
199

Bruno de Deus Afonseca and João Felipe Coimbra Leite Costa

REM, Int. Eng. J., Ouro Preto, 74(2), 199-207, apr. jun. | 2021

Bruno de Deus Afonseca1,2

https://orcid.org/0000-0001-9567-4937

João Felipe Coimbra Leite Costa1,3

https://orcid.org/0000-0003-4375-370X

1Universidade Federal do Rio Grande do Sul - UFRGS, 

Departamento de Engenharia de Minas,

Porto Alegre – Rio Grande do Sul - Brasil.

E-mails: 2brunocafonseca@yahoo.com.br, 
3jfelipe@ufrgs.br

Dynamic anisotropy and
non-linear geostatistics 
supporting short term 
modelling of structurally 
complex gold mineralization 
Abstract

Non-linear geostatistical methods are known to deal appropriately with 
the geological and geometrical complexity of gold deposits. This article reports 
the results related to an investigation to improve the gold content estimate based 
on restricted ore modeling to honor the structural aspects that control the min-
eralization. The grade domains are defined by using structural measurements to 
guide the indicator kriging (IK) estimator. Relevant grade intervals are chosen as 
indicators. Kriging the indicators provides a measure of the grade uncertainty at 
the sample support. The probability indicator modeling relies on thresholding the 
estimates which are represented by cumulative distribution functions (cdf) at the 
unsampled locations. The implicit concept of probability means that the chance 
of an estimated node belonging to a given grade domain is as big as the estimated 
IK value. The geological consistency of IK models requires a proper definition of 
some key parameters: The probability thresholds and indicator variogram models 
must honor the structural features and stationarity conditions of grade intervals. 
The geological representativeness of these models depends heavily on thresholding 
the estimates. For instance, extremely permissive estimates may produce overrepre-
sented ore domains. The decision of the optimal indicator probability for defining 
the ore boundaries is made by iterative comparison. Several thresholds were applied 
to kriged maps and the results reconciled to the most sampled areas until achieving 
reasonable geological adherence. The mineralization continuity often varies accord-
ing to local structural features and so dynamic anisotropy is used to control the 
variogram direction and search ellipse to consider the significant scale trend and 
small-scale fold geometries. A case study based on a real gold deposit dataset was 
performed and the method was discussed. The IK models can define precisely the 
mineralization bounds in the most detailed areas. However, the results presented 
some limitations on reproducing the geological expectation in regions of wide drill-
ing spacing. The lack of information in some areas led to an excessive number of 
small sub-zones. The method allows a faster and efficient modeling of structurally 
complex geometries and provides an uncertainty assessment which may be useful 
to support exploratory and short-term decisions.
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1. Introduction

The resource evaluation of deposit 
is composed of two steps: definition of 
the boundaries of tthe various geological 
domains and estimation or simulation of 
grades for each unit. (Chilès et al., 2004)

In mining, 3D ore models are rou-
tinely supported by computational tools, 
being that the general workflow: (i) ore/

waste contour lines are interpreted based 
on cross sections; (ii) the outlined contacts 
are then linked to each other to create 
three-dimensional solids (Abzalov, 2016). 
Specially for complex geometries, such as 
strongly deformed mineralization. The 
traditional modelling may be a cumber-
some task and sometimes based on subjec-

tive criteria of interpretation.
Implicit modelling algorithms pro-

vide an alternative solution replacing the 
handwork digitization by automatized 
procedures (Silva, 2015). Common 
implicit algorithms interpolate distance 
functions between categorized samples. 
The bounding interface of interest is the 
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2. Geological background

3. Methodology overview

3.1 Dynamic anisotropy

The present investigation is applied 
to a gold deposit hosted in the Rio das 
Velhas Supergroup units, situated in the 
eastern Quadrilátero Ferríferro district 
(QF) (Brazil). The Archean Rio das 
Velhas is a greenstone belt known for 
hosting various gold occurrences, includ-
ing world-class deposits (Lobato, 1998).

Based on the host rock and mineral 
assemblage, Vieira (1987) distinguished 
three main gold mineralization types 
in the QF: (i) rich-pyrrhotite hosted in 
banded iron formation; (ii) related to 

pyrite and arsenopyrite replacing the 
iron layers of banded formations; and 
(iii) disseminated arsenopyrites in mafic 
schists.  The case study refers to a type 
(iii) mineralization with pronounced 
structural control.

