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Sub-lethal predatory shell damage does not affect physiology 
under high CO2 in the intertidal gastropod Tritia reticulata

Ocean acidification (OA) poses a major threat to marine animals, especially marine shelled invertebrates such as molluscs. 
Although many organisms are capable of compensating for the effects of OA, this can impose physiological costs and 
impact performance (e.g. through increased metabolism and decreased growth). Sublethal injuries on shells may provoke 
changes in energy allocation. Under acidified conditions, organisms would spend less energy on reproduction and 
somatic growth to repair the damage. Therefore, we analysed the physiological responses of the intertidal gastropod 
Tritia reticulata during shell regeneration under OA conditions. We simulated a sub-lethal predation event (a notch in the 
outer lip of the shell) and individuals were exposed to control (pH 8.08) and low pH scenarios (pH 7.88 and 7.65). After 
two months exposure, all individuals showed shell repair, with a full repair rate observed in 75% of individuals. Contrary 
to expectations, shell repair following sub-lethal damage and OA had no apparent impact on physiological state in terms 
of energy reserves (as measured by whole-animal Carbon/Nitrogen) or growth potential (as measured by whole-animal 
RNA:Protein and RNA:DNA ratios). As an intertidal organism, T. reticulata could be resilient to future global environmental 
change because of compensatory mechanisms that are inherent in intertidal animals, and may represent a robust species 
with which to study future scenarios of OA in temperate coastal ecosystems. However, unrestricted food availability during 
experiment could have played a role in the results and therefore food limitation should be considered in future studies 
regarding shell repair and metabolism under the effects of OA.
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INTRODUCTION

One of the biggest threats of ocean acidification 
(OA) is the need for marine organisms to expend 

more energy on buffering their acid-base relation-
ship (Sokolova et al., 2012). However, OA can also 
affect biological processes such as growth (Harris 
et al., 1999), reproduction (Suckling et al., 2015), 
development (Dupont et al., 2008; Brennand et al., 
2010) and calcification of hard skeleton structures 
(Courtney et al., 2013). Molluscs are one of the taxa 
with the greatest potential to be affected by acidifi-
cation since molluscs shells are composed of calcium 
carbonate (calcite and/or aragonite; Addadi et al., 
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2006). Acidification alters the saturation state of cal-
cium carbonate (CaCO3), which hinders CaCO3 extrac-
tion from the water and elevates the dissolution of 
skeletal CaCO3 (Watson et al., 2012). Amongst marine 
Gastropoda, the responses to increased pCO2 (caus-
ing pH reduction) have varied depending on species 
and duration of exposure with no consensus on or-
ganismal response (see review by Parker et al., 2013). 
Reduction in growth and calcification under acidified 
environments is expected (Shirayama and Thorton, 
2005), but some species are capable of raising their 
calcification rates (Langer et al., 2014) whereas other 
species maintain the deposition of CaCO3, although at 
the cost of their metabolic rates (Findlay et al., 2011). 
Similarly, physiological responses to increased pCO2 
varies in gastropods with negative (Bibby et al., 2007; 
Harvey et al., 2016), positive (Harvey et al., 2016) and 
absence of effects (Marchant et al., 2010) depending 
on the study species and parameters measured.

In an acidified environment, reduction in calci-
fication may reduce shell strength and/or thickness 
(Bibby et al., 2007) making species more vulnerable to 
predation (Gazeau et al., 2013). For coastal molluscs, 
the magnitude and consequences of OA on predator-
prey interactions at the population, community and 
ecosystem levels are still unknown because of the 
varying range of possible outcomes (Kroeker et al., 
2014). Sub-lethal events from predator-prey interac-
tions normally leaves the molluscan prey with a dam-
aged shell (Blundon and Vermeij, 1983). This injury 
is common in many gastropods (Turra et al., 2005; 
Dietl and Alexander, 2009; Stafford et al., 2015) and 
may increase the risk of death because of impaired 
movement due to regeneration and the potential 
loss of body fluids (Blundon and Vermeij, 1983). The 
available evidence indicates that regrowth scars are 
not a weak point in the shell (Blundon and Vermeij, 
1983) and gastropods with damaged shells can have 
comparable, or even faster, growth rates compared 
to non-damaged individuals (Geller, 1990). Under OA 
conditions, sub-lethal predation can force individu-
als to divert energy to maintain calcification or even 
change behaviour (Bibby et al., 2007; Beniash et al., 
2010). Therefore, species that depend on protection 
by thicker shells or hard structures against predators 
could be severely affected by OA.

