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Abstract

The developed model is an association of thermodynamic calculations for dis-
solution of alloys, slag formers and the deoxidation reaction in the molten steel with 
two artificial neural network (ANN) models trained with industrial data, to predict 
the molten steel temperature drop from the blowing end of the BOF until the first mea-
surement at secondary metallurgy. To calculate the associated energy for deoxidation, 
an experiment was designed to set up the parameters for oxygen partitioning among 
deoxidants, with timed aluminum addition during teeming being the main parameter. 
The temperature control in the teeming stage presented a standard deviation for the 
error of prediction of 5.46 oC, for transportation from the rinsing station to the sec-
ondary metallurgy of 2.79 oC. The association of all calculations presented an error 
standard deviation of 7.49 oC. The operational validation presented superior accuracy 
compared with the current method for controlling the temperature, resulting in a re-
duction in the aluminum consumption for heating at secondary metallurgy with a 
potential economy of U$ 4.07 million per year for a steel shop producing 5 million tons 
of steel yearly. The artificial neural network model confirmed its capacity for model-
ing a complex multivariable process and the separation of thermodynamic calculation 
provides a better adaptability to different steel grades with different teeming strategies.

Keywords: molten steel temperature control, artificial neural network, thermody-
namic calculations.

Hybrid model associating 
thermodynamic calculations 
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1. Introduction

Heat losses during steelmaking are 
unavoidable but should be as small and 
predictable as is possible. Extreme tem-
peratures at the casting station could lead 
to defects related to segregation and grain 
size/shape distribution, and possibly to 
breakouts. A too high Basic Oxygen Fur-
nace (BOF) end blow temperature implies 
on higher energy and lime consumption and 
refractory losses.

As already stressed by others, the 
complexity of the steelmaking process and 

nonlinear relationship between the process 
parameters makes it difficult to model the 
input-output process parameters and fore-
cast steelmaking operations (Laha, 2015). 
Due to this feature, statistical models and 
artificial neural networks (ANN) have 
been studied to model a variety of complex 
processes. Typical steelmaking operations, 
such as Ladle Furnace (LF), Tian (2008) and 
Sampaio (2006); BOF blowing end dynamic 
control of carbon and/or temperature were 
performed by Wei (2016), Liu (2014), Liu 

(2014), Wang (2012), Bing-Yao (2011), 
Rajesh (2010), and Meradi (2008); phos-
phorus at endpoint control Wang (2014). 
Different strategies were applied according 
to the operational data used for the training 
process, sub-lance measurements, visual 
characteristics of flame, gas analysis, etc. 
Chen et al (1997) developed an ANN model 
aiming to predict the temperature evolution 
from the converter to the casting machine. 
A hybrid model defined as a thermal model 
based on first principles in which the tuning 
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Figure 1
Steel producing routes at steel plant A.

This study is concerned with temper-
ature control between the BOF blowing 
end and the first temperature measure-
ment at RS, T2 – T1 ; also with tempera-
ture control between departure at RS and 
arrival at the secondary metallurgy (RH, 
AHS), T3-T2. A better prediction of both 
T2-T1 and T3-T2 leads to a more predict-

able casting temperature and smaller end 
blow temperature.  In both cases, a hybrid 
Neural Networks – Thermodynamic 
model will be employed. Such model re-
quires: 1- to estimate the thermal effects 
from additions of fluxes and alloying 
elements using the first principles of ther-
modynamics); 2- to estimate the oxygen 

partitioning among deoxidants as a func-
tion of timing of addition and relative 
proportion through a series of controlled 
experiments and thereafter, to estimate 
the thermal effect for deoxidation; 3- to 
train the artificial neural networks after 
discounting the known thermal effects 
and to validate the model.

2. Materials and methods

Three aspects are central to this model. 
Calculation of thermal effects due to alloy-

ing; estimation of oxygen partition among 
deoxidizers, and subsequent thermal effects; 

ANN training after data filtering from these 
effects. They are described as follows.

