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Abstract

The inclusion of grade uncertainty for multivariate mineral deposits is of great 
importance for the correct management of subsequent decisions involved in mining 
planning. Mapping grade uncertainties allows maximization of profit and resource 
extraction. In this article, the co-simulation turning band algorithm is applied with the 
aim of predicting multivariate grade uncertainties. Moreover, a probabilistic analysis 
in long term mining sequencing is proposed in order to select the best given grade 
scheduling uncertainty derived from the simulations. A case study in a phosphate mine 
shows that the correlation of co-simulated variables honors the original data and there 
is an improvement in the project by an increase in Net Present Value (NPV) planning 
considering grade uncertainties. A comparison is performed with the results derived 
from the selected schedule and the results using the model based on kriged grades.
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1. Introduction

Traditional interpolation techniques 
in geostatistics (e.g., kriging or co-kriging) 
have been used to represent spatial grade 
distribution in a block model. Although 
these methods are appropriate for mineral 
resource estimations, the main disadvan-
tage is that they generate smooth repre-
sentations of the grade distributions, and 
therefore are unable to reproduce the in 
situ variability of the deposit under study, 
leading to a production expectation dif-
ferent from reality (Dimitrakopoulos et 
al., 2002). Instead, geostatistical simula-
tions (Journel, 1974) aim to reproduce 
the in situ grade variability and spatial 
continuity of the original data, through 
the generation of equally probable sce-
narios, which reproduce first and second 
order statistics. Thus, the uncertainty 
space (delimited by the ergodic fluctua-
tions) associated with the estimates can 
be evaluated (Goovaerts, 1997).

A model is not able to map all uncer-
tainty sources, nor is there a true model 
of uncertainty: uncertainty is dependent 
on the model. This was discussed by 
Goovaerts (1997), Journel and Kyriakidis 
(2004), among others. Usually, simulation 
models are not able to capture all uncer-
tainty sources present in a resource model.

Mapping grade uncertainty for 

subsequent steps in mine planning is of 
great importance for the management of 
mining projects. This is partly due to the 
inherently large financial risk involved 
in decision making regarding produc-
tion. Production scheduling over the life 
of mine aims at optimizing the material 
sequence extraction to be mined in space 
over time, and, beyond that, maximizing 
the net present value (NPV) of the project.

Due to the large number of pa-
rameters considered, mine planning is 
associated with numerous sources of 
uncertainty. It becomes necessary to 
understand and identify such sources 
to measure and control risks. (Dimitra-
kopoulos et al., 2007). These include 
internal uncertainties such as geological 
uncertainty from the mineral orebody 
and external uncertainties dependent on 
external factors, such as economic and 
socio-political uncertainties.

The traditional methodology of re-
source estimation and mining planning, 
which has been used over the years in the 
mining industry, has been established to 
deal with the modeling the spatial distri-
bution of attributes in a mineral deposit, 
pit optimization and mining planning. In 
recent years, a methodology other than 
the traditional one has been researched.

The steps involved in a mining 
process can be seen as transfer functions, 
which are models used for description 
of operations or real systems (Godoy, 
1998). If the transfer function applied is 
non-linear (as in mining planning), the 
output generated on a non-linear pro-
cess, such as scheduling when using the 
traditional orebody model (average of all 
possible values) as an input, is expected 
to be precisely wrong.

Rather than using a single input 
model for input data to be optimized and 
a correct evaluation of key design indica-
tors, a set of equally probable mineral 
deposition models can be used. These 
models are conditioned to the sample 
data of the deposit and reproduce the 
statistical characteristics of the deposit. 
The use of equally probable models of a 
mineral deposit allows to evaluate the pit 
optimization sensitiveness and long-term 
mining sequencing due to geological un-
certainty (Kent et al., 2007). In addition, 
the identification of such factors makes it 
possible to plan the ultimate pit and the 
sequencing of production with the net 
present value being substantially more re-
alistic. In Godoy and Dimiktrakopoulos 
(2004), a case study is presented, applied 
to a gold mine, where a stochastic evalu-
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2. Methodology

ation leads to a market improvement of 
28% of the NPV over the life of the mine, 
compared to the traditional techniques 
for estimating resources, considering the 
same final pit limit. This scenario does 
not necessarily show an expectation of 
gain for all the cases considered, but an 
appreciation that the average model tra-
ditionally used in industry (kriging) may 
be far from reality when considering the 
uncertainty spectrum of the geological 
variables in a mineral deposit.