The netted dogwhelk Tritia reticulata (formerly 
known as Nassarius reticulatus; Galindo et al., 2016) 

is a common gastropod species from European 
coastal waters (Barroso et al., 2005a), occurring on 
shallow sandy bottoms and in intertidal rock pools 
(Tallmark, 1980). As a scavenger benthic species, it is 
responsible for diagenetic processes in surface sedi-
ments, because of its movements in the surface layer, 
where organic matter is more abundant (Donazzolo 
et al., 1989). The biology and ecology of T. reticulata 
has been well studied (Tallmark, 1980; Barroso et al., 
2005a, 2005b; Chatzinikolaou and Richardson, 2007, 
2008) but the effects of OA are not known although 
they have been studied for closely-related Nassarius 
spp. (Zhang et al., 2014, 2015, 2016). T. reticulata can 
vary shell growth and thickening depending on lo-
cation and in areas protected from wave action and 
with high abundance of predators it tends to pro-
duce thicker shells (Chatzinikolaou and Richardson, 
2007). Therefore, in populations of T. reticulata, 
shell dissolution by acidification could pose a po-
tential challenge through increased predation risk. 
Regeneration of parts of the shell lost by sub-lethal 
predation is a costly process and, even in natural con-
ditions, animals will be required to divert energy from 
other sources such as somatic growth or reproduc-
tion (Geller, 1990).

In marine ecology, various biochemical indi-
cators such as nucleic acid ratios (RNA:DNA and 
RNA:Protein) and proximate composition (proteins, 
lipids, elemental analysis) have been used as cor-
relates of condition and growth rate (reviewed in 
Houlihan et al., 1993; Fraser and Rogers, 2007). The 
RNA:DNA ratio provides a measure of protein syn-
thesis and recent growth since the amount of DNA 
in somatic cells remains relatively constant whilst 
the amount of RNA involved in protein synthesis will 
vary with nutritional state, age, life-stage, size and 
changing environmental conditions (Buckley et al., 
1999; Chícharo and Chícharo, 2008). In addition, the 
RNA:Protein ratio is an indication of cellular ‘capacity 
for protein synthesis’ (Houlihan et al., 1993; Fraser and 
Rogers, 2007). Thus, nucleic acid ratios are recognised 
as useful indicators of in situ physiological and nutri-
tional state and have been used in a range of ma-
rine taxa such as microbes, invertebrates and fishes 
(Ferron and Leggett, 1994; Dahlhoff, 2004; Chícharo 
and Chícharo, 2008), including gastropods (Wo et 
al., 1999; Kim et al., 2011). Proximate composition 
analyses (i.e., percent lipid and protein) have been 
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determined using measures of elemental bulk tis-
sue carbon (C) and nitrogen (N) and the C:N ratio and 
these data have been used as a measure of condition 
in many marine taxa. This is based on the assumption 
that lipid contains mostly carbon whilst the majority 
of tissue nitrogen is found in proteins and therefore 
C and N will reflect tissue lipid and protein concen-
trations respectively and the C:N ratio will represent 
the changing relative amounts of lipid and protein 
indicating better body condition as a result of higher 
tissue total lipid concentrations (Fagan et al., 2011).

