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Introduction
Human gait can be defined as the process where the 

moving body is sustained by one leg, followed by the 
other, in successive unbalances (Inman  et  al., 1981). 
Historically, qualitative evaluation of gait has been 
difficult, usually being based on the subjective point of 
view of the physician or physiotherapist, using methods 
whose effectiveness could not be properly measured. 
Such limitations have led physicians, engineers, and 
other movement scientists to develop gait recording and 
analysis methods and equipment.

In medical and physiotherapy research, the most 
commonly used method in the study of gait phases is 

kinematic analysis (Kerrigan, 1998; Perry, 2004). In the 
past few decades, technological advancements have 
facilitated gait studies through the use of advanced 3D 
motion capture systems. However, due to their high cost, 
3D motion capture systems are still restricted to research 
environments. A simpler and more accessible solution for 
clinical practice is the use of 2D systems, with a single 
camera that records gait movement in the sagittal plane. 
In this method, movement from the video captured by 
the camera is studied by a data collection system, which 
provides the position of a series of markers placed at 
the extremities of the lower limb members. With this 
information, it is possible to define vectors that represent 
the member’s segments, and from these vectors, several 
variables can be defined that can be used for analysis. 
The following variables are most commonly used:

•	 Speed: distance traveled by the body per time 
unit;

•	 Cadence: number of steps per time unit;
•	 Gait cycle: interval between successive heel 

strikes of the same foot;
•	 Stride length: distance between two successive 

heel strikes of the same foot;
•	 Step length: distance between the feet, when 

both are touching the ground;
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•	 Joint angles: angles formed between the body’s 
moving segments.

However, it can be argued that cyclic processes, such 
as gait, can be better represented by cyclic diagrams 
(Grieve, 1968). In this specific case, angle-angle 
diagrams known as cyclograms are used. These graphs 
are objective, reliable, and appropriate for statistical 
studies (Goswami, 2003). As this technique is based on 
geometrical figures, its values can easily be recognized. 
Hip-knee cyclograms represent most of the movement 
of the body (torso, hip, and legs), and therefore can 
provide useful parameters to differentiate several kinds 
of gait (Barton and Lees, 1997). Such parameters can 
be used in different ways for rehabilitation therapies, 
including those that make use of artificial intelligence.

The use of artificial intelligence for biomechanical 
variable prediction has been widely studied in the past 
few years. Semwal  et  al. developed a biometric gait 
identification system based on multi-layer perceptrons 
(MLPs), capable of accurately identifying several types 
of indoor and outdoor activities (Semwal et al., 2015). 
Sharma et al. achieved the same results using genetic 
programming with multiple classifiers (Sharma et al., 
2016). Kutilek  et  al. developed a system based on 
artificial neural networks (ANNs), capable of predicting 
gait from a cyclogram (Kutilek and Farkasova, 2011; 
Kutilek and Viteckova, 2012), using information such as 
actual joint angles, angular acceleration, weight, and age 
of the individual, in addition to elements based on linear 
regression and principal component analysis (PCA).

Considering how versatile cyclic diagrams are, the 
hypothesis of this study is that the cyclogram track (that 
represents the kinematic behavior of the body during 
gait) can be predicted by an intelligent system. This track 
can then be used as input or comparison parameter in 
robotic locomotion therapies, allowing individualized 
treatment, using the pattern itself as feedback.

Methods
Data collection for this study was carried out at 

the biomechanics laboratory of the Physical Education 
Faculty at the Federal University of Uberlandia. The 
study was submitted and approved by the university’s 
ethics committee (CEP/UFU 414/10).