The next step, following the defini-
tion of the final pit, is the generation of 
pushbacks. A mining advance is a phase 
in the expansion of the mine, which must 
be developed under certain constraints 
(slope angle, berm width, feed rate at the 
plant, operating space, etc.) in order to 
ensure the proper sequence. The material 
quantity ratio to that adopted in the min-
ing sequence is defined as the proportion 
of waste to be mined exposing an ore unit 
from the mineral deposit (stripping ratio). 
This can also be a partial relation, refer-
ring to a period, a pushback or a mining 
panel (Diedrich, 2012).

After the generation of the push-
backs, the mining sequence step is started, 
which, for open pit mines, is to define an 
order for extraction of blocks or panels 
throughout the life of the mine (LOM). It 
can be represented by a production sched-
ule that aims at optimizing or balancing 
the extraction sequence with respect to the 
quantities of ore and waste extracted along 
each period, in order to obtain the highest 
net present value (NPV) when considering 

pre-determined operational parameters.
The production scheduling through 

traditional mining sequencing disregards 
the geological uncertainty, since it is 
performed with deterministic models, 
presenting significant differences between 
the calculated values and the reality.

Some concepts about risk analysis us-
ing stochastic simulation techniques were 
discussed by Ravenscroft (1993) in the 
context of assessing the impact of uncer-
tainty and in situ variability of the contents 
in open pit projects through production 
schedules and economic evaluations.

The availability of stochastic simu-
lation techniques for the quantification 
of geological uncertainty led to the de-
velopment of programming techniques 
that integrate uncertainty into the mine 
planning process. Dimitrakopoulos and 
Ramazan (2004) developed an optimi-
zation technique that introduces a new 
concept of production programming, 
with geological risk discount. Ramazan 
and Dimitrakopoulos (2007) developed 
an entire stochastic programming model 
that uses multiple simulated realizations 
to minimize deviations in the sequencing 
of ore production over the mine’s lifetime, 
presenting the financial benefits.

The main idea for sequencing 
production that takes into account the 
uncertainty of the contents is relatively 
simple. Conventional optimizers work 
with deterministic models by constructing 
and evaluating a set of blocks, in order 
to decide when to stop mining, which 
blocks to extract, and so on, assuming 

that the economic values of the mined 
blocks (input data to the optimizer) are 
the actual values.

A stochastic optimizer, also using 
construction, evaluates a set of blocks, 
simultaneously through all possible com-
binations of economic values of the blocks 
in the considered grouping.

As a result, a considerable amount 
of local information is used to map the 
uncertainty, leading to more robust min-
ing sequencing that can also maximize 
deposit potential (e.g. increase in metal 
output and NPV) and at the same time 
minimize (e.g. non-compliance with pro-
duction targets and related losses).

In order to consider the uncertainty 
of the levels in the trench sequencing with 
conventional optimizers, and to incorpo-
rate the risks associated with reaching a 
certain NPV value, a classification index 
variation was used, initially proposed by 
Dimitrakopoulos et al. (2007).

In this context, a strategy is pro-
posed for defining the mine scheduling, 
taking into account the variability of the 
main attributes of a phosphate deposit 
(P2O5 and CaO) and using co-simulation 
turning bands. For mine sequencing, 
economic parameters, together with 
physical and operational constraints, are 
considered. Finally, a comparison of the 
sequencing scenario obtained by the tech-
nique proposed here and the traditional 
method based on interpolation (kriging) 
is performed, or its equivalent represented 
by the mean block grades obtained from 
the simulations.

The workflow herein proposed is 
shown in Figure 1. It consists of selecting 

a mining schedule through the application 
of a probabilistic analysis based in co-

simulation aiming to predict multivariate 
grade uncertainties.

