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Abstract

Data quality control programs used in the mineral industry normally define toler-
ance limits based on values considered as good practice or those that have previously been 
applied to similar deposits, although the precision and accuracy of estimates depend on a 
combination of geological characteristics, estimation parameters, sample spacing and data 
quality. This study investigates how the sample quality limits affect the estimates results. 
The proposed methodology is based on a series of metrics used to compare the impact on 
the estimates using a synthetic database with an increasing amount of error added to the 
original sample grades or positions, emulating different levels of precision. The proposed 
approach results lead to tolerance limits for the grades similar to those recommended in 
literature. The influence of the positional uncertainty on model estimates is at a minimum, 
because of the accuracy of current surveying methods that have a deviation in the order of 
millimeters, so its impact can be considered negligible.
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1. Introduction

Since the geometry and geological 
properties of a mineral deposit are only 
known exactly after its complete extrac-
tion and processing, it is necessary to use 
models and estimates throughout the life-
time of a project for proper planning. The 
quality of available data strongly affects 
these estimates, and has consequently led 
the mining industry to adopt controls and 
procedures to measure and ensure data 
quality. These sampling and analytical 
controls typically establish error toler-
ances based on the intervals suggested by 
literature and good practices, i.e. Abzalov 
(2008), which do not have a mathematical 
relationship with the precision and accu-
racy required for the grade model, mine 
planning and scheduling. In this context, 
this paper proposes a methodology that 

uses a sensitivity analysis to measure how 
the analytical and/or location errors affect 
the estimates.

Despite the diversity of estimation 
techniques, none is able to completely 
correct the impact of a database con-
taining large analytical errors, data 
obtained using an improper sampling 
protocol or with inaccurate spatial po-
sitions. Various systematic controls are 
employed to determine data accuracy 
and precision to ensure the quality of 
this information. At the same time, 
established quality assurance/quality 
control (QA/QC) programs ensure rep-
resentative sampling and preparation.

The tolerance limits are typically 
based on average values suggested for 
different types of deposits (Abzalov, 

2008). The main problem of employing 
values used in other mines or recom-
mended by literature is that the estimated 
model will not necessarily have the same 
accuracy achieved by the mine from 
which the values were obtained, because 
the sensitivity of a model regarding the 
data quality is a complex relationship 
between data accuracy, estimation pa-
rameters and sampling spacing.

Based on the need to measure the 
real impact of information on the esti-
mation accuracy, this paper proposes a 
methodology to measure the impact of 
analytical and location errors on grade 
models, enabling a better definition of 
tolerance limits and assuring that the 
defined values achieve the planned ac-
curacy for block estimates.

2. Materials and methods

Based on the original data, per-
turbed databases were generated by add-
ing errors to the initial sample grades and 
locations using Monte-Carlo simulation. 
Ten uncertainty scenarios were created, 

with the relative error randomly drawn 
from a normal distribution with increas-
ing standard deviations (Miguel, 2015).

The sensitivity analyses were per-
formed using the same blocks, methods 

and estimation parameters, changing only 
the databases. Therefore, a series of esti-
mates was obtained and their relationship 
to the initial values for each level of per-
turbation was added to the information.
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The different uncertainty scenarios 
and their relationship to the error-free 
estimates were measured by the average 
deviation and the coefficient from a linear 
regression using matching pairs of block 
values. The first block value are estimated 
using the error-free dataset and the second 
using an error-added dataset.

The results were evaluated as a 
function of the uncertainty added to the 
data. The proportion of blocks incor-
rectly classified as ore or waste is also 
a measurement of the impact on the 
estimates and enables an assessment of 
the financial impact caused by data error 

by measuring the ability of the model to 
classify correctly each block. Two types 
of misclassification exist:

• Dilution, in which a block of poor 
economic value (at Walker Lake, V grade 
lower than 450 ppm) is classified as an 
ore, reducing the average grade of the 
mined material;

• Loss, where an economically 
viable block of ore (at Walker Lake, V 
grade greater than 450 ppm) is classified 
as waste, reducing the total ore tonnage 
of the deposit.

