB image) 
(c) Bar graph of the 120 acquired images, in which the vertical axis corresponds to the number of image pixels (%) whose H component is 
in the range of 0.5 to 0.7.
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The scalar feature selection technique was used to 
select the best features.

This “ad-hoc” technique contains information from 
combined correlation and adapted criteria for scalar 
characteristics. The choice of scalar feature selection 
over vectorial feature selection was because of the 
computational complexity of vectorial feature selection. 
As described by Theodoridis and Koutroumbas (2009), 
the scalar feature selection is divided into three parts:

1.	 Select the first characteristic using a class 
separation measurement. In this study, Fisher´s 
Discriminant Ratio (FDR) was used. FDR is 
described in Equation 2:

 ( )2
1 2
2 2

1 2

k k
k

k k
FDR

µ −µ
=
σ + σ

	 (2)

where
1 1,k kµ σ : mean value and standard deviation of 

characteristic kx  in class w1 .
2 2,k kµ σ : mean value and standard deviation of 

characteristic kx  in class w2.
Classes w1 and w2 represent pixels belonging to the 
background and pixels belonging to bacilli. The 
value kFDR  of is calculated for each characteristic 

kx , 1, , .k m= …  The characteristic kx  with higher kFDR  is 
selected. This is the 1sx  characteristic.

2.	 To select the second characteristic, 2sx , the 
cross correlation coefficient is used between 
the two characteristics, ix and jx defined in 
Equation 3.
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whereN = total number of patterns belonging to 
classes w1 and w2.
 nix and njx : values of ith and jth characteristic of 
pattern n.i,j=1,…, m

The second characteristic in the characteristic 2sx that 
maximizes Equation 4:

 1 2 2 1 2 ,    2 1s s sFDR for all s sα −α ρ ≠ 	 (4)

 α1 and α2 express the importance of the first and second 
terms, in selecting the second-best characteristic. In 
this work, α1= α2 =0.5.

3.	 Other selected characteristics, skx , k=3,…,m, 
are those that maximize the Equation 5:
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From each of the 120 images, 20 pixels belonging 
to bacilli and 20 pixels belonging to the background 
were extracted for the application of this technique. 
Sets with 4,5,6,7 and 8 features were produced. The 
set with four selected features is {G-I, L-a, Y-Cr, a}. 
The set with five selected features is {G-I, L-a, Y-Cr, 
a, R-G}. The set with six selected features is {G-I, 
L-a, Y-Cr, a, R-G, H-I}. The set with seven selected 
features is {G-I, L-a, Y-Cr, a, R-G, H-I, a-b}. The 
set with eight selected features is {G-I, L-a, Y-Cr, a, 
R-G, H-I, a-b, H}.

Bacillus segmentation

In the segmentation step, the pixels are classified as 
belonging to bacilli or background. Two classification 
methods were employed: support vector machines 
(SVM) and feedforward neural networks. A total of 
1,200 pixels belonging to bacilli and 1,200 pixels 
belonging to the background were used in the training 
set. These pixels were extracted from all 120 images.

SVM separates patterns belonging to two classes 
defining one hyperplane that maximizes the separating 
margin between these two classes (Haykin, 1999). 
According to Theodoridis and Koutroumbas (2009), 
the hyperplane parameters that maximize the separating 

Figure 2. Examples of sputum smear images in which the objects were identified as: true bacillus - circular or oval shape; doubtful bacillus 
– polygon; agglomerated bacilli- rectangle. (a) LDB image (b) HDB image.

37Res. Biomed. Eng. 2015 Mar;  31(1): 33-43



Costa CFF Fo, Levy PC, Xavier CM, Fujimoto LBM, Costa MGF

margin are the weight vector w and polarization  that 
minimizes Equation 6 and satisfies Equation 7:

 ( ) 2
0

1,
2

J w w w= 	 (6)

 ( )0 1, 1, 2,T
i iy w x w i N+ ≥ = … 	 (7)

where N = number of pixels to be classified.
For non-separating classes, the identical parameters 

could be determined, minimizing the Equation 8, in 
which new variables, iξ known as slack variables, 
are introduced. The optimizing task becomes more 
complex. The goal now is to make the margin as large 
as possible but simultaneously keep the number of 
points with ξ > 0 as small as possible.