Figure 1
Workflow for the proposed methodology.
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2.1. Simulation
A turning band co-simulation 

algorithm using two variables was 
performed (Matheron, 1973; Journel, 
1974). A full description of this method 
can be found in Chilès and Delfiner 
(1999). For the deposit under study, 
co-simulation was performed to main-
tain the ratio CaO/P2O5 (RCP) which 
is used as a criterion for classifying a 
block as ore or waste. Furthermore, 
this ratio influences the performance 
at the mineral processing plant, inter-
fering in ore flotation. Fifty simulated 
scenarios for P2O5 and CaO grades 
were generated, allowing for the pre-
diction of grade uncertainties at each 
geologic domain, presented in the case 
study section.

In turning band simulation, the 
idea is to derive a value from a distri-
bution based on the associated multi-
gaussian random functions theory. The 

multigaussian model assumes, among 
other things, that for an attribute 
whose distribution of values presents 
a standard normal histogram, any 
combination of values of this attribute 
has a normal distribution. The cumu-
lative local conditional distribution 
of probability is estimated by simple 
kriging, which defines the mean and 
variance of the distribution. Journel 
and Huijbregts (1978) describe in de-
tail the theoretical concepts about the 
multigaussian model.

The use of the multi-Gaussian 
model to construct the normal distribu-
tions assumes that the attribute under 
study is standardly normal. However, 
in the majority of cases in geosciences, 
the original experimental distribution 
does not present a multi-Gaussian 
behavior. Thus, the experimental dis-
tribution of n information z (uα) (α = 1, 

..., n) is transformed into a distribution 
of n values y (uα) (α = 1, ..., n) of normal 
transformation (Goovaerts, 1997).

Transforming the data into the 
Gaussian space does not guarantee that 
the data is a random, multi-normal 
function. This procedure only guar-
antees the univariate normality of the 
local conditional probability distribu-
tion and it is necessary to verify the 
normality. When the bi-normality is 
verified, through verification proce-
dures, the hypothesis of the Gaussian 
multivariate model is assumed to be 
valid. The relationship between mado-
gram (Euclidean) and the square root 
of the variogram will be used as verifi-
cation procedure. Equation 1 presents 
this relationship whose result must 
approximate the constant 0.564 and 
must be verified for several distances h 
(lags), in the defined u-locations, where:

γ1(h) = E{| Y(u+h) - Y(u) |} is the madogram definition;
γ2(h) = E{| Y(u+h) - Y(u) |}2 is the variogram definition;

2.2 Upscale
Simulation was performed with 

ore blocks (size 25x25x10 m) discretized 
into grid nodes 6.25x6.25x5 m apart. 
Later, the simulated points were block 

averaged to the original block size of 
25x25x10 m to obtain the reference 
grade model at the block support. Both 
models (grid nodes and blocks) have the 

same mean, but the variance is higher 
for the point-support case for each 
simulated scenario.

2.3 Mine planning
The definition of the optimum 

pit is usually carried out by applying 
the Lerchs and Grossmann (Lerchs 
& Grossmann, 1965) or some other 
optimization algorithm (Kim, 1979), 
and applying a revenue factor rang-
ing from 0 to 1 in the profit function 
(Whittle, 2011). This results in a set 
of nested pits, where the first incre-
mental pit normally contains the most 
economically attractive ore and is the 
ore that is covered by the minimum 
amount of waste. The latest phases 
contain the least attractive ore, or the 
ore that is on the liberation sequence 
after the previous phases, or is even 
covered by a large amount of waste. 
At this point there are different meth-
odologies for defining the optimal pit 
between the family of pits generated by 

the Lerchs and Grossman algorithm. 
A methodology that is widely used is 
sequencing these incremental pits over 
the years, where the mined blocks fol-
low the order of the nested pits (Kim 
& Zhao, 1994).