In this context, we evaluate the physiological 
status [i.e. changes in body composition (elemental 
C/N) and nucleic acid indicators of growth (RNA:DNA, 
RNA:Protein)] of the netted dogwhelk T. reticulata ex-
posed to different pCO2 concentrations (resulting in 
pH levels of 8.08, 7.88 and 7.65), during a shell regen-
eration process (a notch in the outer lip of the shell) 
following damage to simulate a sub-lethal predation 
event.

MATERIAL AND METHODS

Animal collection and holding conditions

Individuals of Tritia reticulata were sampled in 
May 2013 at low tide from the intertidal lagoons on 
the rocky shore at Rhosneigr (Anglesey, North Wales, 
UK) following the methodology of Chatzinikolaou 
and Richardson (2007). After capture, specimens of 
T. reticulata were transferred to plastic buckets con-
taining seawater and transported to marine aquaria 
in the School of Ocean Sciences, Bangor University. 
The whelks were left to acclimate for 20 days (tem-
perature range: 9° to 11° C), with no tide simulation, 
and fed ad libitum every 2 days with live mussels (2-3 
individuals) before experimentation. Abiotic ambi-
ent data (mean ± standard deviation) measured for 
March 2013 was seawater temperature (6.2 ± 0.7), pH 
(8.07 ± 0.06), and salinity (35 ± 0).

Physiological response experiment

Seventy individuals of T. reticulata (shell length 
22 to 33mm) were individually identified with plas-
tic tags (9mm2) using cyanoacrylate glue. At the start 
of the experiment, an initial sample of 10 individuals 
(mean=23.37 ± 1.59mm) were randomly selected 
and frozen at -80 °C as a baseline of shell size and 
physiological measures for the end of experiment 

(hereafter referred to as the initial baseline). The re-
maining 60 individuals were intentionally damaged 
by creating a triangular notch into the external lip of 
the shell aperture (approximately 4mm2) and then 
randomly assigned to one of three pH treatments (pH 
8.08, 7.88 and 7.65). The pH of the treatments were 
not gradually increased before the start of the experi-
ment. Each individual was housed in an individual 
container (approximately 50ml) closed by a lid and 
perforated with holes to allow flow through seawa-
ter. Individuals were fed ad libitum with small pieces 
of mussel flesh (around 4cm² of soft tissue) every 
two days for 12 hours after which all remaining food 
items and faeces were removed by siphoning. After 
60 days exposure to treatments, surviving T. reticu-
lata were snap-frozen in liquid nitrogen and stored 
at -80 °C until subsequent laboratory analysis. Before 
the procedures of physiological status, all individuals 
were photographed. This allowed the measurement 
of shell length and assessment of level of shell repair. 
Shell length was measured with the ImageJ software 
(Image processing and Analysis in Java; Schneider 
et al., 2012). The sublethal injury provoked on T. re-
ticulata, as well as in other gastropods, leaves a scar 
after the shell is recovered (or partially recovered). 
The identification of the shell breakage limit and the 
newly repair section is clear, such as Coleman et al. 
(2014) observed on two other intertidal gastropods, 
Austrocochlea porcata and Subninella undulata. Prior 
to our study, pilot tests with shell repair of T. reticu-
lata under different pHs, showed the same scar in the 
shells of individuals that we registered in our study. 
Therefore, after the 60 days of exposure, it was always 
possible to see the notch and the extent of shell re-
pair. In order to assess the level of shell repair, individ-
uals were classified into three categories: no-repair, 
partial and full-repair. Full-repair individuals were 
identified when the notch was completely covered 
by new shell. Partial-repair was identified when indi-
viduals showed some sign of shell repair in the notch, 
but not sufficient to cover the whole notch. The no-
repair condition was considered when the notch did 
not present any traces of new shell.