The proposed method was applied 
to an analysis of the ordinary kriging 

(Matheron, 1963) sensitivity to sampled 
grade and locational uncertainty. The 
Proposed approach can be replicated to 
any geostatistical method. Thus, ordinary 
kriging was selected because it is probably 
the best known and most commonly used 
geostatiscal method in mining industry.

The proposed method was applied 
to an ordinary kriging sensitivity analysis 
with quality limit definitions in the Walker 
Lake dataset (Isaaks And Srivastava, 
1989), a public database composed of 
78,000 two-dimensional data points de-
rived from the topography of the Walker 
Lake area in the state of Nevada, USA.

2.1 Initial database and its estimation
The study used a re-scaled version 

of Walker Lake with V grade (ppm) at 
195 locations in a pseudo-regular grid of  

20 x 20 m in an area of 78,000 m²  
(280 x 300 m).

The variogram showed anisotropy 

with longer and shorter continuity in the 
N157.5° and N67.5º directions, respectively. 
The modeled variogram parameters were:

γv(ppm)(h) = 6000 + 13000 . Sph(1) . N157 . 5E N67 . 5E
20m 16m

N157 . 5E N67 . 5E
69m 40m

+ 42000 . Sph(2) . (1)

Af ter model ing the spat ia l 
structure, the V grades were esti-

mated by ordinary kriging in blocks of  
10 x 10 m, with a search ellipse using 

a minimum of 3 and a maximum of  
12 samples.

Figure 1
Kriged V values using an 
error-free database for V grades. 
a) Estimated blocks and 
b) histogram and statistics for the estimates.

2.2 Generating perturbed scenarios
Based on the grades and positions 

of the 195 samples, perturbed scenarios 
were obtained by adding errors to initial 
values. Deviations were randomly drawn 
using Monte-Carlo simulation (Lehmer, 
1951) from a Gaussian distribution with a 

zero mean and relative standard deviations 
of 2% to 40% (measured as the deviation 
between the perturbed and the initial 
sample values). The zero mean ensures 
the non-bias condition with symmetric 
scattering around the original mean.

For each level of uncertainty, 25 
datasets were generated and used individu-
ally to estimate the block model (Table 2), 
ensuring sufficient values for the sensitivity 
curves. Table 1 shows the statistics aver-
aged to each uncertainty scenario datasets.

(a)

(b)
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Correlation 
Coefficient

Mean 1st Quartile Median 3rd Quartile

V (ppm) 1.000 273.5 62.0 223.9 409.4

bdSD-002 1.000 273.6 62.2 222.2 411.2

bdSD-004 0.998 273.5 62.6 221.4 413.2

bdSD-006 0.996 273.6 63.7 219.6 416.2

bdSD-008 0.993 273.8 64.1 217.7 413.8

bdSD-010 0.989 273.8 63.3 216.8 409.9

bdSD-015 0.977 274.1 63.9 216.1 408.8

bdSD-020 0.957 272.8 61.5 214.1 406.7

bdSD-025 0.941 273.6 59.7 210.0 406.1

bdSD-030 0.920 273.9 53.2 203.5 408.3

bdSD-040 0.858 274.0 46.5 193.6 404.5

For positional sensitivity analysis, 
initial position was dislocated by adding 
Gaussian noise with a zero mean and 
standard deviation from 0.04 m to 10 m, 
randomly drawn independently for the 
X and Y coordinates, generating displace-

ments ranging from 0.02 to 12.9 m from 
the initial position.

The locational uncertainty generated 
average deviations of 0.05, 0.20, 0.84, 3.34 
and 12.9 m from the original positions. The 
variations among realizations for the same 

standard deviation caused little impact on 
the location sensitivity curve, which elimi-
nated the need for multiple realizations. 
Figure 2 shows the original locations as 
circles and the perturbed positions for sce-
narios SDL-2.56 and SDL-10.24 as triangles.