Keep in mind that when the 
ultimate pit is generated with the E-
type model, as is used in most mining 
industries, it isn’t possible to capture 
all uncertainties derived from the 
simulations. There are various studies 
of alternatives to choose an ultimate pit 
based on stochastic simulations (David 
et al., (1974), Dowd e Sarac (1994), 
Rossi e Van Brunt (1997), Farrelly 
(2002)). However, the aim of this study 
was to map and choose a schedule with 
less risk and upside potential gain. So, 
in this case study, the optimum pit was 

chosen considering the E-type model.
From this optimum pit, schedule 

scenarios from each simulated orebody 
model were generated. The next step 
to initiate the setting of the block ex-
traction sequence is the generation of 
operational advances (pushbacks or 
phases). These are defined as a stage 
at the mine expansion phase that can 
be developed in practice and mined 
according to the sequence extraction 
observing certain geometric param-
eters (Peroni, 2002). To generate the 
pushbacks, it is necessary to define the 
access conditions; that is, to determine 
the minimum distance between an 
advance and its predecessor. In addi-
tion, settings and possible restrictions 
are defined for the generation of op-
erational phases, presented in Table 1.

γ1(h)

γ2(h)
= 0.564 (1)
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Parameters Values

Maximum number of pushbacks 20

Last pushback reaches final pit yes

Precedence continued pushbacks yes

Minimum space between pushbacks (m) 30

Ore tonnage for each pushback (Mt) 13
Table 1
Pushback generation parameters.

After the generation of pushbacks, 
the parameters for the mining sequence 
were chosen. The ore mass was defined to 
be mined per year (6.5 million t) and the 
primary goal of sequencing, maximizing 
the NPV. Also, an attempt was made for 
the strip ratio waste/ore to be kept between 

0.5 and 2.0. When it was not possible to 
achieve these stationary limits, due to the 
large amount of waste in the early years, 
this relationship can be attenuated over the 
years, allowing higher ratios during the ini-
tial years of production. For each simulated 
scenario, the block extraction sequence was 

generated over the life of the mine. In order 
to ensure a similarity of conditions for the 
results generated in all analyzed scenarios, 
the settings and restrictions are kept con-
stant for all cases. The E-type scenario was 
also sequenced for the sake of comparison 
with simulated scenarios.

2.4 Classification index
Based on Dimiktrakopoulos et al. 

(2007), a classification index was pro-
posed so that it is possible to determine 
a mining scheduling scenario based on 
the mapping of geological uncertainties, 
using stochastic simulation to quantify 
the risk of loss or opportunity for gain as 
the net present value initially planned for 
each scenario. The index is used to define 
the final schedule scenario, considering 

the distributions of possible project indi-
cator values for the calculation of upside 
potential and downside risk applied 
to a reference point (for example, the 
minimum acceptable return - MAR). It is 
called downside risk, when the objective 
is to analyze the risk of loss and upside 
potential, when analyzing the possibility 
of gain associated with the project. The 
index is essentially based on the grades 

distribution analysis of each sequenced 
scenario from a pre-defined final pit ac-
cording to the one used in the mining in-
dustry, obtained from the kriging model. 
Thus, it has been possible to analyze the 
NPV (key indicator project) values for 
each scenario. Equations 2 and 3 present 
the index that allows quantification of 
the upside potential and the downside 
risk, respectively:

where i is the simulation number, n is 
the total number of simulations, IC

+
 is 

the classification index for the potential 
return to be equal to or greater than the 
minimum acceptable return value; IC

-
 is 

the classification index for the downside 
risk of achieving a return lower than 
the minimum acceptable return value; 
X

i
: average of annual NPV value for 

simulations; Vm: minimum expected 
value defined; P

i
: probability of X

i
 value 

being greater than the MAR value; C
I
: 

indicator that defines if X
i
 value is within 

the confidence interval of 90%, between 
percentile 5 and 95; R

+
: probability 

defined by the number of observations 
above the Vm; R

-
: probability defined by 

the number of observations below the 
Vm. where i is the simulation number, n 
is the total number of simulations, IC

+
 is 

the classification index for the potential 
return to be equal to or greater than the 
minimum acceptable return value; IC

-
 is 

the classification index for the downside 

risk of achieving a return lower than the 
minimum acceptable return value; X

i
: 

average of annual NPV value for simu-
lations; Vm: minimum expected value 
defined; P

i
: probability of X

i
 value being 

greater than the MAR value; C
I
: indica-

tor that defines if X
i
 value is within the 

confidence interval of 90%, between per-
centile 5 and 95; R

+
: probability defined 

by the number of observations above the 
Vm; R

-
: probability defined by the number 

of observations below the Vm.

