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Abstract

Risk mapping processes in mine planning and ore recovery are constantly used 
in the mining industry to increase decision making certainty based on the available 
information. However, it is not possible to predict the risk behavior in all of the proj-
ect’s boundary conditions and small variations in some of these conditions can cause 
a great impact on its financial return. Among the countless uncertainties existing in a 
mining project (operational, costs, market change), many authors define the geological 
uncertainty as the most critical one, capable of influencing the success of the project. 
Measurement and evaluation of the geological uncertainty of a mine planning project 
is crucial because the calculated risk can be translated into a financial risk of the proj-
ect. This article presents a possible way to consider the geological uncertainty in the 
pit optimization step by using sequential Gaussian simulation. The results obtained 
from the case study on a copper deposit results in a simple procedure with significant 
increase in reliability for the project.
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1. Introduction

The long term mine planning, 
also called strategic mine planning, 
corresponds to the process of deter-
mining the best design and mining 
scheduling, according to a previously 
established strategy. It is considered 
a key element for the success of a 
mining enterprise, since it controls 
the decision making concerning their 
conduction and development. One of 
the main challenges for the realization 
of a mining plan is to ensure that the 
developed plan is feasible and con-
siders the geological and operational 
variabilities of the mine. Some plans, 
which are developed without knowl-
edge of the possible variables, have 
a lower reliability that can result in 
intuitive decisions making, which is 
not always optimal, and may harm 
the achievement of the goals set for 
a long term.

Quantifying the uncertainties 
and risks involved in a planning 
project is a step that has a large influ-
ence on the pit limits and production 
scheduling. Impacts on the order of 

millions of dollars can be provided 
by small variations and/or changes 
in project boundary conditions. Cost 
of capital, the market price of ore, at-
tractive rates and operating costs are 
factors usually tested to analyze the 
feasibility of a project. However, even 
though these are considered by many 
authors as the main factor of failure 
in achieving the targets in mining 
industry, they are rarely considered 
as an uncertainty related to the geo-
logical model.

Usually the estimate and dis-
tribution of grades in a deposit are 
done by geostatistical and classical 
methods. Such methods result only in 
the estimated average values for the 
deposit, not being able to reproduce 
the actual spatial variability of data 
in situ. That variability is required 
in sensitivity engineering project 
analyses, since the variability of these 
contents imply variations in the final 
value of the project, whose impact is 
generally unknown.

The stochastic conditional simu-

lation techniques allowed the real 
variability in situ to be evaluated. The 
methods of stochastic simulation were 
originally developed to correct the 
smoothing effect displayed on maps 
produced by kriging. Contrary to 
kriging, stochastic simulation meth-
ods do not result in a single estimate 
of the map of the variable of interest. 
The geostatistical simulation methods 
aim is to reproduce the variability in 
situ, and the spatial continuity of the 
original data, by the generation of 
equiprobable scenarios, conditioned 
to data, reproducing the statistical 
characteristics of 1st and 2nd order 
of sample data. That way, the degree 
of uncertainty associated with the 
estimates can be evaluated.

Herein, a comparison is pre-
sented of a pit obtained by the opti-
mization of a block model of a copper 
deposit, which was estimated by ordi-
nary kriging, with the pits obtained by 
simulated models to measure risks due 
to no consideration of the geological 
variability in the project.
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2. Materials and methods

The kriging estimate is performed by 
minimizing the variance of the estimation 
error. Thus, it can be concluded that the 
estimate aims to offer the best possible 
estimate of an attribute without repro-
ducing the original spatial heterogeneity 
of the data.

However, this minimization pro-
vides lower variance than the original 
data. This reduction in variability is 
known as smoothing. As cited by Goo-
vaerts (1997), all interpolation algorithms 
tend to smooth the spatial variability of 
the attribute. This effect is characterized 
by underestimation of high values and 

overestimation of low values. Smoothing 
can be easily observed to comparing the 
histogram of a database with the result of 
their kriging estimation.

As shown by Olea (1999), the 
simulation was the solution adopted to 
solve the smoothing problem of kriging. 
But, according to the author, the gain in 
overall accuracy causes the reduction of 
local accuracy. In fact, the realizations of 
the simulation scenarios are not free from 
errors of reproducing reality and, on aver-
age, the mistakes are higher than kriging.