 ( ) 2
0

1

1, ,
2

N
i

i
J w w w C

=
ξ = + ξ∑ 	 (8)

The C parameter in Equation 7 is a positive 
constant that controls the relative influence of the 
two competing terms. The C parameter values used 
in this work were 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 25.6, 
51.2 and 102.4.

SVMs use kernels for mapping characteristic vectors 
as a large dimension space vector in which classes 
could be separated by hyperplanes. The following 
kernels were used in this work in association with the 
SVM classifier: linear, polynomial, radial, quadratic 
and multilayer perceptron.

Combining the C parameter values and kernels, 
250 simulations were used to obtain the best SVM 
classifier.

The second classifier was a feedforward neural 
network, more specifically, a three layer neural network, 
n – m-1. To adjust the best architecture, a total of 
180 simulations, combining different values for n and 
m in the set {3,6,9,12,15,18}, were performed. The 
training algorithm was back propagation associated with 
the Levenberg-Marquardt acceleration method. The 
convergence criterion was a quadratic error less than.

A total of 2,456 bacilli had been identified by the 
pathologist in the set of 120 images (the gold standard). 
When the classifier identifies an object as a bacillus 
and this classification is equal to that taken by the 
specialist, a true positive case occurs. Otherwise, a 
false positive case occurs (the object is classified as 
bacillus but, in fact, is not).A total of 2,456 bacilli were 
identified by the pathologist in the set of 120 images 
(the standard). A true positive case occurs when the 
classifier identifies an object as a bacillus, and this 
classification is equal to that taken by the specialist. 
Otherwise, a false positive case occurs (the object is 
incorrectly classified as a bacillus).

Post-processing

The outputs of the previous step are objects 
that could be bacilli or artifacts. The goal of the 
post‑processing step is to eliminate the objects 
considered artifacts. This task was accomplished by 
applying the following filters: filter 1 – a size filter 
that removes objects with large areas (agglomerated 
bacillus) and small areas (artifacts); filter 2 – a 
geometric filter that eliminates objects based on its 
eccentricity and filter 3 – a Rule-based filter that uses 
components of the RGB color space.

Filter 1: size filter

This filtering process removes objects larger than 
150 pixels (agglomerated bacilli) and smaller than 
20 pixels (small artifacts).

Filter 2: geometric filter

The following geometric characteristics were 
investigated to choose the best characteristic for 
the geometric filter: area, perimeter, compactness, 
eccentricity and Hu moments of the first and second 
order: .

The contours of 500 bacilli were extracted, and 
the following parameters were calculated for each 
one of these geometric characteristics: mean value 
(η), standard deviation (σ) and variation coefficient 
(ν). The variation coefficient is defined by Equation 9:

 .100v σ
=
η 	 (9)

Table 2 depicts the computed parameter values 
for all considered geometric characteristics. The 
best geometric characteristic was the one with the 
lowest value. The geometric characteristic used by 
filter 2 was the eccentricity. A threshold value for 
eccentricity (0.77) that minimizes the false positive 
cases was experimentally obtained. Objects with 
eccentricity higher than 0.77 were considered bacilli, 
and objects with eccentricity lower than 0.77 were 
considered artifacts.

For the LDB image group, the size filter associated 
with the geometricfilterwasenough to obtain highbacillus 
identification rates. When another filter was added, 
the Rule-based filter, high bacillus identification 
rates were obtain for all images. For the LDB image 
group, the size filter associated with the geometric 
filter was enough to obtain high bacillus identification 
rates. When another filter was added, the rule-based 
filter, high bacillus identification rates wereextended 
for all images.
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Filter 3: rule-based filter

