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Abstract

Determination of the best possible ultimate pit for an open pit mine is a 
fundamental subject that has undergone a highly evolutionary process, reviewed 
in this study, since the correct choice carries substantial economic impact for the 
industry. The correct choice can be very beneficial for project analysis, whereas 
an incorrect choice has the potential to mask huge financial and economic fu-
ture losses that could render a project unfeasible. The advent of computers in the 
1960s allowed sophisticated analysis for the selection of the best ultimate pit de-
termination, under specific modifying factors such as economic, social, environ-
mental, and political, but only in deterministic situations, i.e., when the problem 
and variables for the ultimate pit determinations were considered deterministi-
cally and almost always based on average values. Techniques such as the Lerchs–
Grossman algorithm and mixed-integer programming are among many standard 
tools now used by the mineral industry. Geological uncertainty and the associated 
risks as well as the need to consider the appropriate time to mine a block during 
a mine operation have a significant impact on the net present value of the result-
ing ultimate pits. Stochastic aspects embed a probabilistic component that varies 
in time and are now under intense investigation by researchers, who are creating 
algorithms that can be experimented with and tested in real mine situations. One 
can expect that once these algorithms demonstrate their efficiency and superior 
results, they will readily dominate the industry.

Keywords: deterministic mine planning; stochastic mine planning; direct block 
schedule; uncertainty.
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The development of methodologies 
that allow accurate orebody modeling 
and mining production planning is 
currently a recurrent research theme at 
important research centers worldwide. 
Lerchs and Grossmann (1965) proposed 
an algorithm based on graphic theory, 
which has been the most widely used 
mine planning algorithm.

Classical planning methodologies 
are developed from the obtained results 
and comprise the following steps: final pit 
and pushback determination, production 
scheduling, cut-off grade determination, 

and mixing proportions for blending. 
The final pit limit is determined with 
the assumption that all blocks must be 
mined within the same period, ignoring 
operational constraints and money value 
variation with time. In 2008, Osanloo 
et al. did a review of deterministic and 
uncertainty-based algorithms present-
ing the advantages and disadvantages of 
these algorithms, indicating the need for 
continuing this study.

Dimitrakopoulos (2011) showed in 
his work the developments of stochastic 
optimization for strategic mine planning, 

where some case studies are shown to dem-
onstrate the gains of using this approach: 
stochastic optimal pit limits can be about 
15% larger in terms of total tonnage when 
compared to the conventional optimal pit 
limits; higher NPV; and lower potential 
deviation from production targets.

Lamghari and Dimitrakopoulos 
(2015) cited a list of authors that dem-
onstrated the benefits of accounting for 
metal uncertainty in the optimization 
process, in spite of the increased complex-
ity. Figure 1 shows some benefits of using 
stochastic approach.

Figure 1 
Benefits of using stochastic approach.

Computational development al-
lows the use of approaches such as 
linear programming, integer program-

ming, mixed-integer programming, 
and heuristics. The present study 
attempts to provide a bibliographic 

review of pit optimization approaches, 
considering conventional and stochas-
tic methodologies.

2. Conventional and stochastic concepts

According to Dimitrakopoulos, 
Farrelly and Godoy (2002), the input for 
conventional mine planning is usually a 
single estimated—usually krigged—ore-
body model. There are some issues for 
using ordinary kriging to estimate a block 
model, like smoothing. It is a dangerous 
effect, in which low values are overesti-
mated and high values underestimated. 
Therefore, ordinary kriging estimates 
do not reproduce the sample histogram, 
since tails of the distribution are lost in 

the estimation process. If the sample 
variance is not reproduced, the sample 
semivariogram will not be reproduced as 
well. (Yamamoto, 2008). The resulting 
plan obtained from the krigged model 
will be unreal. Dimitrakopoulos (2011) 
said that the main drawback of estimation 
techniques, be they geostatistical or not, 
is that they are unable to reproduce the 
in-situ variability of the deposit grades, 
as inferred from the available data. Ignor-
ing such a consequential source of risk 

and uncertainty, may lead to unrealistic 
production expectations.