The folds that control the gold 
mineralization have their axes plunging 
to NE parallel to the main ore shoots. 
The smoky quartz veins usually repre-
senting the primary type of mineraliza-
tion, are either folded or elongated in 
boudins (Roncato et al. 2015) . Based 

on the geological mapping survey car-
ried out in the deposit, Afonseca (2020) 
discusses a concept of strain partitioning 
of the deformational process observed at 
the open pit scale. The deformation is 
partitioned along the ore strike, where 
the high strain domain is represented 
by complete transposition of the host 
rock bedding. The low strain domains 
appear as close to tight fold geometries. 
The presented 3D modeling methodol-
ogy aims to efficiently reproduce these 
structurally distinct domains.

The modelling methodology combines 
dynamic anisotropy, probability indicator 

models and post-processing step based on iso-
surfacing to define a geological grade model.

Figure 1 - Example of how dynamic anisotropy works on the search volume orientation according to the ore continuity.

Grade estimation processes tradi-
tionally employ a global oriented search 
volume to select samples used for inter-
polation. The ellipsoid representing the 
anisotropy of the estimated property is 
centred on each node to be estimated. 
Once a grid node is estimated, the search 
volume moves to the next node, until the 
full grid is passed by.  However, the grade’s 
continuity often varies with direction, 
such as in deformed deposits and ignor-

ing this feature leads to unrealistic results. 
One solution is to create sub-domains 
related to different structural sectors. 
This approach has some drawbacks: 
Sub-domaining may be time consuming 
since individual assessment about the ore 
geometries, variogram models, and data 
analysis must be undertaken. Additionally, 
the reduction of data amount can impact 
the quality of the evaluation.

The dynamic anisotropy solution 

allows the orientation of the ellipsoid and 
variograms to be defined individually for 
each node to be estimated. The method 
improves the estimation process as the 
search volume are defined according to 
the local continuity of mineralization 
(Figure 1). The implementation of dy-
namic anisotropy requires that all points 
to be estimated are assigned with rotation 
angles corresponding to the local anisot-
ropy (Datamine, 2019).

surface corresponding to specific iso-
values of estimated distance functions 
(Rollo, 2017). Implicit functions are 
interpolated by implementing a method 
known as radial basis function (RBF). 
While kriging uses covariance calculated 
from data, RBF interpolator instead, uses 
pre-defined interpolant functions (e.g. 
spheroidal, linear) to improve the process-

ing time. Despite the singularities of how 
data are weighted, both RBF interpolants 
and indicator models are based on kriging 
mathematical formulation.

 Different application of indicator 
modelling can be found in geoscience. 
Abzalov (2003) and Oliveira (2011) dis-
cussed IK domaining of mineral deposits. 
The concept has also been employed 

for modelling facies of sedimentary de-
posits (Deutsch, 2002) and creation of 
probabilistic maps of risk (Landim and 
Sturaro, 2002).

The indicator modelling supported 
by dynamic anisotropy was tested on data 
of an orogenic lode gold deposit located 
in the Quadrilátero Ferrífero (MG, Brazil) 
metallogenetic district.

Non-linear methods, such as indi-
cator kringing (IK) presented by Journel 
(1983), works on non-linear transformed 
data. Differently from ordinary or simple 
kriging, the IK employs the concept of 
cumulative distribution functions (cdf) 
to predict spatial distributions. These 

types of estimators are not specifically 
committed to estimate a given property.  
Instead, the fundamental purpose of 
IK is to provide a local estimate of the 
probability distribution, quantifying the 
uncertainty through a histogram (Journel, 
1983). Each estimated point will have an 

individual cdf.
IK formalism consists in converting 

data into indicators according to the meth-
odology established by Journel (1983). 
The indicator I(u,z

c
) at u position for a z

c
 

cutoff is a binary variable assuming values 
according to the following conditions:

3.2 Indicator kriging
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In practice, geology routines demand 
three-dimensional solids instead spatial 
probabilities. Hence the cloud of points 
provided by the indicator model should be 
combined in such a way so as to produce 
uniform geometries becoming manageable 

for the short-term activities.
The contouring of estimates can be 

achieved through iso-value interpolation. 
The interpolation is processed by con-
necting estimated values according to pre-
defined acceptance criteria. The decision 

of the indicator probability value that is 
optimal for defining the ore boundaries was 
made by iteration. Several thresholds were 
applied to kriged maps and the results rec-
onciliated to the most sampled areas until 
achieving reasonable geological adherence.

The database used is composed of 
exploratory, infill drilling and channels 

samples (Figure 2). obtained by differ-
ent sampling techniques, such as dia-

mond drilling, reverse circulation and  
mechanical auger drilling.

Figure 2 – Sampling location maps. Left the exploratory drillholes lines, on the right grade control channels.

