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Introduction
Gait analysis has been proposed as an alternative for 

evaluating the functionality of lower limbs during daily 
living tasks (Baker, 2006). The basic instrumentation 
usually recommended is a motion analysis system (MAS), 
force plates and electromyography. All these instruments 
have high costs, which makes it difficult to implement a 
gait service in the clinical practice context, outside the 
academic laboratory. Therefore, alternatives for low 
cost equipment have been proposed. Inertial sensors 
have been used to replace the MAS (Favre et al., 2009) 
and seem to be a promising technology. Several studies 
have already shown the clinical applicability of these 

systems to collect kinematic data (Fasel et al., 2015; 
Peruzzi et al., 2011).

However, little effort has been made to replace 
force plates to acquire ground reaction force (GRF). 
So far, there is no means of directly measuring these 
forces during walking. Computational mathematical 
systems have been developed to estimate these forces 
by optimization algorithms based on ground reaction 
forces and kinematic data (Lewis & Garibay, 2015). 
Usually, data from optoelectronic motion analysis 
systems and force plates are used to calculate inverse 
and forward dynamics. However, these devices limit 
the performance of the gait analysis to a laboratory 
environment - besides its high cost (Baker, 2006) - 
reducing the application of quantitative biomechanical 
tests in the clinical practice.

Some studies have proposed a model to predict GRF 
based on insole plantar pressure measurements (Fong et al., 
2008; Jung et al., 2014), presenting promising results. 
Despite the advance, the required insoles still have an 
elevated cost and do not allow the analysis to be done 
barefoot, which can influence the outcome (Chen et al., 
2015). Accelerometers attached to the tibia, on the other 
hand, are lightweight and have already been used to 
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simulate some discrete force variables, using regression 
analysis (Elvin et al., 2007). The limitation of these latter 
models is that they do not estimate the complete GRF 
signal. To overcome these limitations, some studies 
have used artificial neural networks to predict moment 
of force data during different tasks (Favre et al., 2012; 
Oh et al., 2013).

Therefore, the aim of this study was to predict 3D 
ground reaction force signals based on accelerometer data 
during gait, using a feed-forward neural network (MLP). 
The hypothesis of this study was that 3D accelerometer 
data from the distal tibia would allow an adequate 
simulation of GRF, with prediction errors comparable 
to other studies using a plantar pressure device.

Methods

Seventeen healthy subjects (11 males; 27.1 ± 3.4 years 
old; 84.3 ± 4.5 kg) participated in the study. All of them 
provided written consent, approved along with the 
experimental protocol of the Institutional Ethics and 
Research Committee. Inclusion criteria were: (i) to have 
no history of ligament injuries, nor pain at the time of 
the tests; (ii) to be between 20 and 40 years old; and 
(iii) to walk independently, without the need of any 
orthoses or braces.

Subjects were instructed to walk at a self‑selected 
speed along an eight m long walkway. Each subject 
performed six laps with a 3D accelerometer 
(± 6 g, model MMA7260Q, Freescale, USA) attached 
to the distal and anterior part of the shank. A force 
plate (AccuGait, AMTI, USA) was embedded into 
the middle of the walkway. The first two laps were 
not collected to allow familiarization with the task. 
The last four laps were collected in order to capture, 
during four gait cycles the acceleration of the shank. 
All data were collected simultaneously using a 
BIOPAC system (UIM, MP100 Systems, BIOPAC, 
USA) with a sample rate of 1 kHz.

After collection, the data were filtered by a 2nd 
order Butterworth low pass filter, applied in the direct 
and reverse directions to avoid phase shift. The cutoff 
frequency for GRF and accelerometer data was 25 Hz. 
Stance phase was defined when vertical ground reaction 
forces were above 10 N.

To fit anteroposterior (AP), vertical (Vert) and 
mediolateral (ML) GRF curves, fourteen inputs were 
selected based on previous studies (Favre et al., 2012; 
Liu et al., 2009), as follows:

i to iii: the 3D leg acceleration data normalized by 
body weight;

iv to vi: the 3D leg velocity, represented by the 
single integration of the acceleration curve;

vii to ix: 3D leg displacement, represented by the 
double integration of the acceleration curve;

x to xii:	 the first derivate of the 3D accelerometer 
signal

xiii:	 the stance duration (s); and
xiv:	 time point of the stance phase of gait (%), 

expressed as a percentage of the stance time.
Multilayer perceptron (MLP) neural networks with 

one hidden layer and three output layers were selected 
to simulate the 3D GRF. The number of neurons in 
the hidden layer was chosen by testing the fitting of 
signals with different sizes, always seeking the most 
parsimonious model, i.e. few hidden neurons and good 
generalization power. Networks were modeled using 
from five to 12 neurons in the hidden layer.

To assess the network fitting, a leave one out 
cross‑validation strategy was used. The network was 
trained using the Levenberg-Marquardt backpropagation 
algorithm according to Favre et al. (2012) and Liu et al. 
(2009).