It is useful to compare the conven-
tional mine planning concept based on 
deterministic models and the stochastic 
mine planning models based on probabi-
listic concepts. Yamamoto (2008) said that 
conditional simulation has been used as an 
alternative to ordinary kriging because it 
provides multiple equiprobable images of 
the phenomenon under study, reproduc-
ing in an ergodic sense both the sample 



REM, Int. Eng. J., Ouro Preto, 71(2), 289-297, apr. jun. | 2018 291

Vidal Félix Navarro Torres et al.

histogram and the sample semivariogram. 
The multiple realizations also yield an 
assessment of global uncertainty. It 
means conditional simulation guarantees 
global accuracy. In this way, the models 
obtained by simulation tend to be more 
realistic than an estimate map affected 
by smoothing.

Mathematically optimal pits search 
for the ideal value of the constrained ob-
jective function; in mathematical terms, 
optimal refers to minimizing costs and 
maximizing income, thereby maximizing 
the profit (Whittle, 2011). The most widely 
used parameter for economic evaluation 
of mining projects is the net present value 
(NPV), owing to its realistic approach to 
the values involved.

Numerous approaches to mine plan-
ning optimization are treated by various 
software algorithms, which consider as 
many parameters as possible to obtain 
simulations that are more realistic. An 
optimization model must involve the costs, 
specially mining and processing costs, and 
the generated income. Both approaches 
use the same basic input data: a set of 
block values representing the net economic 
worth of each block. These block values 
are determined using the cutoff grade, 
costs, prices, recovery, dilution, density, 
operational parameters (slope angle, ca-
pacities, production, among others). 
Meagher, Sabour and Dimitrakopoulos 
(2010) pointed out the principal assump-
tions done in conventional mine planning: 

the first assumption indicates that there is 
perfect knowledge about the metal content 
of mining blocks; the second implies that 
market variables such as metal prices 
and exchange rates are fixed, i.e., do not 
change throughout life-of-mine (LOM) 
and are known with certainty. The dif-
ference in stochastic mine planning is the 
use of equiprobable scenarios, estimated 
using uncertainties that can be geological, 
market or operational, not a fixed value.

The example shown in Figure 2 
demonstrates the gain when using the 
time stochastic approach to optimize mine 
planning, using the same parameters. The 
simulated model gives an improvement of 
7.5% in average of NPV, comparing with 
the deterministic values (in green).

Figure 2
Cumulative NPV obtained 

using deterministic and stochastic approach.

2.1 The Lerchs–Grossmann algorithm
The algorithm proposed by Lerchs 

and Grossmann (1965) attempts to de-
fine the most economical envelopment 
according to the problem’s constraints. 
However, it does not fully satisfy the 
industry’s needs, probably due to the fol-
lowing factors:

• method complexity in terms of 
comprehension and programming

• time required to render the im-

age due to ordering issues. This problem 
increases if there is a need to perform a 
sensitivity analysis that generates multiple 
designs owing to changes in variables 
such as costs, prices, and minimum cut-
off grades. However, the arrival in recent 
years of powerful low-cost computers has 
minimized this problem

• difficulties in incorporating slope 
angle variations

• the optimization criterion is 
based on the total benefit rather than 
on the NPV

The original two-dimensional meth-
od proposed was later extended to the 
third dimension. In many cases, the solu-
tions adopted to account for the natural 
limitations of the method increase the 
gap between the results obtained and the 
optimal solution.

2.2 Conventional mining production scheduling
According to Boland, Dumitrescu 

and Froyland (2008), the open pit mine 
production scheduling problem studied 
in recent years is usually based on a 
single geological estimate of material to 
be excavated and processed over a num-
ber of decades. This problem consists of 
finding the sequence in which the blocks 

should be removed from the pit during the 
lifetime of the mine, so that the NPV of 
the operation is maximized. The solution 
of this problem provides a basis for the 
strategic future development of a new or 
existing mine.

Geological and economical models 
rely on mathematical and technical meth-

ods and must address economical and 
operational constraints. Solutions for the 
final pit problem and production schedul-
ing must also account for the uncertainty 
raised because of the stochastic nature 
of the variables involved. Production 
scheduling is proposed according to goals 
previously set by the nested pits.

2.3 Direct block schedule (DBS)
DBS is an evolution of the classical 

methodology in which the process of 
scheduling is obtained block by block, 
using discounted values for the beneficial 
function, therefore considering the time 

period the block is actually planned to 
be mined, in an attempt to minimize the 
differences between the estimated and the 
actual value associated with the pit. DBS 
proposes a new approach to the optimal 

pit problem, starting with scheduling and 
obtaining pushbacks and the final pit as 
a natural result of the methodology as it 
actually occurs.