Thermodynamic calculations
Thermal effects due to the addi-

tion of CaO, MgO, Al2O3, SiO2, CaCO3, 
MgCO3 and, C, Si, Mn, Al, Fe are taken 
into consideration. For each mol of a 

given slag former, the thermal effects are 
given by:

∆H
SlagFormer 

= ( H
T
-H

298 ) + x ∆Hmelting

∆H
Alloying 

= ( H
T
-H

298 ) + x ∆Hdissolution

Where ( H
T
-H

298
 ) stands for heat con-

tent, x for fraction of molten oxide and   
∆Hmelting for enthalpy of melting. Evaluat-
ing the effects of carbonate addition in-
cludes the heat of carbonate dissociation 
( MCO

3 
= MO+ CO

2
) and carbon dioxide 

heating. For each grade of steel, pro-
cessing temperature, timing and mass 
of each addition the above-mentioned 
variables can be evaluated using ther-
mochemical data from Slag Atlas(1995), 
Kelley(1961), Hultgren(1973) and oth-

ers (Morris, 2011).
A similar procedure is due to ad-

ditions of alloying elements such as 
Silicon (and alike). Here the thermal 
contribution is given by

parameters were calculated by intelligent al-
gorithm has been presented by Tian (2008) 
to control molten steel temperature at an 
LF. Fei et al(2014) describe a hybrid model 
built to predict the steel temperature from 
BOF to a caster passing through a Bubbling 
Station(BS) and an LF, both forwards and 
backwards; their model assesses the ladle 
thermal status defined by tracking the 
teeming ladle operational data, integrating 
it with ANN trained with other operational 

factors, such as material addition.
The hybrid model herein proposed 

employs a combination of thermodynamic 
calculations and an ANN for each metal-
lurgical station. Some heating/cooling 
effects such as those from alloy additions, 
deoxidation can be readily estimated using 
first principles. The ANN is trained with 
other operational factors correlated with 
molten steel temperature loss that present 
high mathematical complexity, such as the 

heat transfer from molten steel to refractory 
linings of the teeming ladle and BOF. Figure 
1 shows a schematic of the steel producing 
routes. The regular route is Basic Oxygen 
Furnace (BOF), pouring, rinsing station 
(RS), secondary metallurgy at RH degasser 
or Aluminum Heating Station (AHS), 
Continuous Casting Machine (CCM); the 
so-called direct route is Basic Oxygen Fur-
nace (BOF), pouring, rinsing station (RS), 
Continuous Casting Machine (CCM). 
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Oxygen content at the BOF blow 
end is, of course, a function of the blow 
pattern. The main sources of oxygen are 
the steel dissolved content, oxygen from 
the carried over slag and slag formation 
additions, oxygen from the atmospheric 
pick-up. Deoxidants and alloying elements 

are added following a practice which in-
cludes a shape (bulk, powder, wire, etc), 
the sequence of addition and oxygen af-
finity specifics. Evaluating the fraction of 
oxygen reacting with a specific element, Z

i
, 

is a complex matter involving multi equi-
libria reactions in a metal-slag-gas system;  

evaluating this fraction is of considerable 
importance since, for each reaction, the 
amount of released heat varies remarkably.

Thus a series of experiments have 
been performed in order to assess Z

i
 for a 

given grade of steel. The deoxidation mass 
balance can be written as

O
deoxidation 

= O
Al-deox 

+ O
Si-deox 

+ O
C-deox 

+ O
Mn-deox

The amount of Aluminum spent for deoxidation purposes can be estimated as

O
Al-deox

 = { M
Al-pouring

 - %Al
RS

 M
steel

⁄ 100}
2 M

Al
 

3 M
O
 

Where M
Al-pouring 

stands for the mass of 
aluminum added at the pouring station; 
%Al

RS
 aluminum content as sampled at 

the rinsing station; M
steel

 is the mass of 
steel; M

O
 and M

Al
 are the atomic masses 

of oxygen and aluminum. The other 
contributions are evaluated following the 
same procedure.