Therefore, simulations should not 
be thought of as a substitute method for 

kriging, but as a variability and uncer-
tainty verification tool involved in kriging 
estimation, since kriging is still the best 
unbiased estimator.

Presented initially by Matheron 
(1973), the stochastic conditional simula-
tion techniques allowed the variability 
and uncertainty involved in the estimation 
of mineral deposits to be quantitatively 
evaluated. Until that moment the kriging 
variance was the only existing way to 
evaluate the estimates. But Journel (1986) 
and, later, Brus and Gruijter (1993) began 
to question the use of this parameter as an 
estimative quality index.

2.1 Grade simulation
According to Deutsch and Journel 

(1992), the absence of an estimation er-
ror component (R(x

0
)) provides smooth-

ing of kriging. The equation presented 
below shows that the real value of a 
particular attribute in a point x

0
 can be 

written as the sum of its estimate with 
the estimated error.

Z ( x
0
 ) = Z* ( x

0
 )+ R ( x

0
 ) (1)

(2)

(3)

Thus, to have access to real vari-
ability of the random function Z(x

0
), 

the random function R(x
0
) should be 

simulated many times and added to the 
estimated value. Each ith simulated value 
in each of the simulation scenarios can be 

written as the sum of the kriging value 
with the l-th realization of the random 
function R(x

0
).

Z l ( x
0
 ) = Z* ( x

0
 )+ R l ( x

0
 )

Existing simulation methods seek to 
randomly determine the error component 
based on the known method of Monte 
Carlo. Thus, as the process is random, the 
realizations will be different, but honor-
ing the sample histogram and the sample 
variogram model.

Histogram and variogram reproduc-
tion is classified as an overall accuracy. 
For the result of interpolation, the same 
sample statistic used in the estimation was 
maintained. Actually kriging, classified as 

a local precision method, does not produce 
the histogram and sample variogram, 
but shows a high correlation between 
estimated and used samples.

Among the many methods of sto-
chastic simulation, the algorithms of se-
quential simulation methods are the most 
used to reproduce the spatial distribution 
and uncertainty of different variables 
(Soares, 2001, p. 911). This greater uti-
lization results from a greater simplicity 
of execution and efficiency, since other 

methods, besides having a more complex 
use, may have limitations and/or problems 
with their results.

The multiplicand presented in Equa-
tion 3 summarizes the theoretical basis of 
the sequential simulation methods, where 
each simulation generates a new point that 
is used to update the conditional cumula-
tive distribution function. Thus, the condi-
tional cumulative distribution function is 
always updated by a subsequent simulated 
value and the n sampling points.

F ( x1,...,xN;Z1,...,ZN|(n)) = F (x1;Z1|(n))
.F (x2;Z2|(n + 1))

. ...

.F (xN-1;ZN-1|(n + N - 2))

.F (xN;ZN|(n + N - 1))

= ∏ F (xi;Zi|(n + i - 1)) 
i = 1

N

The main and most common 
method used of sequential simulation 
on deposit modeling is the sequential 
Gaussian simulation method (SGS) 
because of its simplicity, flexibility and 
reasonable efficiency (Deutsch, 2002, 
p. 162). To use this method, one should 

work with a normal distribution with 
null mean and unit variance, so data 
must receive prior to processing.

The block model of the de-
posit, with a total of 33.807 blocks, 
was simulated in 50 scenarios using 
the sequential Gaussian simulation 

method. The estimation method used 
by the simulation was simple kriging. 
In Figure 1, there can be seen three 
different scenarios of the same section 
of the block model plan where the 
warmer colors represent blocks with 
higher grades.
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Figure 1
Plan view of scenarios 7, 19 

and 32 obtained from the simulation.

After performing the simula-
tions, it is important to verify that 
the scenarios obtained as a result sat-
isfactorily reproduce the distribution 

of sample data and used variogram 
models. The 50 scenarios reproduce 
quite acceptably the sample distribu-
tion (histograms) and spatial continu-

ity (variograms). The figure below is a 
variogram of all scenarios were well 
adherent to the variogram model in 
three main directions.

Figure 2
Validation of spatial continuity 

in the three main anisotropic directions.

2.2 Pit optimization
Obtaining the optimal pit was 

achieved by using the three dimensional 
optimization algorithm of Lerchs-

Grossman (1965), by NPV Scheduler 
4 software. In the following table are 
shown the values and parameters used. 

