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Detection of movement intention using EEG in a human-robot 
interaction environment

Ernesto Pablo Lana, Bruno Vilhena Adorno, Carlos Julio Tierra-Criollo*

Abstract	 Introduction: This paper presents a detection method for upper limb movement intention as part of a brain-
machine interface using EEG signals, whose final goal is to assist disabled or vulnerable people with activities 
of daily living. Methods: EEG signals were recorded from six naïve healthy volunteers while performing a 
motor task. Every volunteer remained in an acoustically isolated recording room. The robot was placed in front 
of the volunteers such that it seemed to be a mirror of their right arm, emulating a Brain Machine Interface 
environment. The volunteers were seated in an armchair throughout the experiment, outside the reaching area of 
the robot to guarantee safety. Three conditions are studied: observation, execution, and imagery of right arm’s 
flexion and extension movements paced by an anthropomorphic manipulator robot. The detector of movement 
intention uses the spectral F test for discrimination of conditions and uses as feature the desynchronization 
patterns found on the volunteers. Using a detector provides an objective method to acknowledge for the 
occurrence of movement intention. Results: When using four realizations of the task, detection rates ranging 
from 53 to 97% were found in five of the volunteers when the movement was executed, in three of them when 
the movement was imagined, and in two of them when the movement was observed. Conclusions: Detection 
rates for movement observation raises the question of how the visual feedback may affect the performance 
of a working brain-machine interface, posing another challenge for the upcoming interface implementation. 
Future developments will focus on the improvement of feature extraction and detection accuracy for movement 
intention using EEG data. 
Keywords: Movement intention, Objective response detection, Statistical F test, Event-related 

desynchronization, Brain-machine interface.

Introduction
Brain interfaces are commonly considered as the 

ultimate means of interaction between humans and 
machines or computers (Allison et al., 2012; Doud et al., 
2011; Hochberg et al., 2012; Sirvent Blasco et al., 
2012). The idea of controlling our environment using 
brain activity opens the possibility for many potential 
applications using these interfaces. For instance, a 
potential use of a Brain-Machine Interface (BMI) is 
the assistance of severely disabled individuals in order 
to improve their communication skills, mobility, and 
general wellbeing (Hochberg et al., 2012; Lebedev and 
Nicolelis, 2006; Nicolelis, 2003; Pfurtscheller et al., 
2003; Santos-Couto-Paz et al., 2013).

A significant amount of BMI research is based 
on non-invasive methods for the measurement 
of brain activity (Cecotti, 2011). In particular, 
electroencephalogram (EEG) is a method to measure 
overall cortical activity that is easy to setup, operate, 
and does not require a surgical intervention. However, 
the measurements EEG provide are polluted with noise 
coming from brain activity of no interest, as well as 

noise coming from other sources like muscle activity 
or external interferences. Hence, it is difficult to extract 
meaningful information from these measurements 
(Nicolelis, 2003; Nicolelis and Ribeiro, 2006). In fact, 
extracting specific information from EEG signals (e.g., 
the movement intention of a person) is a challenge 
that depends on the latest instruments, filtering, and 
processing methods available.

With focus on EEG data processing, this paper 
presents the development of a method for the detection 
of arm movement intention in a BMI setup. In order 
to do so, an experiment with six volunteers standing 
in front of a manipulator robot emulated a BMI 
environment. The purpose of this setup is to test the 
interference of a moving manipulator robot over the 
electrophysiological responses measured by EEG. 
Moreover, our goal is to test the detection algorithm 
over EEG data obtained within this environment and to 
identify further challenges towards the implementation 
of a BMI for self-feeding (Lana et al., 2013b).
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Usually, the detection of movement intention is 
performed using classifiers that are parameterized, 
validated and tested in order to obtain the classification 
accuracy (Bai et al., 2007). In BMI, the most commonly 
used classifiers include linear discriminant analysis 
(Kamavuako et al., 2015; Lew et al., 2012; 2014), 
matched filters (Jiang et al., 2015), support vector 
machines (Bhagat, 2014), common spatial patterns 
(Nikulin et al., 2008) multivariate linear classifiers 
(Bai  et  al., 2011), among others. For successful 
classification, it is required to have a training record 
available in order to determine the working parameters 
of the classifier. In this sense, classifiers present at 
least two limitations: (1) the training data increase 
the number of sessions required for a particular study, 
and (2) the classifier works at the specified conditions 
of the experiment, with its capabilities limited with 
respect to known variability sources (e.g., inter-subject, 
day-to-day, or even inter‑trial variability).