DBS is a sequential analysis meth-
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odology involving the associated value 
of blocks, considering all simulated 
scenarios. The search process treats 
each period as a stage with individual 
operational requirements and restrictions 
to be respected. The methodology can 
also determine possible combinations for 

making the block economically feasible, 
complying with the constraints of grades 
and contaminants, and thus rendering the 
concept of cut-off grades obsolete.

The following proposed formula-
tions must be executed successively to 
include the different simulated scenarios. 

When the best solution for a period is 
found, the pit surface is respected in 
the following time period (t+1), and 
this goes on until the exhaustion of the 
economically feasible blocks. The final 
pit is then obtained as a natural result 
of the simulation.

2.3.1 Scheduling modeling using mixed-integer programming
The formulation of the problem 

is based on the operational income and 
costs. Models considering mixed-integer 
programming provide a formulation 

for optimized production scheduling 
and for the control of target production 
and grades.

Ramazan and Dimitrakopoulos 

(2013) proposed a stochastic model 
based on the following objective func-
tion (Equation 1):

Where p is the total number of produc-
tion periods; n is the number of blocks; 
bi

t is the decision variable for when to 
mine block i (if mined in period t, bi

t 
is one; otherwise bit is zero); E{(NPV)

j
t} is the expected (average) NPV to be 
generated if block i is mined in period t.

U is the number of blocks consid-
ered for stockpiling; Mcj

t is the mining 
cost of block j incurred in period t and 
discounted to time zero; and wj

t is a 
variable representing the fraction of 
block j sent to the stockpile in period t.

SVt is the profit to be generated by 
processing a ton of material from the 
stockpile in period t and discounted to 
time zero; M is the number of simulated 
orebody models; and ks

t is the amount 
of material (ore) in tons processed from 

the stockpile with respect to orebody 
model s in period t.

The c variables are the unit costs 
of deviation (represented by the d 
variables) from production targets for 
grades and ore tons. The subscripts u 
and l correspond to the deviations and 
costs from excess production (upper 
bound) and shortage in production 
(lower bound), respectively, while s is 
the simulated orebody model number, 
and g and o are grade and ore produc-
tion targets.

The function is divided into four 
main parts. The first accumulates 
the resultant NPV for all mined and 
processed ore blocks. The second 
reflects the opportunity cost involved 
when the ore is stockpiled rather than 

processed and sold, with the result 
that the function accounts only for 
mining costs for these blocks at the 
respective period. The third represents 
the discounted income obtained with 
the resumption and processing of the 
stockpiled material within the same 
period. The fourth part attempts to 
manage the geological risks (Ramazan 
and Dimitrakopoulos, 2013).

The mentioned authors also define 
constraints to the objective function 
due to mining and processing capaci-
ties, to blending requirements, and 
to maximum desired volume of the 
stockpiles, along with other logical 
constraints. Slope angle constraints 
also ensure a precedence relationship 
between blocks.

2.3.2 Formulation of the DBS
The DBS methodology consists 

in grouping blocks in vertical columns 
arranged within a matrix. A funda-
mental aspect of this methodology is 
the minimization of the difference be-

tween the proposed and the actual pit 
surfaces due to the approximation of 
the superior faces of the blocks to the 
actual pit surface. This approach might 
allow a more realistic reproduction of 

the pit surface when compared to the 
sub-blocking technique.

Marinho (2013) proposed a new 
objective function to be maximized, 
shown in Eq. (2):

Where S is the number of simulated 
orebody models considered; s: simula-
tion index, s =1, …, S. T is the number 
of periods over which the orebody is 
being scheduled and also defines the 
number of surfaces considered; t: pe-
riod index, t =1, …, T. M is the number 
of cells in each surface, where M = x 
× y represents the number of mining 
blocks in x and y dimensions; c: cell 
index corresponding to each (x, y) 
block/cell location, c=1, …, M. Z is the 
number of levels in the orebody model; 

z: level index, z =1, …, Z. Vz
c,t,s is the 

cumulative discounted economic value 
of block (c, z) and all blocks above it 
in scenario s and period t. XZ

c,t is the 
binary variable that is one (1) if block 
(c, z) is the last block being mined in 
period t over c, and zero (0) otherwise.