Figure 2
Location map of the original (circles) and 

perturbed positions (triangles) of sampled 
coordinates of SDL-2.56 and SDL-10.24 m.

2.3 Checking uncertainty influence on estimates
The sensitivity analysis for analyti-

cal and locational errors, quantified for 
each scenario dataset, were compared 
to estimated blocks using the error-free 
dataset, which is accepted as “true”. Since 
kriging and variogram parameters have 
a significant effect on estimates, values 

defined by the error-free database were 
applied to all perturbed scenarios

The impact caused by uncertainty 
on grades (Table 1) and on locational 
data (Table 2) were measured by the 
proportion of blocks that were incorrectly 
classified as ore or waste using a cut-off 

value for V of 450 ppm. The impacts 
were also measured by deviation from 
the original mean, the correlation coef-
ficient and the mean absolute deviation for 
pairs of blocks containing the individual 
perturbed sample estimated values and 
original values.

Table 1
Descriptive statistics of 

the original and perturbed database 
statistics grouped by level of uncertainty1.

1Columns: Mean, median, 1st and 3rd quartiles refer to scenario mean values; correlation coefficient 

compares the initial and scenario values sample-to-sample.
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Scenario Correlation 
Coefficient Mean Mean Block 

Deviation Loss+Dilution

blSD-002 1.00 274.9 2.4% 0.7%

blSD-004 1.00 274.7 5.0% 1.0%

blSD-006 1.00 274.9 7.4% 1.5%

blSD-008 1.00 275.0 9.9% 2.0%

blSD-010 0.99 275.2 12.3% 2.5%

blSD-015 0.99 275.6 18.6% 3.6%

blSD-020 0.97 274.7 25.9% 4.9%

blSD-025 0.97 274.4 30.0% 5.4%

blSD-030 0.95 274.9 36.1% 6.5%

blSD-040 0.91 273.0 50.6% 8.9%

Table 2
Descriptive mean statistics 
for model estimated using 25 
perturbed grade databases. The 
block estimates are compared to the 
values for the error-free dataset and results 
are grouped by the level of uncertainty.

Scenario Mean Local  
Deviation (m)

Correlation 
Coefficient

Mean Mean Block 
Deviation

Loss+Dilution

SDL-0 0.00 1.00 274.9 0% 0.0%

SDL-0.04 0.05 1.00 274.9 0% 0.0%

SDL-0.16 0.20 0.99 274.8 1% 0.4%

SDL-0.64 0.84 0.99 275.4 2% 1.0%

SDL-2.56 3.34 0.98 274.8 10% 2.5%

SDL-10.24 12.90 0.85 281.5 41% 9.8%

2 Column: Mean deviation measures how many meters the coordinates are from the actual sampled 

position; the mean refers to scenario blocks values; the correlation coefficient, mean deviation and 

loss+dilution compare the initial and scenario values block-to-block.

Table 3
Descriptive statistics for 
model means estimated for the 
perturbed positional databases. The 
values are compared to estimated blocks 
using the initial and correct locations2.

3. Results and discussion

3.1 Modeling of the sensitivity of estimates to uncertainty
The kriging sensitivity, measured 

to ten grade and five locational levels 
of added uncertainty, were interpolat-
ed by linear functions (Figure 3) that 
relate dataset errors to their impact 
on relative block-to-block errors and 
on block misclassification.

An absolute increase of 5% in 
the standard deviation of the uncer-

tainty related to the sample grade 
increased the average deviation be-
tween all estimated blocks and their 
reference values by 6.2% (Figure 3a-I, 
y=1.2405*5%), while the number of 
blocks misclassified as ore or waste 
was increased by 1.12% (Figure 3b-I, 
y = 0.2247*5%).