3. Case study

3.1 Dataset
A phosphate deposit with two 

main geostatistical domains (bebedou-
rite and phoscorite) was used herein. 
The dataset contains 3722 samples from 
the bebedourite and 2136 samples from 
the phoscorite domains.

With these samples, a decluster-

ing was performed using the moving 
window cell technique (Isaaks and 
Srivastava, 1989). Next, an analysis 
was performed on the presence of ex-
treme values, applying an upper cut for 
limiting the P2O5 and CaO variables. 
Finally, the method for choosing the 

upper limit value was taken from the 
cumulative probability plot graphs 
with the data bonded by the quantile 
99. Table 2 shows the statistics for both 
domains considered for the original 
dataset and the samples with top cap-
ping applied.

IC
+
 = Σ ni ( (X

i
 - Vm) * P

i
 * C

i
) * R

+

IC
-
 = Σ ni ( (Vm - X

i
) * P

i
 * C

i
) * R

-

(2)

(3)



279

Pablo Koury Cherchenevski et al.

REM, Int. Eng. J., Ouro Preto, 72(2), 275-284, apr. jun. | 2019

Domain
Variable

Original Dataset After Capping

Bebedourite Phoscorite Bebedourite Phoscorite

P2O5 CaO P2O5 CaO P2O5 CaO P2O5 CaO

Count 3722 3722 2136 2136 3722 3722 2136 2136

Mean 6.2 8.78 15.08 18.88 6.18 8.75 15.07 18.86

Minimum 0.04 0.08 0.19 0.09 0.04 0.08 0.19 0.09

Maximum 24.75 43.54 37.20 55.73 16.72 29.17 34.37 45.77

Table 2
Statistics of original 

dataset and with capping.

The ratio between P2O5 and CaO 
is extremely important to predict the 
flotation yield. The correlation between 
these two variables was taken into ac-
count for both domains using co-sim-

ulation. Figure 2 shows the correlation 
coefficient at the bebedourite domain 
(0.42) and at the phoscorite (0.93). Note 
that there is a different CaO behavior 
for samples near to zero, showing no 

correlation with the attributes of P2O5. 
This fact is possibly due to a mixture 
of the CaO population values as well as 
laterization processes occurring within 
the bebedourite domain.

Figure 2
Scatterplot between

P2O5 and CaO at the two domains 
(a) bebedourite and (b) phoscorite.

(a) (b)

As can be seen in the figure above, 
the CaO attribute has the presence of 
two populations for both the bebedourite 

and the phoscorite domains. These near 
zero CaO samples do not form a divisible 
domain, due to the spatial arrangement 

of the samples present in each population 
and formation of a possible intern dilution 
within the orebody.

3.2 Spatial Continuity
For both geologic domains, the 

turning band co-simulation (Matheron, 
1973; Journel, 1974) method was used, 
and it was necessary to model direct and 
crossed correlograms/variograms for the 

variables of interest (P2O5 and CaO) in 
the original data and in the normal space. 
The two spherical structures were used to 
fit the experimental correlograms/vario-
grams. The direct and cross correlogram 

equations for the original data at the 
bebedourite domain, as well as those for 
the direct and cross variogram equations 
at the phoscorite domain for P2O5 and 
CaO, are shown in Table 3:

Table 3
Spatial continuity models for each geological domain.

D1/D2/D3 - direction of major, intermediate, and minor continuity, respectively, c0 - nugget effect, a - range, c1/c2 - sills of the first and second structures.

The validation of the multi-
Gaussian data transformation was 
done considering Equation 1 for P2O5 
and CaO variables in both geological 

domains. The ratio was made from 
the omnidirectional variograms, us-
ing lags of 200 meters. The variable 
P2O5 and CaO for the bebedourite 

and phoscorite domain converged at 
0.564, validating the data transforma-
tion into the normal space.