We propose a detector in order to exploit some 
advantages over classifiers: (1) its parameters are 
objectively obtained based on known electrophysiological 
responses, avoiding the need for training data, and 
(2) the parameters of the detector are assumed generally 
applicable to any individual without modification, thus 
overcoming the limitation with respect to variability 
that is present in most classifiers.

Two characteristic features in EEG signals related 
to movement intention are the Movement-Related 
Cortical Potentials (MRCP) and Event-Related 
Desynchronization (ERD) at the alpha and beta bands 
(Giuliana et al., 2011; Jiang et al., 2015; Li et al., 
2012; Morash et al., 2008; Niazi et al., 2011). As eye 
movements caused by observing the manipulator robot 
generate signals that directly interfere with MRCP, as 
shown in more detail in the Results section, we base 
our detection algorithm on ERD features.

We analyzed a motor task that consists of a flexion 
and extension of the volunteer’s right elbow, as a 
kinematic abstraction of the movements needed for 
a self-feeding task. A manipulator robot directed the 
task and three conditions were tested: the observation, 
execution, and imagery of the movement paced by the 
robot. The objective is to determine the detection rates 
for movement imagery, the condition that would be 
eventually used in the BMI to control the manipulator 
robot during a self-feeding task (Lana et al., 2013b). 
The  observation and movement conditions are 
considered as lower and upper limits for detection, 
respectively. For imagery to be a valid control signal, 
it is desired that its detection rates be closer to those 
of movement than to those of observation.

In this paper, the detection algorithm provides an 
objective tool to discriminate whether the intention of 
movement was present or not. The results obtained are 

not completely reliable for a single-trial detection, but 
they clearly improve when using just a few trials for 
detection (around 4-8 trials). However, unlike most 
single-trial detection approaches, one clear advantage 
of the detector presented here is the independence 
on training sessions and specific parameterizations, 
constituting in this sense a more general and robust 
approach if compared to classifiers.

Methods
Experiment setup

Six neurologically healthy volunteers (S1 to S6) 
with no prior experience in motor imagery participated 
in the study. Subjects were not under the influence 
of any medication that could interfere with EEG. 
Volunteers were all male, right-handed, age ranging 
from 23 to 32. All volunteers read and signed an 
informed consent form. The experiment took place at 
the Biomedical Engineering Laboratory of the Federal 
University of Minas Gerais and was approved by the 
local Ethics Committee.

For the experiment, every volunteer remained 
in an acoustically isolated recording room with 
temperature at 25 ± 1.5 °C. In addition, we placed 
an anthropomorphic manipulator robot in front of 
the volunteers such that it seemed to be a mirror of 
their right arm, with the purpose of emulating a BMI 
environment resembling the one that will be used 
in a future application of self-feeding (Lana et al., 
2013b). The volunteers were seated in an armchair 
throughout the experiment, outside the reaching 
area of the robot to guarantee safety. A picture of 
the experimental setup can be found on (Lana et al., 
2013a). Every volunteer was asked not to perform 
any movement other than the required during the 
recording sessions, and to blink only in the interval 
between movements.

Since the role of the manipulator robot is to 
direct the motor task of the experiment, we generated 
a movement sequence for the robot to execute. 
The sequence consisted of two types of movement: 
a flexion (UP) and an extension (DW) representing 
the movements for self-feeding. Figure 1 shows the 
movement sequence generated for the experiment. 

Figure 1. Experiment protocol. Movement sequence of the robot 
manipulator. 0UP and 0DW indicate the starting instants for flexion 
(UP) and extension (DW) movements, respectively (Lana et al., 2013a).
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The robot waits a random time from 8 to 12 seconds 
between movements, following a uniform distribution. 
It performs the flexion at time 0UP, holds that position 
during the random time, performs the extension at time 
0DW, holds that position again during the random 
time, and repeats the sequence. The execution of the 
movements lasts approximately 2.5 s each.