The indicator random variable 
I(u,z

c
) has only two possible outcomes, 

1 or 0. Thus, by definition, the expected 
value can be obtained through an equal-

weighted average (Rossi and Deutsch, 
2013):

For a given interval Z, the indica-
tor  is referred as a random function 
of u. Therefore, the IK consists in 
estimating I by kriging the random 
function I(u,Z

c
) (Chilès and Delfiner, 

1999). The practical consequence is 
that a conditional cdf can be built by 
assembling the indicator estimates. 
This cdf represent a probabilistic model 
for the uncertainty about unsampled 

values which can be obtained with a 
weighted linear average. The optimal 
weights λ are obtained by kriging sys-
tem on the indicator data (Rossi and 
Deutsch, 2013):

Basically, IK consists in applying 
the ordinary kriging on transformed 
data. An advantage of IK relies on being 
a non-parametric method. It does not 
make any prior assumption about the 
distribution being estimated. This allows 

prediction of distribution functions of 
variables with wide spatial variability 
(Rocha and Yamamoto, 2003; Rossi and 
Deutsch, 2013).

The concept behind using indica-
tor estimates for defining geological 

domains relies on thresholding the prob-
abilities informed by kriged cdf’s at un-
known locations. The implicit concept of 
probability means that the chance of an 
estimated node belongs to a given grade 
domain is as big as the IK estimate result.

E { I(u,z
c
 )} = 1*Prob { I(u,z

c
 ) = 1} + 0*Prob { I(u,z

c
 ) = 0} = Prob { Z(u)≤ z

c
}

3.3 Post-processing

4. Application

4.1 Database

I (u, z
c
) 0 if Z(u) ≤ z

c
0, otherwise

E { I(u, Z
c
) }* =     λ

i
 (u, Z

c
) l(u

i 
, Z

c
)

n

i =1
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To assure equal volume sup-
port, the data were composited at 1m 
prior to estimate. A total of 130,394 

composites have been transformed 
to indicators using the methodology 
proposed by Journel (1983). Table 1  

presents the Au statistics for each sam-
pling type.

Operational inputs and geological 
understanding of the deposit support the 
decision of using 0.8 g/t as a threshold for 

defining the high-grade mineralization. 
The chosen value enables subdivision of 
the mineralized portion from the marginal 

grade portion. The spatial continuity at the 
0.8 g/t indicator was modelled and pseudo-
probabilities estimated by ordinary kriging.

The mineralization displays 
strong structural control along shear 
corridors nearly oriented NNE. The 
indicator variogram map tested four 

horizontal directions (N18, N54, 
N108, N153) and it clearly reproduced 
the expected mineralisation structural 
control. Continuity is maximum on 

strike direction (NE) and gradually 
decreases towards SE azimuth which 
represents the orebody thickness. 
(Figure 3).

Table 1  – Descriptive statistics for channels and drilling cores.

Figure 3 – Variographic map (left) produced on horizontal plan highlighting 
the continuity along NE direction. Experimental variograms (right) from the map.

Figure 4 - Directional indicator variograms.

4.2 Anisotropy and variograms

Type Records Min(g/t) Max(g/t) Mean(g/t) Variance Std Dev

Drilling 39,059 0.025 94.23 0.86 6.57 2.56

Channels 91,335 0.025 499.50 0.91 13.97 3.74

Total 130,394 0.025 499.50 0.89 11.61 3.41

Figure 4 presents the indicator 
variogram models. Mineralization 
continuity is given by the geometry 
of the major structures. The greatest 

continuity (plunge) coincides with 
the folding axis. Semi-major direc-
tion is sub-parallel to the limbs´ dip 
and minor direction represents the 

veins´ width. The rotation convention 
adopted to define the anisotropy is 
27º/48º/34º around vertical, X and Y 
axis respectively.
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The resulting parameters derived from modeled variograms are presented in Table 2.

Table 2 – Indicator variogram parameters.

Domain
Rotation axis 

(Z-X-Y)
Nugget Structure Sill

Range 
(Major)

Range 
(Semi-major)

Range 
(Minor)

Indicator 
0.8g/t  27/49/34 0.05

Spherical 0.055 8 11 10

Spherical 0.023 40 28 15

Continuity of mineralization often 
varies according to local structural fea-
tures and so dynamic anisotropy was used 

to impose variogram direction and search 
ellipse to consider the major scale trend 
and small-scale fold geometries. A robust 

database of structural measurements as-
sisted on creating the structural outlines 
(Figure 5).