The material addition during the 
pouring phase was divided into two 
batches: the first batch lasts till 10% of the 
total pouring time; the second batch starts 

at 30% or 50% of total pouring time. The 
steels targeted for these experiments show 
average end blow carbon and manganese 
contents of 0.03% and 0.10% and 600 
ppm of oxygen; average additions are 50 
kg of coke, 1100 kg of high carbon iron-
manganese alloy and 500 kg of aluminum. 
The aluminum addition was made com-
pletely in the second batch or 70% of the 
total mass in the first batch. Pouring from 
BOF was automatically interrupted if slag 
was detected inside the pouring channel. 

The latter technique allowed to reduce 
the noise from the carryover slag. For all 
experiments, end blow temperature, oxy-
gen content and steel sampling have been 
done by Multi-Lab Celox; temperature at 
RS, AHS and RH are given by immersion 
Pt-Pt/Rh thermocouples.

The heat for steel deoxidation during 
teeming ( ∆H

Deoxidation 
)

 
 can be estimated by 

the sum of the thermal effects of each de-
oxidizing reaction assuming that the avail-
able oxygen is partitioned according to Z

i
.

Artificial Neural Network
According to BISHOP(1995) and 

SIMON(2001), the Artificial Neural 
Networks (ANN) have the capacity 
of inferring functions as a result of 
the supervised learning process. The 
regression problem to predict the 
temperature changes related to opera-
tional factors other than from material 
additions in the molten steel will be 
addressed by two ANN models. The 
capacity for modeling complex mul-
tivariable nonlinear functions from a 
noisy operational dataset and the low 
computational time needed to perform 
an online prediction are the main char-
acteristics that make the ANN model 
a suitable tool to perform the calcula-
tion of temperature loss of molten steel 
in an industrial environment.  The 
ANN was developed using Statistica 
software, version 13.1. The models 
were a multi-layer perceptron (MLP), 
retro-propagation trained using the 
sum of squares as the error function.

A first ANN was developed for 
controlling/predicting the tempera-
ture loss between the start of tapping 
at BOF and the first temperature 
measurement at RS, T2 – T1, taking 
into consideration the production of  
Ultra Low Carbon Steel (ULC) with 
the specification of C ≤ 0.003%, Si ≤ 
0.034%, 0.105% ≤ Mn ≤ 0.155%, P ≤ 
0.020%, S ≤ 0.015%, 0.020%≤ Al ≤ 
0.045%, 0.050% ≤ Ti ≤ 0,090%. The 
ULC steel grades have been chosen 
because they are the simplest steel 
grades regarding the complexity of 
material addition during the teeming 
process, since the deoxidation and al-
loying is performed at secondary metal-
lurgy, requiring only 500 Kg of lime ( 
CaO = 92%, MgO=0.7%, SiO2=1.4%, 
CO2 = 3.30%, H 2O = 2 .15%, 
Al2O3=0.2%, Fe2O3=0.2%) and 1500 
Kg of synthetic slag (CaO = 54.5%, 
MgO=23.8%, SiO2=1.52%, CO2 = 
12%, H2O = 5.50%, Al2O3=2.42%, 

Fe2O3=0.2%). The thermal effects from 
these additions are discounted from 
measured T2-T1 to provide the tem-
perature drop ∆TANN Teeming associated 
with other operational variables. Then 
training the ANN takes into consider-
ation: ladle life (number of heats); time 
of empty ladle (time elapsed from end 
of casting and beginning of pouring); 
steel resting time at the ladle during 
the previous heat; time of empty BOF 
(time elapsed between successive heats); 
elapsed time between measuring tem-
perature at blow end and starting of 
teeming; end blow temperature; rinsing 
time till first sampling at RS; pouring 
time; slag mass; and steel mass. Data 
from some 450 heats of ultra-low car-
bon steel have been used for training 
with eleven hidden layers, and hyper-
bolic tangent as activation function 
both at the hidden layer and exit layer.