The experiment consisted of five fifteen-minute 
sessions, with three-minute resting intervals between 
them. We explored three conditions in the study: 
observation, execution, and imagery of the robot’s 
movement.

For the first session, we asked the volunteer to 
just stare (ST) at the moving robot as it repeated the 
sequence over the session span. For the two subsequent 
sessions, we asked the volunteer to replicate the 
movement (MV) of the robot, as a respective flexion 
or extension of the elbow. Finally, for the last two 
sessions, we asked and explained the volunteer 
to perform kinesthetic imagery (IM) paced by the 
robot’s movement.

Data collection
Brain activity was recorded from the scalp using 

a 17 channel EEG (F7, F3, Fz, F4, F8, T3, C3, Cz, 
C4, T4, T5, P3, Pz, P4, T6, O1 and O2) according 
to the International 10-20 System, with reference 
at earlobes ([A1 + A2]/2). A cap with Ag/AgCl 
electrodes was used to record the activity from the 
scalp. The 36-channel BrainNet BNT-36 biological 
amplifier (EMSA, Rio de Janeiro, Brazil) was used for 
amplification, prefiltering (including a notch filter at 
60 Hz), digitization and acquisition of the EEG. EEG 
signals were prefiltered using an analogic bandpass 
filter between 0.1 and 100 Hz and then digitized at a 
sampling frequency of 600 Hz.

For the MV condition, the movement of the 
volunteer’s arm was recorded using an accelerometer, 
which was placed at the distal end of the volunteer’s 
radius, close to the wrist, with the recorded axis parallel 
to the direction of movement. The movement was 
performed in a semi-pronation of the forearm, starting 
with the elbow flexed at 90°. The accelerometer data 
was used in a posterior EEG data analysis to make 
trial segmentation according to the arm movement. 
We also recorded the movement of the robot.

The volunteer remained at 80 cm from the robot, 
outside its reachable space. EOG registered the eye 
movements by using two Ag/AgCl electrodes positioned 
above and below the volunteer’s right eye. EOG data 
was used to estimate the influence of eye movements 
in the EEG measurements.

The digital signal processing, analyses, and 
detection algorithm were implemented using the 

Matlab software. The detection algorithm was 
developed as a pseudo-online implementation, that 
is, first data were collected and then the algorithm 
was executed over the data record as a stream, which 
provides an indication that the proposed detector is 
suitable for use in online implementations.

ERP and Event Related Desynchronization/
Synchronization (ERD/ERS)

In order to obtain brain patterns related to the 
conditions of the study, we performed an ERP and 
ERD/ERS analysis. EEG signals were split into trials 
corresponding to flexion and extension movements. 
Every trial consisted of the 3.5 seconds before and 
6 seconds after movement initiation (0UP and 0DW 
in Figure 1). Given that ERD/ERS are expected in the 
alpha band and frequencies above, no thorough artifact 
rejection was considered, since most of the artifacts 
are in frequencies below 4 Hz (Fatourechi  et  al., 
2007; Jeon et al., 2011; Santos et al., 2009). A visual 
inspection of the EEG signals, which were band-pass 
filtered in the frequencies of interest (specially alpha 
band), was sufficient to remove the remaining highly 
polluted trials.

We used the coherent mean to estimate the ERP and 
intertrial variance method to estimate the ERD/ERS 
(Kalcher and Pfurtscheller, 1995; Kotchoubey, 2006). 
The trials presenting artifacts were rejected for the 
ERP estimation. More detailed explanation, analysis, 
and results of ERD/ERS for this study were reported 
by Lana et al. (2013a).

Spectral F Test (SFT) detector
After obtaining the ERD/ERS patterns, we 

implemented a detector based in the alpha band 
(around 8-13 Hz) desynchronization related to the 
brain responses to movement intention. The SFT 
detector is a statistical test that compares two power 
signals and determines significant differences among 
them. Figure 2 describes the procedure that yields 
the movement intention detector. Based on the brain 
activity patterns found in the ERD/ERS analysis 
(Lana et al., 2013a), we chose six EEG channels for 
the detector: P3, Pz, P4, C3, Cz, and C4.