The Rule-based filter uses the Color Ratio (CR) 
parameter. Figure 3 is used to define the CR parameter. 
In this figure, two points, Cp and Bp, are initially 
determined. The first corresponds to the centroid or 
the geometric center of the bacillus (xCp, yCp). The 
location of point Bp(xBp, yBp) is obtained as follows: 1. 
Determine whether the bacillus major axis is horizontal 
or vertical; 2. If the bacillus major axis is vertical, 
Bp corresponds to a background pixel, 4-neighbor of 
a pixel bacillus, located on the identical row of the 
geometric center of the bacillus, xCp, to the left or right; 
3. Otherwise, Bp corresponds to a background pixel, 
4-neighbor of a pixel bacillus, located on the identical 
column of the geometric center of the bacillus, yCp, 
above or below it. Figure 3(a) illustrates a bacillus 
in which the major axis is vertical and Bp was chosen 
on the left side (or right side) of the centroid point.

The proposed CR parameter is defined by Expression 
10. CR is the ratio of the difference in intensity of the 
red and green components, as shown in Expressions 
11 and 12.

R

G

difCR
dif

= 	 (10)

R Cp Bpdif R R= − 	 (11)

G Cp Bpdif G G= − 	 (12)

where  RCp- value of Red component in pointCp.
 RBp- value of Red component in point Bp.
 GCp- value of Green component in point Cp.
GBp- value of Green component in point Bp.

The following rules are used to determine whether 
an object is a bacillus or an artifact:

if RCp> GCp and RCp> BCp

object is bacillus

elseif RCp> GCp and RCp< BCp
if difR> 0 and difG> 0 and CR> 2
object is a bacillus
elseif difR> 0 and difG> 0
object is a bacillus
elseif difR< 0 and difG< 0 and CR< 0.5
object is a bacillus
else
object is not an artifact
elseif RCp< GCp and RCp< BCp

object is not an artifact
Because of the Kinyoun acid-fast stain, when 

a bacillus is over a white background (with a weak 
presence of counter stain with methylene blue solution), 
its color appears as light fuchsia. When the bacillus is 
over a blue background (with the strong presence of a 
counter stain with methylene blue solution), its color 
appears to be dark purple. In the first case, there is a 
predominance of the red component over the green 
and blue components. In the second case, there is a 
predominance of the blue component over the other 
two components. The red component is predominant 
over the green component. These observations are 
explored and summarized with the Rule-based filter.

The following figures demonstrate the application 
of the post-processing step: Figure 3(b) is an original 
image; Figure 3(c) depicts the output of post-processing 
step after applying the size filter; Figure 3(d) depicts 
the output of the post-processing step after applying 
the size filter + the geometric filter; Figure 3(e) depicts 
the output of post-processing step after applying the 
size filter + the geometric filter + the Rule-based 
filter. Figure 3(c) shows five marked objects:  O1 and 
O2  – these objects are not bacilli and are eliminated 
with a geometric filter; Objects  O3 and O4  – these 
objects are not bacilli and are eliminated only with the 
Rule‑based filter;  O5 – bacillus and is not eliminated 
with any of the filters. Figure 4(a), Figure 4(b) and 

Table 2. Mean value, Standard Deviation and Variation Coefficient used to design the geometric filter in the post-processing step.

Geometric Characteristic
Parameter

Mean Value Standard Deviation Variation Coefficient
Area 625.34 232.09 37.12

Perimeter 126.03 34.08 27.04
Eccentricity 0.95 0.03 2.96

Compactness 0.51 0.12 23.11
μ10 1.06 0.27 25.31
μ02 24.47 0.73 29.46
μ20 7.61 1.39 18.32
μ11 8.73 1.17 13.38
μ12 17.60 2.06 11.68
μ21 5.23 1.27 24.34
μ22 17.66 2.23 12.61
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Figure  4(c) show an intensity profile of the RGB 
components of the objects: O3, O4  and O5 . In each 
graph, the coordinate x = 0 corresponds to point Bp and 
the right coordinate of the graph corresponds to Cp. 
Values of difR , difG and CR for object O3 were –65, 
–85 and 0.76, respectively. Values of difR, difG,and CR 
for object O4 were –62, –86 and 0.72, respectively.

Results
Two result sets are reported. The first set 

demonstrates the segmentation step. The second 
result set demonstrates bacillus identification after 
the post-processing step.