For posit ional uncer ta inty, 

each meter on location mean error 
increased the average deviation be-
tween the block grade and the refer-
ence value by 3.16% (Figure 3a-II,  
y = 0.2247*1 m). For the loss and dilution 
rate, each meter of positional uncertainty 
in the database increased the misclas-
sification rate by 0.76% (Figure 3b-II,  
y = 0.0076*1 m).
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Figure 3
Grade and positional 

sensitivity curves relating the 
standard deviation added to sample 

error population (X) and its measured 
impact on relative block-to-block errors 

(a) and by misclassifying ore as waste (b).

3.2 Definition of quality limits
The sensitivity relationship between 

sampling and estimate uncertainty can 
take into account different criteria for 
defining sampling errors limits, i.e. 
minimum accuracy required for a grade 
model, mine planning and scheduling. 
For the sake of brevity, the study assumed 
free access to all mining blocks (each 
block can be mined as ore or waste in-
dependently) and the Walker Lake block 
model being used as a bench to be mined 
during a month.

As reference, good practices in 
QA/QC suggests replicate sample errors 

between 5-10%, being acceptable a maxi-
mum of 20% (Abzalov, 2008; 2011a). For 
resource classification, values accepted by 
the mining industry as good practice state 
that measured resource should have an 
accuracy between 8% (Abzalov, 2011b) 
and 15% (Parker, 2014), over a monthly 
or quarterly production; both references 
using the usual 90% confidence interval.

First, we propose to use the sensitive 
equation to define quality limits that en-
sure the Walker Lake resource is classified 
as measured. Considering a maximum 
acceptable sample uncertainty impact on 

estimates of 10%, the equation a-I (Figure 
3) defines that 90% of the samples error 
has to be below 8.1% (x = 10%/1.2405).

Quality limits may also be de-
fined to ensure an impact on misclas-
sification below a chosen threshold. 
Assuming an arbitrary maximum 
misclassification of 3%, equation b-I 
(figure 3) defines a sampling error of 
7.5% (x = 0.2247/3%). For the same 
misclassification caused by locational 
errors, equation b-II (Figure 3) de-
fines a maximum average deviation of  
0.25 m (x=0.0076/0.03).

4. Conclusion

As discussed, in the mining industry 
there is a gap between data quality pro-
grams and the commonly used geostatisti-
cal method, where sampled grades, as well 
as their location, are assumed as error-free 
in the geostatistical modelling. This paper 
proposes an approach measuring the link 
between sampling quality control and es-
timate values through sensitivity analysis.

The general procedure is applicable 
to any deposit and geostatistical method. 
For the Walker Lake case, the blocks 
were estimated by ordinary kriging.  The 
maximum error limit values defined by 
the proposed approach, and its expected 
impact on resource confidence, were very 
close to well-established references, being 
the sensitivity equations results consistent 
to sampling error and good resource 
classification practices. Moreover, the 

approach applied to data position uncer-
tainty concluded that when the accuracy 
of modern topographic surveys is taken 
into account, kriging sensitivity due to 
location error could be assumed negligible. 

In real cases, whose initial sample 
grades and position have a measure-
associated error, the regression line can be 
extrapolated to uncertainty values below 
measured error to the origin, assumed as 
error-free. Such methodology, applied to 
locational data uncertainty, allows the 
assessment of the locational impact on es-
timated value cases of poorly located data.

A financial appraisal on the benefit 
related to the method proposed can be 
carried out following the same approach, 
using real sampling protocol costs and 
measuring their impact on profits due to 
metal loss or dilution caused by misclas-

sified blocks. Thus, the approach can 
be used to maximize profit, considering 
the money spent in sampling quality 
control and its impact on mining profit-
ability. This type of optimization cannot 
be reached using benchmark values es-
tablished by the industry for maximum 
acceptable error values.

In future work, stochastic simula-
tions will be investigated in order to 
incorporate other sources of uncertainty 
associated with the estimation process. 
The simulations also allow to define where 
additional samples should be located, and 
how it should be prepared and analyzed, 
taking into account the methods available 
for each position, their costs, expected 
impact on mine profitability and if the ad-
ditional information costs in this position 
exceed the financial benefits.

(a)

(b)
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