Domain Type

Structures

Direction First structure Second structure

D1 D2 D3 c0 Model c1 a (D1) a (D2) a (D3) Model c2 a (D1) a (D2) a (D3)

Bebedourite

Correlogram P2O5 N450 N1350 vert 0.05

Sp
he

ric
al

0.47 300 300 60

Sp
he

ric
al

0.48 1500 1400 70

Correlogram CaO N450 N1350 vert 0.05 0.43 300 300 60 0.52 1500 1400 70

Cross Correlogram N450 N1350 vert 0.05 0.17 300 300 60 0.20 1500 1400 70

Phoscorite

Variogram P2O5 N1350 N450 vert 4.3 31.7 200 150 55 20.0 650 470 60

Variogram CaO N1350 N450 vert 10.0 67.0 200 150 55 45.0 650 470 60

Cross Variogram N1350 N450 vert 6.0 42.0 200 150 55 28.0 650 470 60
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3.3 Ore/waste definition
The criteria used for defining ore and 

waste is based on P2O5 grades and on the 
calcium/phosphate (CPR) ratio. Figures 
3 and 4 show the workflow applied for 

ore and waste classification at the two 
domains, i.e. bebedourite and phoscorite.

Figure 3
Workflow for ore and waste
definition at the bebedourite domain.

Figure 4
Workflow for ore and waste 
definition at the phoscorite domain.

3.4 Profit model
Next, each grade model simulated 

was considered as an input for mine plan-
ning, assigning an economic result for 
each simulation. The profit model applied 
varies from the block classification as ore, 
marginal ore, or waste. For the waste 
blocks, the profit function represents 
only the cost to mine of that block. For 
ore blocks, in addition to all associated 
costs, all revenues are added from the 
mineral sales. The results of the profit 
model were calculated from the sales price 
(BRL/ton) and the products (defined as 
tons of products generated in the block). 

For this purpose, a mass recovery is con-
sidered in relation to P2O5 grades for the 
two products generated, the conventional 
concentrate and the ultrafine concentrate. 
The sales price is the customary one in the 
industry for long-term studies for this type 
of mineral deposit. For the calculation of 
revenues, all parameters used in the in-
dustry were considered, which will not be 
mentioned in detail in order to guarantee 
the confidentiality of company data.

For the issue of mining costs, the 
average transport distance was different 
in the benefit function of each domain. 

The costs considered are excavation 
and transportation, support equip-
ment, drilling and dismantling, mine 
management custody, processing plant, 
transport, current investment, head of 
the chemical industry. From this stage, 
the economic model was used for the 
definition of pushbacks, and the min-
ing sequencing using a predefined final 
pit. The main objective was to present 
the impact of mining planning of the 
geological uncertainty obtained in the 
variation of the P2O5 contents using 
stochastic simulation.

3.5 Final pit and life of mine scheduling
The final pit was chosen based on the 

E-type grade model, i.e., the pit was kept 
the same for all grade models simulated. 
The mine scheduling for the E-type model 

was compared against the scheduling 
derived from the simulations scenarios.

3.6 Scenario construction
Figure 5 shows a schematic repre-

sentation used to construct the probability 
distributions for each mining sequencing 
scenario obtained.
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Figure 5.
Methodology used to construct the 

probability distribution for each mining 
sequencing scenario. Q1 and Q3 represent 

the upper and lower quartiles respectively.

4. Results

4.1 Validation of simulations
Cumulative histograms, direct and 

cross correlograms/variograms and correla-
tion matrix were some of the checks used in 
the validation of the simulations. In all cases, 

the simulation models satisfactorily repro-
duce the distribution of the original data.

4.2 Mine scheduling
Table 4 shows a comparison 

between the simulated models and 
the E-type model considering the life 
of the mine plan (LOM). The same 
input parameters were used and the 
production rate was configured as in 
the E-type model. Note that the E-type 
model overestimates the LOM, due to 

the smoothing degree it models for the 
CPR that is ultimately used for block 
classification as ore or waste. In addi-
tion, the NPV obtained for this model 
is, in general, smaller than all the NPVs 
obtained for the simulated scenarios. 
It was expected that since the E-type 
model has more ore blocks due to the 

CPR smoothness, the NPV would be 
higher when compared to the other 
scenarios. However, this is not observed 
in the results. This can be explained, 
because although there are more ore 
blocks, the grades are smoother leading 
to less high-grade blocks, resulting in 
lower monetary gains.