The segmentation classifiers are used to separate 
the pixels into two classes, bacilli or background. 
Table 3 reports the accuracy, sensitivity and specificity 
of both segmentation classifiers used in pixel 
classification, neural network and SVM. The best 
values are obtained with the SVM classifier (Table 3). 
The best neural network performance was obtained 
with architecture 18-3-1 and five features as input 
characteristics. The best performance of the SVM 
was obtained with a quadratic kernel, C parameter 
equal to 1.6, and 7 features as input variables.

The results of bacillus detection after applying 
the post-processing step are shown in Table 4. Six 
different types of results are shown, depending on the 

Figure 3. Illustration of the post-processing step: (a) example of the segmented bacillus’s image with centroid point, and a border point. 
(b) an original sputum smear image; (c) output of post-processing after applying the size filter; (d) output of post-processing after applying 
size filter + geometric filter; (e) output of post-processing after applying size filter +geometric filter + Rule-based filter.
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segmentation classifier and post-processing filtering 
process used: SVM classifier + size filter; Neural 
network classifier + size filter; SVM classifier + (size 
filter + geometric filter); Neural network classifier 
+  (size filter + geometric filter); SVM classifier 
+ (size filter + geometric filter + Rule-based filter); 
Neural network classifier + (size filter + geometric 
filter + Rule-based filter).

Figure 4. Object with corresponding RGB profile (a) object O3; (b) object O4; (c) object O5.

Table 3. Results of pixel classification in the segmentation step.

Classifier Set Accuracy Sensitivity Specificity
SVM Training 93.08 93.58       92.58

Testing 93.25 93.75       92.75
Neural 
network

Training 90.87 92.75       89.00
Testing 91.45 93.41       89.50

Discussion
This work presents a new method for bacillus 

identification. The following points summarize the 
differences between this method and those previously 
presented in literature:

• 	 Features used as input of segmentation classifiers 
were selected from four color spaces: RGB, 
HSI, YCbCr and Lab. A total of 30 features 
were used. Combinations of components from 
different color spaces, such as G-I, and from 
the identical color space (e.g., L-a, Y-Cr, R-G, 
H-I, a-b) were examined.

• 	 Only geometric characteristics are used 
to separate bacilli from artifact in bacillus 
identification methods reported in the literature 
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(Sotaquirá et al., 2009; Makkapati et al., 2009; 
Khutlang et al., 2010). This paper proposes 
using a new filtering process, the Rule-based 
filter.

The proposed method characterizes the sputum 
smear images that analyze the H component of the 
HSI color space of the image’s pixels. This method 
identifies two groups of images: high-density background 
(HDB) and low-density background (LDB).

As shown in Table  4, the error rates obtained 
in bacillus detection are much lower for the LDB 
images. The sensitivity values obtained for the HDB 
images were higher than those obtained for the LDB 
images. The hit rate obtained with the LDB images 
was higher than that obtained with the HDB images.

The results obtained with the association of the 
three filters were improved compared to those obtained 
with the size filter and with the association of the size 
filter and the geometric filter. When using the three 
filters with the LDB images, the error rate decreases 
to 0% and lower than 4% for all images.

The best sensitivity, 96.80%, was obtained using 
the SVM classifier in the segmentation step and three 
filtering processes in the post-processing step, with an 
error rate of 3.38%. Khutlang et al. (2010) reported a 
sensitivity of 97.77%. Sotaquirá et al. (2009) reported 
a false positive rate of 9.78%.

The area of automatic tuberculosis diagnosis 
does not have an image database of sputum smear 
microscopy slices available. A rigid comparison 
between sensitivities and error rates between different 
methods was not possible because each author used a 

proprietary image database with a different specialist 
identifying objects as bacillus or artifact.

We generated an image database with 
120-sputum‑smear images from 12 patients with 
objects marked as bacillus, agglomerated bacillus 
and artifact. This database is now available at 
http://www.tbimages.ufam.edu.br. This database could 
be used by other authors to establish a comparison 
between different methods in bacillus recognition. 
Future work includes an improved image database 
funded by FAPEAM.
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