The sample for this study comprised forty healthy 
volunteers (20 female and 20 male, aged 18–30 or greater 
than 60), who consented to participate in this study. 
Eligibility criteria for participation were as follows:

•	 Healthy individuals, meaning they could maintain 
independence, self-determination and autonomy, 
without any limitations in daily life activities;

•	 Regularly undertake physical exercise;

•	 Absence of any injury, trauma, fractures, or 
surgery of the lower limbs, which may alter gait;

•	 Body mass index (BMI) < 30 kg/m2;
•	 No postural hypotension, alterations in the 

vestibular system at the time of testing, and a 
muscular strength score greater than three for 
the muscles examined in this study;

•	 A Berg equilibrium scale (BES) score of greater 
than or equal to 41;

•	 No vascular disorders, or rheumatological or 
neurological diseases with motor sequelae.

Volunteers were divided in four groups, each with 
10 individuals, namely, a young male group (YM), 
young female group (YF), elderly male group (EM), and 
elderly female group (EF). The young groups comprised 
volunteers with the following characteristics:

•	 Age: 18 to 30 years, with a mean of 21.7 years, 
Standard deviation (SD) 3.06 years;

•	 Body mass: mean 65.09 kg, SD 11.97 kg;
•	 Height: mean 1.70 m, SD 0.10 m;
•	 BMI: mean 22.52 kg/m2, SD 2.67 kg/m2;
Elderly groups comprised volunteers that participated 

in the Physical and Recreative Activities for Elderly – 
Active Life Project (AFRID), conducted by the Physical 
Education Faculty, with the following characteristics:

•	 Age: 60 years or greater, with a mean of 68.95 years, 
SD 6.72 years;

•	 Body mass: mean 67.17 kg, SD 10.66 kg;
•	 Height: mean 1.63 m, SD 0.84 m;
•	 BMI: mean 25.17 kg/m2, SD 2.96 kg/m2.
Volunteers initially submitted their anamnesis for 

physical evaluation, followed by a BES application 
to determine the risk factors associated with the loss 
of independence and falls in the elderly participants. 
Following this, hip muscle force (flexors, extensors 
and rotators) was investigated using Oxford’s scale 
manual strength test, with scores ranging from 0 to 5 
(Kendall et al., 2007).

In the next step, each volunteer walked freely on the 
treadmill for an adjustment period, without a pre‑determined 
time. Their comfort speed was then determined. For the 
experiments, a REEBOK, TR3 Premier Run Treadmill 
was used, with a 3 hp motor, maximum speed of 16 km/h, 
incline ranging from 0 to 15°, and a canvas scroll 50 cm 
wide and 152 cm long.

Orange markers of 1 cm diameter were fixed with 
adhesive tape at the right hemisphere (Figure 1) of the 
following anatomic prominences: the greater femoral 
trocanter, lateral femoral epicondyle, and lateral tibial 
malleolus. For the hip and knee joints, member symmetry 
was assumed (Forczek and Staszkiewicz, 2012).

Following this, the volunteers walked on the treadmill 
at the predefined comfort speed, with a 5° inclination for 
3 minutes, followed by a 3-minute pause. This procedure 
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was repeated without any inclination. These inclinations 
were selected to represent gait in flat terrain, as well as 
possible inclinations found during daily activities, in 
accordance with NBR 9050/2004 from the Brazilian 
Association of Technical Standards (Associação…, 2004).

Movement was recorded in the sagittal plane, 
using a Microsoft Studio HD camera, at a resolution 
of 1280×720 pixels and frame rate of 30 frames/s. 
It was decided that only one camera would be used 
because the motor task under study is gait, the analysis 
using cyclograms are planar, and predominantly 
in the sagittal plane. This experimental setup is 
sufficient to meet the study requirements, even after 
the limitations of the equipment used are considered. 
Camera calibration was done using a 19 cm marker 
positioned at the measurement plane, and automatically 
recognized as the reference by the capture program. 
With this setup, the resolution obtained was 0.5°. Joint 
angle measurements were obtained using the Coach6 
software (CMA Science, Amsterdam, Netherlands), 
using a coordinate system with the origin at the knee 
joint, as shown in Figure 2.