Seawater parameters

Treatments used in this study were based on the 
year 2100 predictions from the IPCC ‘business as usu-
al’ scenario (Caldeira and Wickett, 2003; IPCC, 2013). 
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In this study, pH 8.08 represented pH conditions of 
present day (i.e. control); pH 7.88 represented moder-
ate acidification with a 0.2 pH units reduction and pH 
7.65 a high acidification with 0.4 pH units reduction 
(Table 1). The animals were exposed to the pH treat-
ments for 60 days. No gradual increase in pH was ap-
plied to organisms exposed to pHs 7.88 and 7.65. To 
achieve low pH, CO2 gas was bubbled into the 130L 
header tanks using a ceramic diffuser via a solenoid 
valve controlled by an Aquamedic pH-controlled 
computer and Aquamedic electrode system (adapt-
ed from Suckling et al., 2014, 2015). Seawater and 
gas were mixed via a small header pump and then 
gravity-fed at a rate of 0.57 ± 0.03L min-1.

Temperature and pH were monitored daily using 
a Mettler Toledo SevenGo™ SG2 with pH electrodes 
calibrated using NIST-certified buffers. Salinity (hand-
held refractometer) was measured once every 5-7 
days, TCO2 (Ciba Corning TCO2 Analyzer 965, Olympic 
Analytical) and water samples were taken every 10-14 
days. Nutrient analysis (phosphate and silicate) was 
carried out commercially by the Scottish Association 
for Marine Sciences Research Services (Oban, UK) 
using a flow injector analyser technique. Carbonate 
seawater parameters such as partial pressure of CO2 
(pCO2) and saturations states with respect to calcite 
and aragonite were calculated using the program 
CO2SYS (Lewis and Wallace, 1998).

Seawater calcite saturation states were super-
saturated (Ω > 1) across all treatments. Aragonite 
saturation states were supersaturated (Ω > 1) within 
pH 8.08 conditions but compromised under moder-
ately low pH conditions (pH 7.88) and fully under-
saturated within the lowest pH conditions (pH 7.65; 
Ω < 1; Table 1). Mean temperature and salinity were 
similar across all treatments (Salinity: F2,131=0.84, 

p=0.43; temperature: F2,173=0.06, p=0.94). Seawater 
pH within treatment showed little variation around 
the set values throughout the experimental period 
and were significantly different amongst treatments 
(pH: H2=153.84, p<0.001; pH 8.08> pH 7.88 > pH 7.65; 
Table 1).

Physiological status

In the laboratory, frozen Tritia reticulata were 
rapidly removed from their shells by gently break-
ing the shells using a hammer and transferred into a 
mortar containing liquid nitrogen where the sample 
was ground to a fine powder by pestle whilst re-
maining immersed in liquid nitrogen. Approximately 
10mg of the sample was transferred to a pre-cooled, 
pre-weighed microcentrifuge tube and dried for 48 
hours in a freeze drier (Super Modulyo freeze dryer, 
Edwards, West Sussex, Kent). The remaining sample 
were quickly transferred to a second pre-cooled, pre-
weighed microcentrifuge tubes and snap frozen in 
liquid nitrogen and stored at -80 °C until subsequent 
biochemical analysis.

For each T. reticulata individual, triplicate dried 
samples were transferred to pre-weighed tin car-
tridges (Elemental Microanalysis, Okehampton, 
Devon) and weighed using a micro scale (Mettler 
Toledo, Leicester, UK). The average sample mass was 
0.742 ± 0.113mg (range 0.504-0.997mg). Elemental 
analysis of the whole-animal samples was conduct-
ed using a Flash EA 1112 CHNS-O Analyser (Thermo 
Scientific, MA, USA) to determine the % carbon and % 
nitrogen content for each sample.

In order to measure whole-animal protein, 
and RNA and DNA content, duplicate samples (ca. 
100mg) from each T. reticulata were homogenised on 
ice in 2ml 0.2M perchloric acid (PCA) and centrifuged 

Table 1. Seawater parameters for Tritia reticulata exposed to pH 8.08, pH 7.88 and pH 7.65 for 60 days. Values for pCO2 
and carbonate saturation states of calcite (Ω calcite) and aragonite (Ω aragonite) were calculated using CO2SYS (Pierrot 
et al., 2006) with refitted constants (Mehrbach, et al., 1973; Dickson and Millero, 1987). Data are presented as mean 
values ± standard error.