A band-pass filter between 4 and 40 Hz was 
applied to the EEG signals and then decimated to a 
sampling frequency of 100 Hz. The decimation was 
performed in order to have faster computations when 
applying the pseudo-online algorithm for detection. 
In addition, the EEG signals were normalized to have 
zero mean and unit variance.

We determined the reactive frequency Rf  for 
every volunteer as the peak in the frequency power 
spectrum located in the alpha band when the volunteer 
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is at rest (Pfurtscheller and Silva, 1999). A frequency 
band for the detector was established as a threshold 
comprising the 50% (-3dB) of the power at Rf  while 
the volunteer was in resting state.

For the detector features, we computed the 
Discrete Fourier Transform (DFT) squared magnitude 
of two‑second windows for every selected channel 
of EEG (i.e., P3, Pz, P4, C3, Cz, and C4) and the 
analysis window was updated every 100 ms, over the 
whole record span for the pseudo-online algorithm.

The feature containing the movement information, 
P  (frequency “power spectrum”), was computed as 
the sum over estimated DFT bins and the six EEG 
channels considered for the detector. The feature for 
comparison, P  (weighted mean “power spectrum”), 
was computed as a recursive mean with forgetting 
factor given by:

[ ] ( ) [ ] [ ], , ,1 1 ,c b c b c bP m P m P m= −ρ − +  	 (1)

where [ ],c bP m  is the recursive mean of the “power 
spectrum” at window m, with [ ] [ ], ,0 0c b c bP P= , [ ],c bP m  is 
the current “power spectrum” sample being processed, 
0 1< ρ <  is the forgetting factor (Tierra-Criollo, 2001), 

6c =  is the number of EEG channels considered for 
the detector, and b is the number of frequency bins 
used to compute the features. We use the forgetting 
factor ρ to estimate a variable-base EEG power. 
If the value of ρ is 0, the recursive mean equally 
weighs the history as well as the current value of 
the “power spectrum”, whereas if its value is 1 the 
recursive mean considers only the current value of 
the “power spectrum”. Therefore, we set a value of 
ρ that is adequate to keep information of the history 
of the “power spectrum”. This history accounts for 
variations at the EEG power that is unrelated to the 

Figure 2. Procedure to implement the detector.
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movement. Since brain activity varies over time, the 
forgetting factor allows having an updated base measure 
for comparison, assuming that the time interval of 
resting is greater than that of the task performance.

For our detector, the forgetting factor 0.05ρ =  was 
applied to the data from all the volunteers. Figure 3 
shows an example of the two features, frequency “power 
spectrum” and weighted mean “power spectrum”.

The two features extracted from the EEG signals 
were compared using the SFT detector, and a function 
ˆ

PPφ  for every analyzed window is defined as (Infantosi 
and Sá, 2007; Simpson et al., 2000; Tierra-Criollo, 
2001)

[ ]
[ ]

,

,

ˆ .c b
PP

c b

P m
P m

φ = ρ  	 (2)

The ratio in Equation 2 corresponds to an F 
distribution, whose detection threshold at a significance 
level a is defined by ,2 , ,M bcF aγ =  with 22 ,M −ρ

=
ρ

 

which corresponds to the value of an F distribution 
with M, 2bc degrees of freedom at significance level 
a (Tierra-Criollo, 2001). Movement intention activity 
is detected whenever ˆ

PPφ > γ .
An n-trial detector was defined in analogous way, 

with an F distribution with M , 2nbc degrees of freedom. 
The detection was tested using a significance level 
of 5% for all the analyzed cases.

Results
Our first observation was that eye movements highly 

influenced the EEG records, therefore preventing us 
from obtaining the ERP associated with the motor 
task of our experiment and from using the MRCP 
as feature for the detector. Figure 4 shows the clear 
correlation between the coherent mean of EEG trials 
with the corresponding EOG mean. The low frequency 

of the eye movements masked the low frequency 
ERP, possibly because the proximity of the robot 
to the volunteers caused them to perform extensive 
eye movements.