For each volunteer, eight strides with inclination 
and eight strides without inclination were selected for 
analysis. From the marker position information, the joint 
angles were determined during movement. Cyclograms 
were then obtained by plotting the angles of one joint 
in relation to the other, as seen in Figure 3.

The upper left corner of Figure 3 shows a video frame 
of the markers being tracked by the software (note the 
origin of the coordination system is at the knee joint, 

as previously defined). The upper right corner shows a 
graph of the hip and knee angles plotted against time, 
for the given stride period. In the lower left corner, the 
hip and knee data are combined to create a cyclogram, 
which is graphically shown at the lower right corner.

These cyclograms were then used as learning patterns 
for ANNs, whose task was to predict the position of the 
lower limbs in the future.

The prediction system used in this method comprises a 
feed-forward neural network using Levenberg-Marquardt 
backpropagation training (Yu and Wilamowski, 2011). 
The initial weights were randomly defined, and the mean 
squared error (MSE) function was used as a performance 
evaluator to stop the network training.

Since a robotic rehabilitation process is progressive, it 
is expected that the patient starts with passive training (no 
control during the whole gait cycle), and as his condition 
improves, machine support will gradually be removed. 
This will stimulate the patient to produce maximum 
voluntary effort. The prediction system is expected to 
follow the same procedure; it would start by giving the 
patient very little control, increasing their control as the 
patient’s gait improves. The last stage would be when 
the machine support is minimal, after which the patient 
can walk unassisted. Several experiments were carried 
out to evaluate the ANN’s performance at each stage 
of the process, starting by predicting a small section of 
the cyclogram, and progressively increasing the size of 
the predicted track. As the results for the experiments 
were consistent, only the extreme conditions (very little 
control, and little machine support) will be detailed.

In the first experiment (called experiment “A”), the 
neural network was fed with small cyclogram segments 
(4 samples) along with the height, weight and age of the 
volunteer, and the expected output was the future state 
of the joint angles (1 sample). The ANN configuration 
was, therefore, 11 inputs and 2 outputs (Table 1).

This configuration can be considered equivalent to 
a control therapy where the patient has little control of 

Figure 1. Marker placing.

Figure 2. Joint angles. Adapted from Ellermeijer and Heck (2003).
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the gait (20% of the gait cycle), distributed throughout 
the whole cycle in small amounts.

In a later experiment (called experiment “B”), the 
ANN was fed with a segment corresponding to 25% of 
the cyclogram, along with the height, weight and age of 
the volunteer, so the remaining 75% of the cyclogram 
could be predicted. The ANN configuration was 33 inputs 
and 90 outputs. (Table 2).

This configuration can be considered equivalent 
to an advanced stage in the gait therapy, where the 
patient has great control over the cycle (75%), with 
little machine support.

In every experiment, 60% of the data set was used in 
ANN training, 20% for validation and 20% for performance 
tests. Afterwards, Pearson’s correlation coefficient (Hauke 
and Kossowski, 2011) and a matched‑pairs t-test were 
used for validation of the predicted data.

Figure 3. Cyclogram determination using the Coach6 software.

Table 1. Artificial Neural Network structure used in experiment “A”.

Input data Output data (angle)

Hip angle Knee angle Height Weight Age Hip Knee
X1 X2 X3 X4 Y1 Y2 Y3 Y4 H W A X5 Y5

X1 X2 X3 X4 Y1 Y2 Y3 Y4 H W A X5 Y5

X1 X2 X3 X4 Y1 Y2 Y3 Y4 H W A X5 Y5

… … … … … … … … … … … … …
X1-n X2-n X3-n X4-n Y1-n Y2-n Y3-n Y4-n H W A X5-n Y5-n

Table 2. Artificial Neural Network structure used in experiment “B”.

