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Abstract

Mineral projects are composed of geological, operational and market uncertain-
ties, and reducing these uncertainties is one of the objectives of engineering. Most 
surveys assess the impact of geological and operational uncertainties on the mining 
planning. The objective of this work is to study the impact of market uncertainty on 
the mineral activity. The influence of iron ore price simulation on mining sequencing 
will be evaluated. The price of iron ore has random behavior that is best represented by 
the Geometric Brownian Movement system. This study analyzed the historical series 
of iron ore in order to determine the percentage volatility and drift. Traditionally, a 
constant and deterministic price is used for the ore mined in all periods of a mineral 
project. The direct block  scheduling methodology was adopted because it is able to 
apply the appropriate financial discount factor to the simulated probabilistic price. The 
proposed methodology was able to quantify the market uncertainty.

Keywords: mine planning, mine scheduling, direct block scheduling, price simulation, 
Brownian motion.
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1. Introduction

The methodology based on Lerchs-
Grossmann and deterministic pricing can 
be considered the standard methodology 
adopted by the industry (SME, 2011). Due 
to the global need for greater reliability in 
the planning of mineral projects, direct 
block  scheduling is considered the most 
adequate methodology (Souza, 2016). 
Direct block sequencing (SDB) is able to 
determine the destination of the block 
using the appropriate discount factor 
for the period in which it will be mined. 
Ideally the SDB should be able to use the 
simulated product price to apply the cor-
rect discount factor (Dimitrakopoulos, 
2011). The present study begins with 
a concise and thorough review of SDB 
formulation to demonstrate that it is able 

to apply the financial discount factor 
correctly in order to mine the blocks of 
greater market uncertainty at the end of 
the mine life (Spleit, 2014). The price was 
simulated using the Geometric Brownian 
Motion. The proposed revision focuses on 
the sequential process, that is, the ability to 
generate the price at a time t according to 
the value contained in time t-1. It is impor-
tant to consider that percentage volatility 
and drift; that is, the trend of the simula-
tion is determined by historical values. 
The currently available system is not able 
to apply the correct discount factor and 
use the simulated price simultaneously. 
To use the simulated price, a two-stage 
methodology was developed. The first 
stage uses SDB to generate an initial solu-

tion with a correct discount factor, but 
with deterministic and constant price. 
This step determines in which period each 
block will be mined. With this informa-
tion, it is possible to recalculate the benefit 
function considering the simulated price 
for the period in which the block will be 
mined. The second step begins with the 
use of the SDB with the benefit function 
of the blocks recalculated according to the 
simulated price. The second stage must 
be performed recursively until the stabi-
lization of the mining period is achieved. 
The greatest contribution of this work is 
joining price simulation and direct block 
scheduling. Direct block scheduling is able 
to rearrange all sequencing due to change 
of one parameter or value in one block.

Direct block scheduling
The mining planning process 

can be divided briefly into the follow-
ing steps: final pit definition with the 
generation of nested pits, pushback or 
mining phase definition for each period, 
including blending and cut-off grade 
optimization, and stock piles creation. 

The traditional methodology can be 
enhanced with the adoption of a single 
optimization process, called Direct Block 
Scheduling or Block by Block. The direct 
block sequencing evaluates each block 
individually, while the classical method-
ology evaluates the viability of the graph 

for the decision to mine the set of blocks 
(Souza et al, 2014). This methodology 
considers all models simulated simulta-
neously within an optimization process 
that returns a single mining sequence. 
Almeida (2013) presents a formulation 
of the problem:

P: periods number;
b

i
t: block i mined in period t and processed 

in the same period;
N: total number of blocks;
w

j
t: block j mined in period t and sent to 

the stockpile;
MC

j
t: cost to send the block j to the stockpile, 

in the period t;

U: number of  blocks considered  
for stockpiling;
k

s
t: block s processed from the stockpile dur-

ing period t.
SV t: profit per tonne generated;
M: number of simulated models
d

su
t-: risk quantified by the excess in ore pro-

duction, grade and metal production, over 

each scenario s;
d

sl
t-: risk quantified by the deficiency in ore 

production, grade and metal production, 
over each scenario s;
C

u
t-: penalty cost associated to the excess in 

ore production, grade and metal production;
C

l
t-: penalty cost associated to the deficiency in 

ore production, grade and metal production;

(1)

Brownian motion
Brownian motion represents the zig-

zagging motion exhibited by a particle, 
such as a grain of dusty fallen in a liquid 
or a gas. Small swings in commodity price 
and financial indicator charts resemble 
this movement. The financial market uses 

Brownian motion to model the commod-
ity price behavior. These models have 
more adherence and importance when 
related to short-term models. Due to the 
nature of the system, which considers that 
the random walk has a greater tendency 

to short term variability, the system has a 
higher reliability in a shorter period (Rah-
manpour & Osanloo, 2015). The process 
is classified as a Brownian motion if it is 
able to comply with the condition derived 
from the stochastic differential equation:

dS
t
 = μS

t
 d

t
 + σS

t
 dW

t
(2)

St= Simulated Solution;
µ= percentage volatility;

σ= percentage drift;
Wt= Wiener variable.
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Using the market interest rate 
as a control factor of the simulations 
variance, 20 simulation scenarios 

were generated for 10 years, based on 
the history of the iron ore prices. The 
beginning of the simulation considered 

the year 2010 because it would be pos-
sible to validate the scenarios generated 
with the reality.