LOM (years) NPV (MR$) Stripping Ratio (t/t)

Simulations 67 - 72 14.60 - 15.99 1.69 – 1.89

E-type 83 14.72 1.32

Table 4
Long-term sequencing results for each 
simulated scenario and for the E-type.

Figure 6 shows a graph quantifying 
the possible ore blocks for each scenario 
(simulated and E-type). For this, the 
graph was constructed considering all 
the blocks with a content of P2O5 greater 

or equal to 5% and classified according 
to the CPR that varies from 0.5 to 2.5. 
It is possible to verify that there are more 
blocks classified as ore for the E-type 
scenario (red line) due to the smooth-

ing of the contents for both variables, 
resulting in a higher percentage of CPR 
values within the considered range of 
ore classification, repeating what was 
seen in Table 3.

Figure 6
Reserves as a function of 

different CPR values. Red line for the 
E-type, black lines for multiple simulations.

4.3 Scenario analysis
Figure 7 shows the NPV values of 

50 simulations plotted for each mining se-
quence selected. The results are in boxplot 
format highlighting the minimum value, 
first quartile, second quartile (median), 
third quartile, and maximum value. Thus, 

it is possible to visualize the dispersion of 
the data around the center. From the dis-
tributions, a minimum value for the first 
quartile was set at 15 billion reais for the 
NPV as the first criterion to choose among 
all possible scenarios, i.e., the boxplot 

orange bar should be higher than 15 bil-
lion reais in the vertical axis of the graph. 
This value was defined as the minimum 
return value that an investor expects to 
obtain with this project. With this, many 
scenarios are already eliminated, and their 
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ratings are not necessary for classification, 
as can be seen in the figure below. After 
evaluating which scenarios reached the 

minimum established goal, 5 out of the 50 
scenarios were chosen to continue with the 
methodological process until a single sce-

nario of mining sequencing is selected. The 
scenarios chosen are circled and are the 
marked as number 4, 13, 25, 34, and 39.

Figure 7
The economic uncertainty 
for each scheduling chosen.

After the evaluation of the possible 
NPV values for each generated mining se-
quence, it is necessary to quantify the risk 
due to grade uncertainty for each scenario. 
This was accomplished through the defi-
nition of the sequence which maximizes 
the earning potential and reduces the risk 
to achieve the established economic goal. 
For this, the classification index was used.

Figures 8 and 9 present the result of 
the index considering the benefit and the 
NPV, respectively, for the five scenarios 
analyzed, with their associated gains and 
losses. Note that the higher the value ob-
tained for down, i.e., the closer to zero, 
the lower the risk. For up, the higher the 
value, the greater the potential economic 
gain. Analyzing the graphs above, it is 

verified that considering the benefit of the 
blocks mined annually along the mine, the 
number 4 sequence looks more advanta-
geous, since it has a lower associated risk 
and a potential gain almost equal to the 
highest value obtained. When analyzing 
the NPV, it is also verified that the number 
4 sequence is the most advantageous, for 
the same reasons.

Figure 8
Index calculated for 
the benefit of blocks mined 
annually over the life of the mine. The 
‘down’ represents the potential risk of loss 
and ‘up’ the potential risk of economic gain.

Figure 9
Index calculated for the 
NPV of blocks mined annually 
over the life of the mine. The ‘down’ 
represents the potential risk of loss and 
‘up’ the potential risk of economic gain.
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5. Conclusion

Definition of an alternative to the 
traditional mine planning and sched-
uling methodology used in industry 
showed better results when decision 
making is done under grade uncertainty, 
through the analysis of the NPV for the 
chosen scenario. E-type or kriged models 
are known as a smoothed model, unable 
to provide the real variability and the 

spatial continuity of the phenomenon. 
When basing the mining plan and sub-
sequent steps on a smoothed model, 
itsproduces considerable errors that are 
visible at the end of the project. Using 
a model with a probabilistic analysis, 
controllable risks (except political and 
social) can be mapped in advance mak-
ing the mining project effective and reli-

able. The analyses presented herein were 
performed using long-term sequencing. 
Thus, we have an overall idea of the 
difference between the use of a medium 
level scenario and when using simulated 
models for the performance of mining 
planning, showing the importance of 
using simulated scenarios to plan the 
life of the mine.
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