Input data Output data (angle)

Hip angle Knee angle Height Weight Age Hip Knee
X1 … X15 Y1 … Y15 H W A X16 … X60 Y16 … Y60

X1 … X15 Y1 … Y15 H W A X16 … X60 Y16 … Y60

X1 … X15 Y1 … Y15 H W A X16 … X60 Y16 … Y60

… … … … … … … … … … … … … …
X1-n … X15-n Y1-n … Y15-n H W A X16-n … X60-n Y16-n … Y60-n
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Results
The measured data shows that the knee angle usually 

ranges from 4° (extended leg) to 67° (flexed leg) for the 
young group, and from 2° to 46° for the elderly group, 
while hip angles range from -8° to 26° for the young 
group and -18° to 20° for the elderly group. As each 
volunteer walked at his own comfort speed, gait cycles 
varied from 1.04 s to 1.58 s (faster for young groups). 
Since the camera was set to 30 frames/s, the number 
of data points of the recorded cyclograms varied from 
31 to 47. To allow processing by the neural network, 
each cyclogram was resampled to 60 data points using 
fast Fourier transform (FFT) interpolation. For every 
row of data, the FFT was defined, and then 60 equally 
spaced points were determined from the function.

The ANN’s training times were lengthy, taking more 
than 20 hours on a computer with a Core I5 processor 
and 4 GB of RAM. However, it should be noted that the 
network’s training time has no relation to its prediction 
time, which only needs time for a single execution, 
ranging around a few microseconds.

After training, cyclogram segment data was used to 
predict the future state of the hip and knee angles. Results 
are presented as predicted joint angles (experiment “A”) 
and the predicted cyclogram (experiment “B”).

The ANN prediction for experiment “A” (one point 
predicted from 4 samples) was very accurate, with an 
average correlation coefficient ρ = 0.973. Figure  4 

shows the predictive ability of this method for a random 
individual from each group.

For the experiment “B” (segments with 25% of the 
diagram) cyclogram prediction was very satisfactory, 
with an average ρ = 0.952. Figure 5 shows the predictive 
ability for this method for a random individual of each 
group.

The normality of the variation between the predicted 
and expected results for the cyclogram was verified using 
the Shapiro-Wilk test, with a significance level of 5%. 
Following this, Pearson’s correlation coefficient (PCC) 
and the matched-pairs t-test were used to check if the 
results had statistical significance. The PCC is defined 
as the normalized form of the covariance of the results 
(Wang, 2013). The matched-pairs t-test is determined 
by calculating the Euclidean distance between the real 
and the predicted points, and then applying the t-test; 
for this experiment, the null hypothesis considered was 
that the average distance between the points was greater 
than 2,121 (which corresponds to an angular error greater 
than 1.5°). Average values for the obtained results are 
shown in Table 3.

The PCC results indicate that the predicted data 
has a very strong correlation with the actual data. 
The  matched-pairs t-test confirms the same result, 
showing that the difference between the datasets is not 
statistically significant (DF = 59, t(DF) = 2.00).

Figure 4. Hip-Knee cyclogram: “x” marks known values, “o” marks predicted values. Line shows actual recorded data. YM – Young male group; 
YF – Young female group; EM – Elderly male group; EF – Elderly female group.
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Discussion
The purpose of this study was to assess the ability 

of an ANN to predict the angular position of the lower 
limbs during gait. It was also important for this study 
to ensure that the method was convenient and feasible. 
Therefore, a simple and accessible experimental setup 
was used. The results were considered satisfactory, as 
the predicted data showed a strong correlation with the 
expected data.

Considering the limitations of the hardware used in 
this study, the tracking performance was comparable to 
commercial 3D capture systems. The camera resolution, 
which is a key element for tracking precision, is similar 
to that of several 3D cameras. General commercial 
cameras have sensors ranging from 0.3 Megapixels (MP) 
to 1.3 MP (Advanced…, 2017; BTS…, 2017; Optitrack, 
2017), while the camera used in this experiment has 
0.9  MP. The  main disadvantages of the one-camera 
setup in use are:

Table 3. Statistical analysis results.