Hyperbolic tangent and linear activation transfer 
functions were used in the hidden and output layers, 
respectively. These typologies were used in previous 
biomechanical studies which showed that these 
transfer functions produced the best signal prediction 
(Favre et al., 2012; Liu et al., 2009). To avoid overfitting, 
the generalization error obtained for the validation set 
during the training process, and the minimum gradient 
were used as stop criteria.

The network with the lowest mean absolute deviation 
(MAD) among all subjects was selected as the best 
number of neurons in the hidden layers. MAD was 
calculated as:

 ( ) ( )
N

t 1

1MAD GRF t GRF t
N =

= −∑ 	 (1)

where  ( )GRF t  represents the simulated ground reaction 
force, ( )GRF t  corresponds to the collected GRF and N 
is the vector size.

The normalized mean absolute deviation (MAD%) 
was also calculated as [8]:

( )( )
MADMAD% *100

range GRF t
=  	 (2)

Data from each gait cycle were interpolated into 
51 values, representing 0% to 100% of the stance phase. 
To test significant differences between the simulated and 
measured signals, the 136 GRF curves, 68 measured and 
68 simulated, were inserted into a matrix D [136 x 51], 
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where each row corresponded to a gait cycle and each 
column corresponded to the interpolated signals.

Principal Component (PC) analysis was applied to 
three independent matrices D, each one corresponding 
to a different GRF component (Jolliffe, 2002). 
Initially, the mean was subtracted, the covariance 
matrix S [51 x 51] was calculated and, finally, the 
eigenvectors and eigenvalues were estimated from S, 
based on a singular value decomposition algorithm 
(Jolliffe, 2002). The  number of PC retained in the 
analysis represented approximately 80% of the original 
data variance. The scores of the retained PCs were 
compared between the simulated and measured signals 
using a paired t-test. The correspondent eigenvectors 
of the statistically significant PC scores were analyzed 
in temporal correspondence to the original signals 
to identify the location where the variance between 
them could be explained (Leporace  et  al., 2012). 
The locations where eigenvectors deviate from zero 
indicate increased differences between the simulated 
and collected signals.

The correlation between the simulated and 
collected signal was also calculated for each GRS 
component, using the Pearson’s correlation coefficient. 
The significance level was set at 0.05. The effect size 
was also calculated based on Cohen (1988). Values 
higher than 0.8 were considered large and values lower 
than 0.5 were considered small.

Results

The number of neurons in the hidden layer with the 
lowest MAD was ten. The vertical ground reaction forces 
showed the lowest errors, followed by the anteroposterior 
and, with the greatest errors, the mediolateral forces. 
The  correlation between the simulated and collected 
signals was high, with values above 0.8 (Table 1).

The simulation of the signal showed good 
qualitative results, with all the simulated signals 
resembling the original data (Figures 1 to 3). Four, 
five and four PCs were retained for the vertical, 
anteroposterior and mediolateral GRF comparison 
between the signals, respectively. The vertical GRF 
showed no significant differences (p > 0.05), with low 
effect size (Table 2, Figure 2). The anteroposterior 
GRF showed significant differences in the fifth PC 
(p = 0.009) (Table 2, Figure 3), and the mediolateral 
forces presented differences in the second (p = 0.01) and 
third (p = 0.02) PCs (Table 2, Figure 3). The loading 
factors indicated that the variance was higher in the 
first 15% of the stance phase, representing the impact 
phase and the first active peak.

Table 1. Mean absolute deviation (MAD) and normalized mean absolute 
deviation (%MAD), expressed as mean (± standard deviation), and 
Pearson Correlation Coefficient (r).

MAD (± sd) % MAD (± sd) r
Anteroposterior 1.8 ± 0.3%BW 4.6 ± 0.7% 0.97
Vertical 4.5 ± 1.1%BW 4.0 ± 0.8% 0.98
Mediolateral 1.4 ± 0.3%BW 10.5 ± 3.3% 0.80

Figure 2. Anteroposterior Ground Reaction Forces. Above: The black 
continuous line represents the collected signal and the magenta dashed 
line represents the simulated signal. The area surrounding the averages 
represents 95%CI for each group. Below: Fifth principal component, 
and the arrows represent the locations where there is higher variance, 
representing differences between signals.

Figure 1. Vertical Ground Reaction Forces. The black continuous line 
represents the collected signal and the magenta dashed line represents 
the simulated signal. The area surrounding the averages represents 
95%CI for each group.
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Discussion
The purpose of this study was to predict 3D ground 

reaction forces during gait based on a lightweight and low 
cost accelerometer attached to the distal tibia. The results 
showed that the neural network model achieved success 
to simulate the shape of the 3D GRF curves, although 
the PC analysis still discriminated some differences 
between the simulated and collected signal.