Stereogram of the axial planes 
(Figure 5a) indicates fluctuation of the 
structural controls along the deposit. In 
order to honour the local geometries, 
mapping data was used on interpretation 

of the major structural trends (Figure 6a). 
Geological surfaces were created three-
dimensionally and represent local folding 
(Figure 6b). Finally, several points con-
taining specific information of the struc-

tural attitudes were extracted from the 3D 
modeled surfaces (Figure 6c). Dynamic 
anisotropy considered the attitude points 
derived from structural contours to guide 
the indicator kringing neighborhood.

Figure 5 - Points of structural measurements from geological mapping (a), stereogram plot of folds related foliation (b).

Figure 6 - Structural interpretation from geological mapping (a), modeled structural surfaces (b), 
attitude points extracted from the surfaces used to guide dynamic anisotropy (c). Perpendicular view to ore plunge.

(a) (b)

(a) (b)

(c)
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An important input that directly af-
fects the quality of geological adherence of 
probability indicator models is the estima-
tion grid. The grid spacing and orientation 
should be capable of reproducing the geo-

metrical features of the estimated variable.
The channel sampling is preferably 

taken orthogonally to the mineralized 
structures; hence, it provides the best ap-
proximation of orebody thickness. The 

average thickness from channel compos-
ites was used as the shortest grid spacing. 
Additionally, rotation was processed to 
guarantee a better representation of the 
overall anisotropy (Figure 7).

Geological representativeness of 
probability indicator models depends 
heavily on thresholding the estimates. 
Inappropriate thresholding may pro-
duce unrealistic results. For instance, 
extremely permissive estimates may 
overrepresent ore domains. Otherwise 
too restrictive limits will mask the geo-
logical continuity by isolating clusters 

of estimated points.
Abzalov and Humphreys (2003) 

suggested that the optimal ranges for 
probabilities can be selected from the 
detailed studied areas by comparing 
the indicator probability map with the 
corresponding geological interpreta-
tion and database. The decision of 
the indicator probability value that is 

optimal for defining the ore boundaries 
was made by iteration. Several thresh-
olds were applied to kriged maps and 
the results reconciliated to the most 
sampled areas until achieving reason-
able geological adherence. Increasing 
threshold values were applied and the 
map compared to the drilling data 
(Figures 9-10).

IK was constrained to an octant-
based data search requiring at least 4 
filled octants. The grid estimate was 

run using the search parameters in-
formed in Table 3. A sectorized ellipse 
and sample restriction were required 

to prevent the occurrence of negative 
wheights and excessive estimates based 
on unique drillholes.

Major structural features were 
visually reproduced on different areas 
of the deposit.  The cross sections of 

Figure 8 are representative of two differ-
ent structural domains. The following 
probability maps enabled the calibration 

of the indicator acceptance level due to 
dense data availability. 

Domain Ellipse rotation
(Z-X-Y)

Ellipse´s 
length Min samples Max samples Sectors Min/Setor Max/Setor Max 

Sample/Drillhole

Indicator 
0.8g/t 27/49/34 15/40/28 8 30 4 2 10 4

Figure 7 – Scheme of rotated estimation grid showing better adherence to the 
ore continuity (left). Grid dimension and orientation along anisotropy directions (right).

Table 3 – Indicator kriging search parameters.

4.3 Indicator model

4.4 Post-processing (Tolerance level and points contouring)

Figure 8 – Indicator probability maps on two representative sections of the 
deposit. The cross-section 1 presents a higher strain level compared to cross-section 2.
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Figure 9 – Results of increasing thresholding value on the estimates of the high strain domain.

Figure 10 – Results of increasing thresholding value on the estimates of the low strain domain.

Reconciliation between the indicator 
composites and truncated estimate values 

was assessed. The level of 0.4 for probability 
was chosen as threshold for domaining. The 

chosen value enabled good adherence to the 
geological expectations in both cross-sections.

Finally, the estimates were merged 
into a 3D surface (Figure 11).  Mining 
software packages provide different 
tools for wireframing. This study ap-
plied a simple iso-surface algorithm for 
contouring the points. The interpolation 
was processed by connecting estimated 
values at defined probability limit. The 
iso-value model was also reconciliated 
to the drilling data and IK estimates.

Results demonstrate that even 
complex geometries were well repre-
sented by the indicator model. The 
value of 0.4 produced plausible outlines 
without an excessive number of sub-
zones or overly broad lateral extents. 
Natural morphology of boudins and 
mineralization discontinuities were 
preserved by the iso-value model (Figure 
11). The quality of geological adherence 

is higher as the number of structural 
measurements and indicator composites 
available. Areas with a lower level of in-
formation resulted in scattered volumes 
and progressive loss of natural continu-
ity of mineralization. However, even not 
fully capturing the geological continuity 
along sparse drilling areas, the method 
provided a conceptual interpretation 
for supporting early stages of modeling.
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5. Conclusions 
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