According to Marinho (2013), 
the proposed objective function in 
Equation 2 maximizes the expected 
NPV from mining and processing se-
lected blocks over all considered mine 
production periods. The objective 

function accumulates the discounted 
income according to the mining period 
for each block, relating the obtained 
value to the difference in the consecu-
tive proposed surfaces.

Marinho (2013) has also proposed 
some constraints, such as surface, slope 
angles, and production targets. The 
system restrictions can be classified 
into those that are dependent and inde-
pendent of the simulation. Operational 
restrictions, as mentioned, are indepen-
dent of the considered scenario.

(1)

(2)
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2.3.3 Slope angle management
The mining schedule for the three-

dimensional block model must follow a 
logical and operational order of block 

precedence: a block can be removed only if 
a list of precedence blocks was previously 
mined. Figure 3 illustrates the variation 

of deviations on the slope angles between 
the simulated models, based on a block 
centroids approach, and the reality.

Figure 3
 Inaccuracy of slope angles 

obtained by the precedence 
method (adapted from Whittle, 

1998 cited in Beretta and Marinho, 2014).

The red lines indicate the number 
of precedence blocks for mining the 
next block within that column. Ana-
lyzing the chart, it is easy to see that 
the larger the quantity of precedence 
blocks is, the closer to the desired slope 

angle the green line will be. Thus, the 
method’s accuracy increases with the 
number of precedence blocks, and the 
model cannot ensure a constant overall 
slope angle.

To ensure that no steep angles 

occur, a conservative methodology can 
be adopted to force the slope angle to 
38.7°. The conservative approach might 
reflect a decrease in mineral recovery, 
also decreasing the total value associ-
ated with the project (Figure 4).

Figure 4
Constant slope angles 

obtained through precedence blocks 
(adapted from Beretta and Marinho, 2014).

An alternative for adequacy of 
the slope angles is surface control. This 
methodology is based on the triangulation 
achieved between points ec,t (elevation of 

the cell c in the period t). Therefore, the 
three-dimensional surface obtained al-
ways guarantees the maintenance of the 
slope angle with 100% accuracy, with no 

need for adjustments, even in deposits with 
multiple slope angles, as shown in Figure 
5 (Beretta and Marinho, 2014).

Figure 5
Example of constrained 

surface slope angle at 45° 
(adapted from Beretta and Marinho, 2014).

2.3.4 Multi-period optimization
Multi-period optimization pres-

ents a refining methodology for 
an initial solution considering the 
precedence relationship between the 
adjacent blocks within the model. 
Summarizing, the search continues 
analyzing two consecutive periods 
for the blocks in the transition region 

between these periods, aiming to mine 
the most valuable blocks first. The 
possible shifts between the blocks 
must comply with the geotechnical 
and other constraints of the objective 
function (Lamghari, Dimitrakopoulos 
and Ferland, 2014).

The present methodology at-

tempts to guarantee, sequentially, the 
optimal solution between the periods 
until the final pit limit. The process 
approaches the problem on both the 
global and local scales simultaneously, 
with the periods i and i+1 being ana-
lyzed globally to increase project value 
(Marinho, 2013).
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2.4 Stochastic DBS
The stochastic DBS accounts for 

geological uncertainty and the variability 
of the parameters, realistically addressing 
the problem once it quantifies the prob-
ability of occurrence of the operational 
feasibility for each block. The major limi-
tations of the method are poor resolution 
when considering the mineral processing 
and the mining requirements for, i.e., 
blending stages, stockpiles, multi-element 
deposits, and multiple destinations.

Mining operation scheduling is tra-
ditionally based on a single deterministic 
model of the orebody. Traditionally, the 
methods used in designing these systems 
cannot properly incorporate the uncer-
tainty associated with an estimated value. 
Ordinary Kriging, for example, results in 
best local estimates, but with a smooth 
global variance (Matheron, 1963). The 
problem of deriving mine planning from 
a single model is that the chosen model 

will be unable to reproduce the intrinsic 
variability of the reality of the deposit 
(Silva, 2008).

Geological uncertainty represents 
risks for the investment related to spatial 
distribution, to the variability and quality 
of the ore, and to operational and final 
slope stability. These characteristics are 
inferred from a limited database that 
might not be representative for the de-
posit. In stochastic simulation, the local 
values within the model are generated 
randomly in accordance with the prob-
ability distribution inferred from the 
sampled data. This statistical approach 
allows the determination of equally 
probable scenarios. Each scenario can be 
analyzed separately, and the probability 
distribution allows estimation of their 
limits (Spleit, 2014), thereby minimizing 
the geological risk.