The second ANN deals with tem-
perature control (∆TANN RS) during the 

Evaluation of oxygen partitioning among deoxidants

Where ∆Hdissolution  is the heat of forma-
tion of a liquid Fe-Y solution. Thermo-
dynamic data are from sources such as 
Kelley(1964)  and Hultgren (1973).

The calculated ∆H value is divided 

by the heat capacity of molten steel 
to estimate the temperature variation  
( ∆T

steel
 ) regarding the additions of syn-

thetic slags and alloys. Calculations are 
straightforward and agreement with the 

literature (Turkdogan et al) is apparent; 
as a matter of fact, the main difficulty 
is to assess the actual state of the pre-
sumed slag.
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The experiments for determina-
tion of oxygen partitioning among 
deoxidants have shown that when 70% 
of total mass of aluminum for deoxida-
tion and alloying the steel is added at 
the first batch of materials (10% of total 
pouring time) to be added during pour-
ing phase, the obtained carbon yield 
measured after stirring time at ladle 

rinsing station increases as expected. 
If the second batch of materials to be 
added during pouring phase is delayed 
to 50% of total pouring time and 100% 
of the aluminum mass is added only in 
the second batch, less aluminum pro-
tection is provided. These effects can 
be seen in the factorial plot; notice that 
the carbon yield changes in Figure 2 

(a). In accordance, the aluminum yield 
measured after stirring time at the ladle 
rinsing station is affected in an opposing 
way, if aluminum addition to the second 
batch of materials is delayed; its yield 
will naturally increase, since some of the 
oxygen has had the opportunity to react 
with other elements, such as carbon, see 
Figure 2 (b).

3. Results and discussion

Figure 2
Factorial plot for different configuration 
of aluminum addition during teeming to 
(a) carbon yield and (b) aluminum yield.

In order to save aluminum, the 
standard procedure comprises no alu-
minum addition during the first batch 
(10% of the teeming time) and the total 
mass of aluminum being added at the 
second batch (50% of the teeming time). 
The average oxygen partition among 
deoxidants for the studied steel grade is 
calculated by the mass balance as fol-

lows: Z
Al

=0.92 ; Z
C
=0.07 ; Z

Mn
=0.01 and 

Z
Si
=0. These model parameters must be 

evaluated for each different steel grade 
deoxidized during teeming.

The resulting correlation coeffi-
cient during the model validation with 
a new operational dataset was equal 
0.85. The model error (measured value 
– predicted value) standard deviation 

is equal 5.46oC, error mean = 0.301 oC 
and 95% of the prediction error is in 
the interval of -10.79 oC to +10.66 oC

Figure 3 shows a comparison 
between the temperature drop during 
teeming,( T

2
- T

1
 )+∆T

SlagForm
, measured 

values against values given by the neu-
ral network trained with ULC grade 
operational data.

(a) (b)

Figure 3
Temperature drop during 
teeming; a comparison between
measured and predicted values.

The metallurgical work at the 
rinsing station is simpler than at the 
teeming station. It consists essentially 
of rinsing inert gas and keeping con-
trol of composition and temperature. 