2. Materials and methods

The objective of this paper is to dem-
onstrate the methodology created to join the 

probabilistic price simulation and the correct 
application of the discount factor in the mine 

sequence. The procedures were divided into 
price simulation and mining sequencing.

Price simulation
To determine what simulation model 

would be used, a consistent price history 
was required. The site indexmundi.com 
provided the historical series of iron ore 
prices from July 96 to September 2012. It 

was concluded that there are tendencies to 
regionalized randomization that compose 
a global trend. This phenomenon can be 
observed in Figure 1, where we have a se-
quence of small local noises that make up 

for the global trend of price ascendance or 
descent. According to the trend of global 
and local oscillation, it was decided to 
use the Geometric Brownian Movement 
(Rahmanpour & Osanloo, 2015).

Figure 1
Iron ore price history.

For the determination of the 
variables μ and σ present in equation 
1, it was used linear regression of the 
experimental data to the theoretical 
modeling. The average reversal process 
generates different values considering 

all the values or only the descending 
price process started in April 2010. 
Considering all the values implies 
that there is a trend of price growth; 
however, considering prices from April 
2010 to the end of the series implies a 

downward trend. As the current eco-
nomic downturn continues, the price 
decay fraction will be used to simulate 
future prices. The parameters used in 
the Geometric Brownian Motion are 
presented on Table 1:

MODEL PERCENTAGE VOLATILITY PERCENTAGE DRIFT

All Series 4.8076 0.0510

Final Fraction 5.1868 0.0335

Table 1
Parameters of 

Geometric Brownian Motion.

For the experiment, the price series 
called "Final Fraction" was selected due to 

the greater adherence to the current real-
ity of the iron ore market. The geometric 

Brownian motion formulation was used 
to generate 20 different price scenarios.

Figure 2
Selling prices simulations.

It is possible to note in Figure 2 
that there is a curve showing a growth 
tendency, while all other simulations 
show a decreasing tendency. This 
discrepant curve is the result of the 
interaction of several growth extreme 

points of the probability histogram. 
Most simulations tend to follow the 
average, but there is always a prob-
ability that one curve will result in 
few extreme scenarios. The influence 
of macroeconomic factors can affect 

the adherence of simulation to reality. 
Rahmanpour (2015) recommends that 
market simulations be performed for 
small time horizons, so that simulations 
were carried out for 10 years.
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Period 1 2 3 4 5 6 7 8 9 10

Average 
Selling Price 93.76 85.68 70.83 59.59 54.37 50.94 47.21 43.29 41.22 39.28 Table 2

Average selling prices.

Mining sequence first step
The first step is to determine the 

deterministic mining sequence for the 
constant price of 58.62US $/t. Constant 
selling price was calculated from the av-
erage of all the simulations in all periods 
(58.62 US$/t). Trocar para “The average 

selling price (Table 2) was calculated 
from the average of the simulations, for 
each of the 10 periods. The study was 
conducted in a real iron ore deposit, 
located in the “Quadrilátero Ferrífero”, 
an area in Brazil with high incidence 

of iron ore deposits. The objective is to 
verify the impact of the price oscillation 
in the mining sequencing considering 
long term. The parameters used in the 
optimization process are presented on 
Table 3:

Parameter Value

Dilution 0%

Mine recovery 100%

Sales Price According Simulation

Mine Cost(Ore and Waste) 1.49 US$/t

Administrative Cost 0.59 US$/t

Process Cost 2.27 US$/t

Sales Cost 17.73 US$/t (Product)

Production Target 40 Mt ROM / Year

Discount Factor 5 % Year
Table 3
Optimization parameters.

The result is a mining sequence 
generated for deterministic data. This de-

terministic block model with the defined 
mine periods will be used in the next step.

Mining sequence second step
This step uses the sequenced 

block model generated in the previous 
step. Each block has a benefit function 
calculated in the deterministic sequenc-

ing. The probabilistic SDB requires that 
each possible realization for the block 
has a specific value, so each block has 
10 possible values according to the 

simulated price. Equations 3, 4 and 5 
show how the simulated price affects 
the benefit function.

Benefit Function[i,p] = Block Value[i] – Block Costs

Block Value[i,p] = Recovered Material x Simulated Price[i,p]

Block Cost = Mined Material x Sum of Costs

(4)

(3)

(5)

The first step has the objective of 
determining an initial mine period, so 
the benefit function will be calculated 
based on this mine period for each of the 
20 simulations. Benefit function will be 
updated continuously, using simulated 
prices. In other words, the benefit func-
tion of the blocks flagged to be mined in 
period t will be updated with the simu-
lated sales prices for this same period.  