The sale price considered for copper was 
2.06 $/lb (about 4,540 $/t).

Parameter Value

Copper price 4,540.00 $/t

Metallurgical recovery 83.70 %

Mining cost 3.50 $/tROM

Processing cost 10.00 $/tROM

General angle 62°

Table 1
Technical and economic parameters 
considered in the optimization step.

Figure 3 presents the mathematical pit obtained by optimizing the model estimated by ordinary kriging.

Figure 3
Perspective view of the pit 

obtained by mathematical optimization.
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The optimization of simulated sce-
narios follows the same premises adopted 
for the kriging model (Table 1). The only 
difference is that instead of using the esti-
mated copper value by ordinary kriging as 
product, the value obtained by simulation 
in each scenario was used.

Due to the great demand of time 

and the amount of information gener-
ated, not all scenarios were optimized. 
In order to maintain the representation 
of all the simulations without the need 
to calculate the 50 pits, a criterion was 
adopted to select the simulations that 
participated in the study. In this criterion, 
the optimal extraction sequence (OES) 

obtained by optimizing the kriging model 
was used to calculate the NPV of the 50 
scenarios. Thus, the 50 NPV values found 
were ranked in increasing order and 11 
scenarios were chosen to participate in 
the evaluation of the pit (Table 2), which 
divided the entire population into a range 
of 5 in 5 NPV values.

Scenario SIM Scenario SIM Scenario SIM

1 39 5 1 9 25

2 13 6 18 10 35

3 34 7 9 11 45

4 43 8 50   

Table 2
Selected scenarios 
to calculate the final pit.

3. Results

The figure 4 shows the limits in the 
plant of 11 pits for the selected scenarios 

compared to the pit limit of the kriging 
model (red line).

Figure 4
Comparison of the max 
limit of the kriging model pit (in red) with 
the pits of simulated scenarios (in gray).

It can be seen that in certain regions 
the kriging model pit presents an opti-
mistic behavior, being located externally 
to the simulated limits. While in other 
regions, the kriging pit has a more conser-

vative behavior in relation to the simula-
tions. Such behavior can also be viewed in 
depth as shown in the following Figure 5. 

Areas with large variation limits 
in plant and depth can be used to define 

potential targets for additional drilling 
(Godoy, 2009). Thus, this great fluctua-
tion limits results from a high variability 
provided by the absence or small amount 
of information.

Figure 5
Vertical section in the direction 
SW-NE presenting the difference in depth 
of the kriging model pit (in red) with the 
pits of simulated scenarios (in gray).

In the following Figure 6 is shown 
the amount of ore contained in each of 

the incremental pits obtained by opti-
mizing the kriging model and selected 

simulated scenarios.

Figure 6
Comparison of ore mass contained in 
the kriging model pit with pits simulated.
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By analyzing the previous figure, it 
is easy to see that the kriging model pit 
stands out from the others by having a 
greater amount of ore and, consequently, 
a lower strip ratio. Such disparity was 
provided by the known smoothing effect 
of ordinary kriging, where low values 
were overestimated and high values were 
underestimated.

By performing smoothing, the krig-
ing brought a certain amount of material 
that should be below the cutoff grade for 
higher grade values, transforming part 
of the low grade material to ore. This ex-
plains the greater amount of ore presented 
in the graphic of the previous figure.

The lack of low values reproduc-
tion for the estimate was evidenced by 

the contained ore graphic, but the lack 
of high values reproduction can easily 
be seen in the following figure 7, where 
the absence of very high grade blocks 
(responsible for a large increase in the 
value of the NPV) provides a low NPV 
for the pit of the model estimated by 
ordinary kriging compared to the pits 
of simulated models.

Figure 7
NPV comparison of 

kriging model pit with pits simulated.

4. Conclusion

Approaching the geological uncer-
tainty with the application of geostatis-
tical simulation techniques proved to 
be an essential and indispensable tool 
in the evaluation of long term mine 
planning projects. Although it is not 

widely used, quantifying the geological 
uncertainty with the use of geostatisti-
cal simulation can considerably reduce 
the possible risks associated with some 
project factors.

As the shown in the results, when 

only considering the model estimated 
by ordinary kriging as absolute truth, 
there is a great risk that the estimates 
of net present value (NPV), quantity of 
ore and strip ratio of the selected final 
pit do not reflect the reality.
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