Geostatistical algorithms are used to 

obtain the variability of the model, a pro-
cess referred to as stochastic simulation. 
According to Deutsch and Journel (1998), 
stochastic simulation is the process of 
building alternative, equally probable, 
high-resolution models of the spatial dis-
tribution of a variable. Such a simulation 
can be considered a spatial extension of 
the concept of Monte Carlo simulation 
and has the objective of estimating geo-
logical variability and the possible values 
for each block. This method is adverse to 
the classical theory, which uses interpo-
lation algorithms, smoothing the spatial 
variations of the estimated attributes. 

The combination of stochastic 
simulation with the DBS methodology 
minimizes uncertainty, since diversified 
scenarios are scheduled, and hence it 
maximizes the adherence probability 
of long-term mine planning to the daily 
production of the mine.

2.5 Simulated annealing
Simulated annealing (SA) (Kirkpat-

rick et al, 1983) involves the application 
of probabilistic techniques to move the 
objective function closer to an optimal 
global solution. The method is character-
ized as a metaheuristic owing to the wide 
search space it uses to reach the solution.

The use of SA in long-term mine 
scheduling, developed by Godoy (2003), 
incorporates the uncertainties in con-
sidering a single final pit model among 

a set of stochastically simulated models 
subject to constant production rates. 
The primary objective is determining an 
optimal schedule, in order to minimize 
deviations between the production rates 
and goals through the management of 
the uncertainty of the mining blocks in 
a time period. The steps of this approach 
are as follows:

• final pit determination based on 
the estimated Kriging model

• production schedule until the 
final pit limit, predefined for each simu-
lated model

• utilization of SA in confor-
mance with the production targets 
and restrictions, such as number of 
mining sequences, parameters related 
to the annealing algorithm, and pro-
duction targets

The proposed objective function 
is defined as (Equation 3):

(3)

The proposition is to minimize the 
gap between the obtained production, 
for both ore (θ) and waste (ω), reason-

ing by the total number of simulated 
models S. The method addresses the 
uncertainty in the spatial grade distribu-

tion within the deposit and minimizes 
the deviation possibility.

2.6 Stochastic integer programming (SIP)
SIP is based on mathematical model-

ing and considers various equally probable 
scenarios, obtaining the best feasible result 
for a predefined set of goals within the space 
delimited by a set of constraints. Birge and 
Louveaux (2011) discuss various SIP ap-
proaches, but scientific advances related in 
literature are not always applicable to mine-

planning problem resolution.
The NPV of a block is calculated for 

all simulated models to find the average value 
later. The values are discounted by periods 
using the geological risk factor developed by 
Dimitrakopoulos and Ramazan (2008). The 
discount rate due to geological risk (GRD) 
enables risk management among the peri-

ods. If a high value of GRD is specified, the 
lower risk areas will be mined first, and the 
mining of the higher risk areas is postponed. 
If a very low or null GRD is specified, the 
risk is distributed at a more balanced rate 
between the time periods, depending on the 
uncertainty distribution within the deposit 
(Dimitrakopoulos and Ramazan, 2008).
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2.6.1 SIP increment
Dimitrakopoulos and Ramazan 

(2008) evidenced in their work the 
possibility of applying a methodology 
based on SIP to the solution of the 
long-term mine-planning problem. 
Menabde (2008) observed that the cur-
rently developed work successfully ad-
dressed questions related to geological 
uncertainty and schedule optimization, 

considering predecessor and successor 
blocks. Benndorf and Dimitrakopou-
los (2013) significantly progressed in 
relation to the required operational 
constraints to solve the problem, obtain-
ing more operational variables when 
considering operational restrictions.

Additional formulations attempt 
to minimize the costs considering truck 

operation, based on the distance be-
tween the mining front and the process-
ing plant. The optimization dynamically 
decides between two destinations for 
each block: processing plant or waste 
disposal. The restrictions smooth pos-
sible variations on the annual fleet sizing 
in order to avoid sub-use of the fleet in 
the following time period (Spleit, 2014).

2.6.2 Beneficial function increment
The method renders the conver-

gence of the system easier since, how-
ever, even when the system does not 
obtain a solution within the required 
parameters, it is possible to ease the 
requirements in order to find the best 
possible solution. An objective func-

tion based on SIP considers applied 
discounts as penalties due to deviations 
of the target (Benndorf and Dimitrako-
poulos, 2013).