Experiment “A” Experiment “B” Average (all experiments)

Male Female Male Female Male Female

Pearson´s Corr. Coef.
Young 0.989 0.981 0.973 0.970 0.984 0.971
Elderly 0.964 0.959 0.937 0.929 0.941 0.954

Matched Pairs
Young 1.09 1.14 1.39 1.41 1.34 1.37
Elderly 1.44 1.36 1.64 1.55 1.58 1.49

•	 Lower framerate (30fps vs 120+ fps from 3D 
cameras);

•	 Tracking is done in the visible light spectrum, 
meaning that the lighting conditions can affect 
the tracking performance.

A similar study was conducted by Kutilek  et  al. 
(Kutilek and Farkasova, 2011; Kutilek and Viteckova, 
2012). This study, however, has several advantages: 
the data acquisition system is much simpler and more 
accessible than the one used by the above-mentioned 
authors (single consumer-grade camera and 2D acquisition 
system with simple calibration, vs multi infrared-cameras 
with 3D acquisition); the predictive system is simpler 
and needs less information to perform the prediction, 
which reduces the neural network complexity and 
computing time, both desirable aspects for this kind of 
application. The prediction strategy is in accordance 
with the studies mentioned above, and although there 
are similarities between them, result comparison was 

Figure 5. Hip-Knee cyclogram: “x” marks known values, “o” marks predicted values Line shows actual recorded data. YM – Young male group; 
YF – Young female group; EM – Elderly male group; EF – Elderly female group.
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not possible, since the cited authors did not present any 
metrics for their results.

Vries et al. used neural networks (Vries et al., 2016) 
to predict reaction forces in the glenohumeral joint. 
An important characteristic identified by the author is 
that, for the analyzed variables, the ANN’s predictive 
power using a simple setup was similar to its predictive 
power using more complex setups. When comparing 
this study with Kutilek’s (Kutilek and Farkasova, 2011; 
Kutilek and Viteckova, 2012), these characteristics can 
also be identified for the analyzed data.

In this study, a predictive method for lower limb 
movement was described, based on cyclic diagrams. 
This method could obtain the expected future conditions 
of the gait from previous information on the state of the 
lower limbs, with an average correlation index greater 
than 0.98. Although further studies are needed, several 
differences in methodology are believed to have helped 
achieving the presented accuracy, being the main ones:

•	 Self-selected speed: walking at his own pace, the 
volunteer´s cognitive load is reduced, making the 
gait on the treadmill more natural, and helping 
acquire more homogeneous data;

•	 Framerate: Since the camera has a lower framerate, 
cyclograms are built at a lower resolution, 
decreasing the complexity of the data that the 
ANN must learn.

The presented predictive model, which uses a simple 
experimental paradigm, generates data that can be used 
in robotic locomotion therapies, both as control signals 
and feedback elements, aiding in the rehabilitation 
process of patients with motor dysfunctions.

In this kind of therapy, healthy lower limb movement is 
supported by robotic devices, improving the rehabilitation 
process of patients with partial loss of walking ability 
(Fisher et al., 2011; Jezernik et al., 2003; Rudt et al., 
2016; Saggini et al., 2016). Data can be used as expected 
values in a “patient-in-control” therapy, and as control 
elements for “personalized” gait therapy, since the data 
can reflect the characteristic patterns of the gait according 
to the age and weight of the individual. The predicted 
states can also be compared to the actual position of the 
lower limbs, providing information to generate a score 
for the biofeedback system. The proposed method can 
also be modified for use in different areas of artificial 
intelligence, such as reinforced learning (Sutton and 
Barto, 1998).

The combined use of ANNs and simple and accessible 
hardware is of great value in clinical practice. The use 
of cyclograms facilitates gait analysis, since several 
gait characteristics are easily recognizable by geometric 
shape. The proposed predictive system, along with other 
locomotion therapies, constitute an interesting tool that 

can be explored to increase rehabilitation possibilities, 
providing better quality of life to patients.
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