Thus a much better prediction of 
temperature drop from temperature 
measurement at the rising station (T2) 
to first temperature measurement at 
secondary metallurgy (T3) can be 

done, as is seen in Figure 4. As a mat-
ter of fact, the resulting correlation 
coefficient during the model validation 
with a new operational dataset can be 
as high as 0.95.

transportation period from RS to sec-
ondary metallurgy (RH or AHS), T3-
T2. It takes into consideration only the 
thermal effects related to heat transfer 
phenomena. For this one, the main 
variables were:  time elapsed between 

the first temperature measurement at 
RS and RH degasser; rinsing time; time 
of empty ladle; refractory life (number 
of heats); the first temperature as mea-
sured at the RS; and time with steel at 
the previous heat. Data from some 400 

heats of ultra-low carbon steel where 
no addition was made between the T2 
and T3 measurements have been used 
for training with seven hidden layers, 
and exponential activation function 
both at the hidden layer and exit layer. 
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Figure 4
Temperature drop during 

transportation; a comparison 
between measured and predicted values.

When the quality of the prediction 
is improved, the standard deviation of the 
error during model validation drops to  
2.79 oC. Other basic statistics are error 
mean= -0.042 oC and 95% of predic-
tion error is in the interval of -5.58 oC to 

+5.49 oC. The expected effects of elapsed 
time from temperature measurement at 
the rinsing station to first temperature 
measurement at secondary metallurgy 
and rinsing time can be obtained with a 
higher degree of confidence.

Consolidating the thermodynamic 
calculation, operational parameters for 
oxygen partitioning among deoxidants 
and the two artificial neural networks, 
the global model to calculate T3-T1 can 
be written as:

T3-T1 = ∆T
SlagForm 

+ ∆T
Alloy 

+ ∆T
Deox

 + ∆T
ANN Teeming

 + ∆T
ANN RS

Where: ∆TSlagForm, ∆TAlloy and ∆TDeox are the steel 
temperature changes related to the addition 
of slag formers, alloying and deoxidation 
respectively. ∆TANN Teeming and  ∆TANN RS are the 
temperature changes calculated by ANN 

models for teeming and transportation from 
rinsing station to secondary metallurgy, 
respectively. The combined models have 
resulted in a global (T3-T1) model. Herein, 
34 industrial runs have been analyzed using 

this model. Figure 5 exemplifies the find-
ings. There seems to be a good agreement 
between measured and predicted values for 
the first temperature measurement at the 
secondary metallurgy (T3).

Figure 5
Measured vs predicted values of first 

temperature at secondary metallurgy 
taking into consideration alloying, 

deoxidation and slag formers addition.

T he er ror  s t andard dev ia-
tion of (T3-T1) model is 7.49 oC, 
while other basic statistics are error  
mean= -2.33 oC and 95% of the predic-
tion error is in the interval of -11.67 oC 
to +16.33 oC.  The heat complying with 
this model required for temperature ad-
justment 0.1 Kg of Al/t steel and 1.77 Kg 

of scrap/t of steel. The current values are 
0.56 Kg of Al/t of steel and 1.74 Kg of 
scrap/t of steel. Taking into consideration 
a steel shop producing 5 Million tons of 
steel/year and aluminum costs of 1.77 
U$/kg, the expected saving would be in 
the order of U$ 4.07 million/year. Less 
apparent, yet very important, improve-

ments are higher alloy yield and second-
ary refining productivity. As less alumina 
is formed, the steel would be cleaner and 
less prone to cause nozzle blockage and 
internal defects.

The beneficial effects of implement-
ing such hybrid ANN-Thermodynamics 
model are made apparent.

4. Conclusion

A hybrid ANN model coupled with 
first principles of thermodynamic esti-
mations has been successfully developed 
in order to provide for a more accurate 
temperature prediction from the BOF 

blowing end to treatment start at second-
ary metallurgy.  Filtering the raw data 
from known thermal effects allows a 
more precise ANN training. The oxygen 
partitioning among deoxidants must be 

evaluated for different addition practices 
during the teeming stage, since the thermal 
effect for deoxidation reaction can change 
significantly. The artificial neural network 
model demonstrated its capacity of mod 
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eling nonlinear functions for complex 
multivariable industrial processes.

Taking in consideration the high ton-
nages related to the steelmaking industry 

the potential savings in regard to alumi-
num consumption are sizable.
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