The objective function includes 
four distinct terms: (a) represents the 
NPV of the mined blocks; (b) accounts 

for the costs related to truck opera-
tion, which must be minimized; (c) 
represents penalties related to produc-
tion targeting; and (d) accounts for 
loss due to the mining of non-adjacent 
blocks, penalizing non-functional 
mining sequences.

2.6.3 Fleet restriction and production targets
The objective function has one 

term responsible for reducing fleet op-
erational costs through minimizing the 
average transport distance. This term 
is part of a set of restrictions that must 
be satisfied simultaneously. The restric-

tions cause the results to converge to 
a trend of fleet size reduction (Spleit, 
2014). The formulation aims to bring 
about fleet replacement gradually, in 
order to ensure that no equipment is 
sub-utilized during the operation.

For each time period, the tar-
gets for minimum average grade, 
maximum contaminant grade, and 
metallurgical requirements must be 
respected within the system owing to 
the constraints.

3. Conclusions

The current study addressed some 
classical and stochastic mine planning 
techniques. Work related to the classical 
methodology does not account for geological 
uncertainty and is therefore deterministic, 
tending to result in final pit algorithms 
with impossible-to-obtain economic values 
resulting from a lack of discount rates with 
time. Osanloo et al. (2008) presented, in a 
review article, deterministic and uncertain-
ty-based algorithms for long-term produc-
tion planning known at that time, which 
demonstrates that after their work, there is 
great development in the stochastic meth-
odologies, principally due to computational 
development and new studies.

Stochastic techniques are presented in 
literature as random approaches of geologi-
cal scenarios. The stochastic optimization 
methodology allows the management of the 
associated risks and therefore resembles real-
ity, ensuring greater reliability of the results 
obtained. The mathematical and computa-
tional support for the work requires integer 
and mixed-integer programming tools and 
heuristics to render the solution feasible.

Lamghari and Dimitrakopoulos 
(2015) cited in their work authors like Dimi-
trakopoulos, Farrelly and Godoy (2002), 
Godoy and Dimitrakopoulos (2004), Me-
nabde, Froyland, Stone and Yeates (2007), 

Boland, Dumitrescu, and Froyland (2008), 
Osanloo et al. (2008), Albor and Dimi-
trakopoulos (2010), Ramazan and Dimi-
trakopoulos (2013), Marcotte and Caron 
(2013), and Koushavand, Askari-Nasab 
and Deutsch (2014). These authors showed 
that the stochastic approach could provide 
major improvements in NPV, reduce risk in 
meeting production forecasts and find large 
pit limits, contributing to the sustainable 
utilization of mineral resources.

The DBS methodology forecasts the 
blocks as a function of time, thus enhancing 
the economic analysis of the projects and, 
when coupled with geological simulated 
models, creates a new context for the min-
eral sector since it addresses, in a technically 
feasible way, the quantification of uncertain-
ties involved in the mineral activity. The 
various scenarios generated by the DBS 
do not eliminate the need to use sampling 
methodologies and geological modeling 
consistent with the geological techniques, 
since primary errors can generate incon-
sistent geological scenarios, and thus unre-
alistic production planning. Furthermore, 
for all described methodologies, it is easy 
to understand the great need for frequent 
updates on the geological database accord-
ing to mining activity progress. In this way, 
the mine planning could be adjusted to 

the best possible approximation potential, 
particularly owing to the implementation 
of structured algorithms within integrated 
mine planning systems, which might allow, 
in the near future, the routine application of 
these methodologies in the mineral industry. 
The current review presented some of the 
principal developing techniques across the 
world, which still have much evolving to 
do; it does not attempt to compare the algo-
rithms developed during history, but aims to 
compare the differences and improvements 
of planning under uncertainties versus plan-
ning using fixed concepts.

Although the stochastic approach 
proves to be advantageous in many respects, 
traditional mining companies still do not use 
stochastic algorithms to make their stock 
market declarations. It happens because 
mining companies need to have their data 
audited, and audit companies use market-
based software for this verification. Market-
based software is commercial software that 
has its algorithm closed, that is, it does not 
allow user interference in calculations, so 
the results can be easily reproduced. From 
this point of view, the use of the classical 
methodology can be considered as positive, 
but when evaluated on the technical bias, 
stochastic planning is more efficient in the 
assertiveness of the practical results.
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