After updating the benefit function of 
all blocks, a new mining schedule sce-
nario will be generated. This recursive 
step must be performed several times in 
order to generate various scenarios and 
to evaluate the system convergence. The 
second step can be called the recursive 
step, because several cycles must be 
performed until the block exchange sta-
bilization. For the first round 58.62US 

$/t price was used and this first round 
will generate the basic scheduling. After 
the first round is completed, it is possible 
to know in which period each block 
will be mined. After this round, it will 
be possible to join the simulated prices 
with the direct sequencing of the blocks. 
The benefit function has been updated 
according to the value of the simulated 
price according to Table 2.

i= Simulation Number; p=period mined.

3. Results and discussion

This process was carried out 10 
times, generating 10 different scenarios, 
in order to try to understand the impact 
of this change in the mining sequence. 
Figure 3 shows that the values oscillate 

around 7,400 US$ Million for NPV. 
Convergence demonstrates that higher 
and lower price scenarios forced the 
SDB algorithm to determine different 
sequencing that led to similar value lev-

els. The results of the simulated scenarios 
presented a gain of approximately 13% 
in relation to the initial deterministic sce-
nario. The discounted NPV from mining 
sequences are presented in Figure 3:
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Figure 3
Discounted NPV for 

the mine schedule results.

In all cases with variable selling 
prices, there was a gain in the dis-
counted NPV, when compared with 
the mining sequence generated with 
a constant selling price. It is noticed 

that among the 10 scenarios analyzed, 
the NPV had a variation, but always 
around the same average. It is im-
portant to analyze the changes in the 
decision of the blocks mining period. 

The percentage of blocks that had the 
mining period changed in each scenario 
were analyzed, considering the previous 
scenario. The results are presented on 
Table 4:

Percentage 

Scenario
1

Scenario 
2

Scenario
3

Scenario
4

Scenario
5

Scenario
6

Scenario
7

Scenario
8

Scenario
9

Scenario 
10

53.5 55.2 46.1 60.8 52.3 57.2 45.5 52.9 56.7 53.1

Table 4
Percentage of blocks with change in the mining period.

In the scenarios with variable selling 
price, simulated models were used, allowing 

the quantification of the uncertainty of these 
mining sequences, regarding the sale price. 

Figure 4 shows the Scenario 10 NPV results, 
associated with the price uncertainty:

Figure 4
NPV Scenario 10.

Figure 5
Loss probability.

The chart analysis shows that 
there is a probability that the last 4 
years of the mining sequence presents 
a negative NPV. The maximum value 

presented is very high, and it was caused 
by the discrepant curve with growth 
tendency. This curve is a result of the 
simulation process and is not due to 

outlier inputs, so it was not ignored 
in the tests. But the use or not of these 
extreme curves can be re-evaluated in 
future studies.
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4. Conclusions

With the proposed methodology, 
combined with the Direct Block Scheduling, 
it was possible to analyze the impact of the 
selling price variation over time in the mine 
sequencing. It is possible to notice in Figure 
3 that simulated prices have similar NPV 
levels. The simulated scenarios have an NPV 
greater than the deterministic scenario, ap-
proximately 13%, due to the lower price 
in the final periods, forcing the system to 
be eager for rich blocks in the first periods. 
The results showed that this variation might 
affect the mining period of a great number 
of blocks, thereby altering the NPV of the 
mining sequence. In all scenarios there was 
a significant change in the mining period 
of the blocks. It was possible to generate 
various scenarios with higher NPV and 

furthermore, quantify the uncertainty as-
sociated to each scenario. Additional stud-
ies can be performed to verify if the results 
obtained in this method will converge to a 
result, when performing a large number of 
iterations. Ideally, the Direct Block Schedul-
ing system should incorporate this variation 
in the generation of the mining sequences, 
but this would considerably increase the 
complexity of the problem. The method-
ology presented is capable of quantifying 
market risk. Figures 4 and 5 shows that it is 
important to pay all investments before year 
7, as Figure 5 shows that there is a real prob-
ability of the enterprise generating negative 
cash flow values. Analyzing Figures 2 and 
4 allows us to conclude the importance of 
considering the extreme values of economic 

scenarios generated by geometric Brownian 
motion, as there is always the possibility 
that external macroeconomic factors raise 
the prices of commodities, for example, a 
war. The accounting of the extreme price 
scenario triggered, in Figure 4, a remote pos-
sibility of high present value that may occur 
although unlikely. Finally, the assertiveness 
of the selling price simulations should be 
analyzed, because as demonstrated, this 
parameter can significantly affect the 
mining sequence. The responsible engineer 
should always take the decision of which 
mining sequence must be adopted, but the 
new developed methodologies are impor-
tant, providing a better understanding of 
the variables and uncertainties involved in 
the process.
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