For the detector, Lana et al. (2013a) reported the 
desynchronization patterns in the alpha band in the 
context of the current experiment. For conditions MV 
and IM, a clear desynchronization is present in the 
occipital (O1 and O2), parietal (P3, Pz and P4) and 
central (C3, Cz, C4) areas, if compared to other areas. 
We found similar activity patterns for condition ST but 
the activity in central areas is not as clear as for the 
other two conditions, movement MV and imagery IM. 
It is also noticeable that the desynchronization in the 
responsive areas lasts approximately the same time as 
the movement, around 2.5 seconds. The parietal areas 
show the most intense desynchronization among the 
responsive areas. In addition, there are no notorious 
differences between the conditions of flexion (UP) 
and extension (DW), therefore discrimination of 
movements UP and DW cannot be obtained using 
event related desynchronization, a fact discussed in 
(Tehovnik et al., 2013).

We made a comparison between the frequency 
power spectrum (Welch periodogram) of segments 
of the EEG signals at rest and the EEG signals 
when performing the task, as shown in Figure  5. 
The spectrum obtained presents the same pattern to 
that obtained by the ERD computation. The cortex 
area that presents the more intense desynchronization 
is the area underlying Pz. The occipital, parietal, and 
central areas also present a desynchronization related 
to the task. On the other hand, reactive frequency 
appears like a clear peak in the alpha band when the 
volunteer is at rest (Pfurtscheller and Silva, 1999). 
This pattern was present among all the volunteers. 
The values of the reactive frequency were determined 
for every volunteer. These values vary among subjects, 
but all are within the alpha band. Table 1 presents the 
reactive frequencies for all the volunteers.

Figure 6a shows a typical ˆ
PPφ  for a case when 

detection occurs, in a time scale between the three 

Figure 3. Detector features of a segment of volunteer S1’s record 
under condition MV. The shaded areas correspond to an ERD when 
compared to the mean “power spectrum”. Figure 4. Computed ERP for volunteer S3 under conditions IM-UP.
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seconds before and five seconds after the task initiation, 
whereas Figure 6b shows the same function for a 
case when no detection occurs with the execution 
of the task.

In order to consider a particular detection as valid, 
we defined a time interval when the task condition 
must be detected. The detection range comprised 

the half of second before task execution (movement 
preparation), the actual time of execution, and the 
half-second after performing the task (latency) as 
depicted in Figure 6a.

We computed ˆ
PPφ  for all the volunteers and 

conditions using 1 (single trial), 4, 8, and 12 trials 
for the detector. We determined the detection rate for 
every volunteer based on the time interval to consider 
a detection as valid (Figure 6a). The false positives 
were computed as the detections outside this interval.

We determined the detection rate for all the 
volunteers and conditions of the study as the rate 
between the amount of valid detections over the total 
number of expected detections (Figure 7). In general, 
the highest detection rate obtained was for condition 
MV (Figure 7b), followed by IM (Figure 7c) and 
finally ST (Figure 7a). We obtained detection rates 
ranging from 53 to 97%, when using four realizations 
of the task, in five of the volunteers for condition MV, 
in three of them for IM, and in two of them for ST.

For imagery (IM), which is the condition to be 
used to command the BMI, the detection rates for 
three volunteers (S1, S2 and S5) are much lower 
than for the others (S3, S4 and S6). Furthermore, 
the detection rate does not improve significantly 
with the number of trials used in the detector for the 
volunteers with low detection rate. False positives 
varied among subjects, but all rates remained below 
5% when using more than one trial for the detector.

Figure 5. Power spectrum comparison between rest and task states for volunteer S6 under condition MV.

Table 1. Reactive frequency for each volunteer.

Volunteer S1 S2 S3 S4 S5 S6
fR [Hz] 10.6 8.2 9.8 8.9 10.6 11.2

Figure 6. Function ˆ
PPφ  with (a) detection and (b) no detection of 

movement intention. The figure shows the results using five realizations 
of the task for volunteer S1 under condition MV.
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Discussion
This paper presented the implementation of a 

detection algorithm for movement intention based on 
EEG signals. The detection is based on ERD patterns 
that allow comparing the power in the alpha band to 
a base power estimative.