The MAD and MAD% were equal or lower than 
other studies that used plantar pressure insoles to 
calculate GRF. The MAD from AP GRF simulation 
from studies using plantar pressure insoles ranged 

from 1.6 to 5.8%BW, while the %MAD ranged from 
7.3% to 10.1% and the correlation coefficient ranged from 
0.85 to 0.98 (Fong et al., 2008; Forner-Cordero et al., 
2004; Jung et al., 2014; Liedtke et al., 2007; Rouhani et al., 
2010; Savelberg & Lange, 1999). The MAD, MAD% 
and correlation coefficient found in the present study 
were 1.8%BW, 4.6% and 0.97, respectively. Vert GRF 
simulation in the literature has error values ranging from 
6.6%BW to 13.8%BW; the relative error ranging from 
7.3% to 10.1%, while the present study showed values 
of 4.5%BW and 4.0%. The correlation coefficient of 
all studies is close, ranging from 0.97 to 0.99, similar 
to the neural network simulation (Barnett  et  al., 
2001; Fong et al., 2008; Forner-Cordero et al., 2004; 
Jung et al., 2014; Liedtke et al., 2007; Oh et al., 2013; 
Rouhani et al., 2010).

Similar to other studies, ML GRF presented lower 
correlation and higher error than AP and Vert GRF 
(Liedtke et al., 2007; Oh et al., 2013). The ML error of 
this study was similar to Oh et al. (2013), showing a 
relative error of 10%. This should be due to the greater 
variability of this signal (John et al., 2012). Maybe, with 
a higher sample size this variability could be captured 
by the neural network model, decreasing the error.

Despite the similarity of the error, none of the studies 
have validated their models, making it difficult to discuss 
the fitness of the model, not allowing to confirm if the 
model is well fitted or that it cannot be improved without 
a validation process. In a previous study (Leporace et al., 
2015), it has been shown, through a residual analysis, 
the closeness of the model proposed in the present 
study to a normal probability distribution, confirming 
the data is suitable.

Additionally, this is the first study to compare 
the simulated and collected GRF using a statistical 
technique that is more sensitive to differences than more 
traditional ones (Leporace et al., 2012; Muniz et al., 
2010). The advantage of using PCA is that it allows 
the analysis of the entire time series, not just discrete 
values extracted from them (Jolliffe, 2002).

The simulated and collected vertical ground reaction 
forces (Figure 2) showed no differences, suggesting that 
the use of this curve in clinical practice is acceptable. 

Table 2. P value and effect size (ES) of the comparison between the collected and simulated ground reaction forces.

Anteroposterior Vertical Mediolateral

p value ES p value ES p value ES
PC1 0.07 0.44 0.48 0.12 0.31 0.30
PC2 0.95 0.01 0.93 0.02 0.01** 1.04
PC3 0.08 0.63 0.71 0.09 0.02* 1.06
PC4 0.50 0.20 0.98 0.01 0.24 0.46
PC5 0.009** 0.94 - - - -

*p ≤ 0.05; **p ≤ 0.01. PC = Principal Component; ES = Effect Size.

Figure 3. Mediolateral Ground Reaction Forces. Above: The black 
continuous line represents the collected signal and the magenta dashed 
line represents the simulated signal. The area surrounding the averages 
represents 95%CI for each group. Below: Second (continuous line) 
and third (dashed line) principal components, and the arrows represent 
the locations where there is higher variance, representing differences 
between signals.
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This  result is very important, since some variables 
extracted from vertical GRF have already been linked 
with injury risk (Zadpoor & Nikooyan, 2011) and 
disease progression (Houck et al., 2011); and this system 
is low cost and does not need a highly instrumented 
biomechanics laboratory to collect data. On the other 
hand, PCA showed that AP and ML curves still present 
differences that could influence the use of these signals in 
clinical practice. The loading factor from the AP and ML 
GRF found differences in 5% and 15% of the stance 
phase, representing a decreased impact peak and first 
active peak.

The impact forces’ peak had a higher frequency range 
(10 to 20 HZ) and represents the rapid deceleration of 
the leg and foot just after the initial contact with the 
ground, while the active peak had a lower frequency 
range (4 to 8 Hz), representing voluntary lower extremity 
motion and the deceleration of the center of mass (CoM) 
(Gruber et al., 2014). It is possible that the deceleration 
of the CoM and foot could not be captured, since in the 
present study only one accelerometer was attached to the 
shank. It was proposed, for future studies, the inclusion 
of sensors on the sacrum, representing the acceleration 
of the CoM, and on the foot, providing more information 
for the neural networks to simulate the GRF signals.

This study confirmed that multilayer perceptron neural 
network can predict the highly non-linear relationship of 
shank acceleration parameters and ground reaction forces 
in healthy young individuals, as well as other studies 
have done using plantar pressure devices. The greater 
advantages of this device are the low cost and the possibility 
of use outside the laboratory environment. Although 
the error rates were low, ranging from 4 to 10%, some 
improvements must be made, regarding the management 
of input parameters and number of sensors used, prior 
to application in clinical settings.

The results of this study must be only applied to level 
walking of healthy individuals. Although it is known 
that straight-line level walking is actually not common 
in real-world activities (Orendurff et al., 2008), usually 
level gait with self-selected speed is the most used 
task in clinical biomechanical gait assessments aimed 
at identifying lower limb dysfunctions. Future studies 
must be performed applying this algorithm to different 
orthopedic and neurologic conditions.
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