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Abstract

The thermal processing of iron ore pellets in pelletizing plants is a decisive stage 
regarding final product quality and knowledge of its characteristics has a fundamen-
tal importance in its process optimization. This study evaluated the variable sensitiv-
ity involved in pellet bed formations and their permeability using the artificial neural 
networks method. The model stated that standard diameter deviation, sphericity and 
pellet bed height mostly affect bed permeability. The computational model was able 
to predict pellet bed backpressure by means of pellet geometrical features, thus allow-
ing improving green pellet generation, in order to ensure fuel and energy consumption 
reduction, final quality improvement and better productivity.
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1. Introduction

The agglomeration of iron ore ap-
peared with the necessity to optimize the pro-
duction process of raw materials connected 
to the steel industry, using the fines portion 
generated during the mining process and 
subsequent ore processing, thus transform-
ing it into an iron-rich material, which until 
then would be process waste, thus becoming 
a marketable product with a higher value 
(Thella and Venugopal, 2011). The iron ore 
pellet is a cluster of approximately sphere 
shaped particles with some remarkable prop-

erties as: particle size distribution between 9 
mm and 15 mm, high iron content (around 
66%), uniform mineralogical properties, 
and high mechanical strength, along with 
a uniform, low tendency to abrasion and 
good behavior during transport (Meyer, 
1980). The iron ore pellet production process 
comprises several steps, such as the separa-
tion of raw material, grinding, classification 
according to particle size, agglomeration, 
drying processes, burning and cooling.

For traveling grate kilns, herein pre-

sented, 90% of the heat transport in thermal 
processing is done by convection. Thus, the 
gas flow through the pellet bed is of funda-
mental importance (Meyer, 1980).

The gas flow is dependent on the 
strength and gas permeability of the bed, and 
highly influenced by the physical consistency 
of the pellets. The most adopted equation to 
solve gas flow through packed beds is Ergun’s 
equation (Hinkley et al., 1994; Luckos and 
Bunt, 2011; Trahana et al., 2014; Koekemoer 
and Luckos, 2015; Erdin et al., 2015):

ΔP
L

( 1 - ε)2 μU 1 - ε ρU2
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ε3 ε3 D

p
D

p
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Where: ∆P - pressure drop of packed 
bed; L  -  height of packed bed;  

ε - void fraction; U - superficial bed ve-
locity; μ - dynamic viscosity of the fluid;  

Dp - particle diameter; A and B – empiri-
cal coefficients.
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The pressure variation is substantial-
ly high as there is a large variation in pellet 
diameters, the presence of fines, (Hollands 
and Sullivan, 1984) and according to 
Ergun’s equation, varies linearly with the 
increase of bed height. The pressure drop 
is also responsible for the operation of the 
fans that drive the air heated by the vari-
ous stages of the firing process.

Pellets with diameters distributed 
in a narrow band, with spherical shape 
and good mechanical strength, and low 
generation of fine particles, produce a bed 
in the drying step with high permeability, 
thus lowering production costs, improving 

productivity and increasing the quality of 
the final product (Matos, 2007).

It is therefore evident that the resis-
tance encountered by the air flow through 
the pellet bed can be understood as a 
measurement of the quality factor of the 
raw pellets, providing an opportunity for 
energy savings in the overall process as 
well as a point which offers final product 
quality improvement.

The complexity of the equipment, 
the large amount of interrelated factors in 
the process and the difficulty of develop-
ing manufacturing condition experiments 
lead us to the mathematical modeling that 

has a broad application in metallurgy 
(Timofeeva et al., 2013). 

The method of artificial neural 
networks has shown great reliability and 
quick responses in several areas, proving 
to be a suitable choice when you want 
to get a general predictive analysis that 
includes a lot of variables (Dwarapudi 
et al., 2007). Neural networks have the 
ability to capture nonlinear and highly 
complex relationships between inputs and 
outputs of the process. They are computa-
tionally efficient and do not require prior 
knowledge of the process to be modeled 
(Haykin, 2009).

2. Material and method

A sequence of 1000 industrial data 
collected from the pelletizing process 
have been used to create an artificial neu-
ral network (ANN) with the Multilayer 
Perceptron (MLP) architecture, feedfor-

ward type, with a seven neuron input 
layer composed of process variables. The 
data was processed with Multiple Back 
Propagation software (Lopes and Ri-
beiro, 2003). Table 1 shows the process 

average values, minimum, maximum 
and standard deviation.

The hardware used was a regular 
personal computer (Intel i3 chipset, 
4GB RAM).

RNA Variable Mean Min. Max. Std Dev. Unit

Inputs

E 1.1 Raw pellets production 699.79 291.32 753.85 53.52 ton/h

E 1.2 Diameter mean size 11.87 4.14 12.71 0.705 mm

E 1.3 Diameter standart deviation 2.32 0.77 2.64 0.147 mm

E 1.4 Pellets between 10-16 mm 76.29 26.59 80.91 4.98 %

E 1.5 Pellets above 16 mm 3.74 0.88 11.85 1.13 %

E 1.6 Pellets below 10mm 16.36 5.36 31.69 2.5 %

E 1.7 Esphericity 79.34 28.36 80.26 4.62 %

Output

S 1.1 Bed Backpressure -239.01 -282.64 -78.81 27.21 mBar Table 1
Date set description.