The widely spread ERD patterns suggest high 
cognitive activity related to the task performed during 
the experiment. This activity could be caused by the 
attention to some aspects of the task, such as the 
movement initiation, extent, duration, and type. It is 
also remarkable the presence of a more intense alpha 
band desynchronization in the parietal area, possibly 
due to the level of attention and association between 
visual and motor stimuli caused by the robot movement 
(Behrmann et al., 2004; Li et al., 2012; Nair et al., 
2003). The desynchronization responses differ from 
other studies where the central areas are considered 

the most responsive to motor tasks (Jeon et al., 2011; 
Pineda  et  al., 2000; Sirvent Blasco  et  al., 2012). 
The ERD found for the three conditions of the study 
suggest similar electrophysiological patterns for the 
movement observation, execution, and imagery. 
Similar results were also reported by Pineda et al. 
(2000), Nikulin  et  al. (2008), Yuan  et  al. (2010), 
Bhagat (2014). The relation between movement and 
observation in the motor cortex was discussed by 
Tehovnik et al. (2013).

There is a weaker response in the central areas 
when movement is only observed. This may suggest 
that the observation elicits similar responses to 
movement or imagery but without activating the 
primary motor cortex, that is, without reaching the 
area where the movement generation is commanded. 
This is somehow expected given that the observation 
is a passive task, if compared to motion or imagery.

More research on different types of movements 
and the effects of visuomotor feedback in a working 
BMI must be performed. This kind of research may 
help to unveil deeper insights about the physiological 
basis of motion and may help in the development of 
BMIs. So far, the discrimination of movement types 
between flexion and extension has been achieved in 
the work by Silva et al. (2015).

The implemented SFT-based algorithm has 
proved to be a suitable option for objective detection 
of movement intention. However, improvements are 
needed, especially those related to feature extraction, 
as well as adaptive and optimal parameterization. 
The reactive frequency is already automatically 
determined as the peak of frequency at resting state, 
but optimization is still required for the selection of 
the window size for spectrum computation and to 
obtain the value for the forgetting factor ρ.

Three of the volunteers performed the motor 
imagery worse. This is noted if we compare the 
detection rates for movement execution and imagery 
in Figure 7. A possible cause for the poor imagery 
performance can be related to the novelty of the 
experiment for those specific volunteers. Studies about 
ERD modulation have reported the importance of task 
training to improve the brain responses (Doud et al., 
2011; Jeon  et  al., 2011; Pfurtscheller  et  al., 1998; 
Pfurtscheller and Neuper, 2001). This training would 
increase the difference between spontaneous and 
movement-related conditions and consequently the 
chance of successful detections. In addition, some 
of the volunteers reported difficulty to imagine the 
movement of their own arms while staring at the 
moving robot.

In conclusion, the main contribution of this paper is 
the method for objective detection of movement intention. 

Figure 7. Detection rate for the conditions of the study. (a) ST, 
(b) MV and (c) IM.
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Different from most classifiers (Bai et al., 2007; 2011; 
Bhagat, 2014; Jiang et al., 2015; Kamavuako et al., 
2015; Lew et al., 2012; 2014; Nikulin et al., 2008), 
the detector does not need training data to determine 
its parameters. The only previous knowledge needed 
for the SFT detector is the electrophysiological 
response, i.e., the only characteristic needed is the 
desynchronization present as a persistent feature 
related to movement intention, which is used to detect 
whether the volunteer intended a movement or not. 
This characteristic may be considered invariant among 
subjects and experiment conditions.

The BMI paradigm we use has two focuses: the 
triggering of high-level tasks by the electrophysiological 
activity of the BMI user obtained through EEG 
signals, and the execution and solution of several 
kinds of task by using robotic systems. Both of these 
aspects are treated as separate parts of our current 
research. However, we always keep a path that will 
allow the appropriate integration of these aspects 
into a single BMI.

As future work, we intend to extend and improve 
the proposed algorithm in order to detect more types 
of movement intention. In addition, we will explore 
other biosignal sources to increase the amount and 
robustness of control commands, as done in hybrid 
interfaces research (Allison et al., 2012; Fazli et al., 
2012; Pfurtscheller et al., 2010).
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