The neural network is then fol-
lowed by a hidden layer with 15 neurons 

defined by the Kolmogorov expression 
(Hetch-Nielsen, 1989):

N = 2n+1

Where: N-Number of neurons in the 
hidden layer; n-Number of inputs.

The output layer of a single neu-
ron related to the back pressure of 
drying chamber, which leads us to the  
bed permeability.

We used the error backpropaga-
tion training algorithm, the learning 

function of gradient descent and the 
Round mean squared error (RMSE) as 
the performance function.

The transference functions were 
respectively hyperbolic tangent for 
the hidden layer and logistic for the  
output layer.

The sensitivity analysis was con-

ducted to infer the relative importance 
of each variable. This contribution was 
measured by the RMSE degradation 
after the application of a 2%, 5% and 
10% noise on each variable.

The neural network modeled 
for this application is summarized in 
Figure 1.
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Figure 1
Artificial Neural Network, 7-15-1.

3. Results and discussion

After the artificial neural network 
validation with industrial data, there was 

a convergence as shown in Table 2 with 
the mathematical model.

Training Test

R2 0.870159 0.865757

RMSE 0.036486 0.0329154
Table 2

correlation coefficients R2.

Regression between the target and 
the Artificial Neural Network predicted 

outputs is plotted in Figure 2, pointing to 
a good convergence considering a factory 

scale experiment.

Figure 2
Regression for testing data.

The sensitivity analyses of the input 
variables were made exhibiting indexes in 
Figure 3. It was observed that the variables 

of highest influence on the drying chamber 
pressure and consequently in pellet bed 
permeability was the diameter standard 

deviation, followed by pellet production 
and pellet sphericity.

Figure 3
Variable sensitivity.
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Particle size distribution, which has 
a direct relationship with the standard de-
viation of the pellet diameter, has a main 
role in bed permeability, since smaller 
pellets occupy interstitial sites among 
bigger pellets, decreasing bed voiding 
(Koekemoer and Luckos, 2015). In his 
way, a wider diameter distribution and/
or the presence of fines block the air flow 
through the bed (Yazdanpanah et al., 
2010), causing a drying deficiency on the 
opposite side. A better control of diam-
eter distribution can only be performed 
during the pelletizing step, showing the 
importance of control parameters during 
this phase.

According to the presented Ergun 
equation, bed height has a direct propor-
tion on bed permeability, but controlling 
this factor in order to reduce back pres-

sure will result in productivity reduction. 
In this case, despite a great influence in 
the final result, bed height should not be 
the parameter to be controlled.

Sphericity also affects permeability, 
since the pellet shape is decisive for bed 
formation and pellet packaging. The 
particle size and shape influence on bed 
formation is the object in several studies 
(Al-Raoush and Alsaleh, 2007; Li and 
Ma, 2011; Allen et al., 2013; Kruggel-
Emden and Vollmari, 2016). It is possible 
to infer that low compression strength 
green pellets tend to deform easily in 
contact with other pellets and/or in con-
tact with a traveling grate kiln, forming 
a single block that chokes the air flow 
through the bed. Studies performed to 
check shape influence on bed formations 
have so far considered rigid particles. 

Such characteristic may be caused by a 
poor control of raw material and excess 
of water in the pulp.

Permeability is also connected with 
other aspects, such as, particle roughness, 
tank to particle ratio, and gas flow speed 
(Trahana et al., 2014).

Mean size and pellet diameter rang-
ing above 16mm and below 10mm show 
minor influence on the final result, prov-
ing that diameter distribution and particle 
shape modulations have a higher influence 
on bed permeability. Pellets distributed in 
a narrow diameter with spherical shape 
lead to a better bed formation.

The prediction model for backpres-
sure in the drying chamber has its results 
plotted in Figure 4, presenting a good cor-
relation considering the factory conditions 
where the data where obtained.

Figure 4
Pressure prediction, Target / Output.

4. Conclusions

The model pointed out variables 
that significantly affect the bed perme-
ability in the drying stage of iron ore pellet 
production. Diameter standard deviation, 
pellet production and sphericity were 
identified as the main effective input vari-
ables that affect bed permeability during 
the drying stage and consequently, final 
product quality.

The artificial neural network meth-

od showed a suitable option in math-
ematical modeling of a complex process 
involving a lot of variables under a real 
production site environment. The com-
putational model was able to predict op-
timizations in the preparation, production 
and quality control of pellet production, 
despite all the interrelated factors of a 
production plant.

A higher diameter standard devia-

tion and the presence of fines negatively 
affect the back pressure inside a travelling 
grate kiln (Luckos and Bunt, 2011), since 
smaller particles occupy interstitial sites 
among bigger pellets.

Sphericity has an important role in 
bed formation, but its aspects should be 
better understood, since iron ore green 
pellets are subject to plastic deformation 
during their generation process.
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