Seawater parameter pH 8.08 pH 7.88 pH 7.65

Temperature (°C) 13.4 ± 0.5 13.5 ± 0.4 13.5 ± 0.4

Salinity 35 ± 0 35 ± 0 35 ± 0

pHNIST 8.04 ± 0.01 7.88 ± 0.01 7.68 ± 0.01

pCO2 (μatm) 427 ± 14 602 ± 15 767 ± 22

Ω calcite 2.19 ± 0.04 1.59 ± 0.05 1.37 ± 0.04

Ω aragonite 1.40 ± 0.02 1.02 ± 0.03 0.88 ± 0.03
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(6000g, 4 °C, 15 minutes). The precipitated pellet was 
solubilised in 0.3M NaOH and the protein content was 
measured using the Folin-phenol method of Lowry et 
al. (1951) as modified by Schacter and Pollack (1973). 
Bovine serum albumin (SIGMA Aldrich) was used as 
a standard. To each solubilised protein sample, 20% 
PCA was added, the samples centrifuged (6000g, 4 
°C, 15 minutes) and RNA content in the supernatant 
from each sample measured using the Orcinol as-
say (Mejbaum, 1939). Type IV calf liver RNA (SIGMA 
Aldrich) was used as a standard. The remaining pellet 
was washed with 2% PCA, centrifuged (6000 g, 4°C, 
15 minutes) and the process repeated. To each pellet, 
0.6N PCA was added and the samples incubated at 
70°C for 30 minutes. Samples were cooled on ice and 
centrifuged (6000g, 4 °C, 30 minutes). DNA content 
in the supernatant was measured by spectropho-
tometry at 260nm (Amaral et al., 2009). Nucleic acid 
concentrations were calculated as the RNA:Protein 
ratio (μg RNA mg-1 protein) and as the RNA:DNA ra-
tio, (μg DNA μg-1 RNA). These biochemical ratios have 
been used as growth biomarkers in marine inverte-
brates providing indicators of nutritional condition, 
the capacity for protein synthesis and growth rates in 
marine invertebrates (Dahlhoff, 2004; Chícharo and 
Chícharo, 2008).

Statistical analysis

All data are presented as mean values ± SD and 
were tested for normality (Kolmogorov-Smirnov test) 
and homogeneity of variances (Levene’s test) prior to 
statistical analysis. Differences in shell length of the 
individuals after exposure to the pH treatments were 
compared using a one-way ANOVA. A Chi-Square 
test was used to evaluate possible differences in the 
repair ratio (total repair: partial repair) between pH 
treatments (8.08, 7.88 and 7.65). Biochemical and 
elemental analysis data for the 4 treatment groups 
(Initial Baseline, pH 8.08, pH 7.88 and pH 7.65) were 
compared using a one-way ANOVA with percentage 
data arcsine-transformed prior to analysis. Where the 
ANOVA was significant, post-hoc pairwise compari-
sons were conducted using Scheffe’s test (since sam-
ples sizes were unequal). Pearson correlation was ap-
plied to assess for relationships between shell length 
and all biochemical parameters. For the RNA:Protein 
ratio data, where a significant correlation was ob-
served, shell length was included as a covariate in 

an ANCOVA to control for the size effect between 
treatments. Statistical analyses were conducted us-
ing SPSS for Windows v20 and PAST software using a 
significance value of α=0.05.

RESULTS

During the experiment, mortality was very 
low with only one individual from the pH 7.65 
treatment dying. Shell lengths of T. reticulata at 
the end of the experiment ranged from 24.7 to 
33.7mm (Mean8.08=28.2±2.8; Mean7.88=27.1±2.1; 
Mean7.65=27.5±2.5) with no significant difference 
in size after 60 days of exposure (ANOVA, F2,58=0.78; 
p=0.46).

All surviving individuals demonstrated shell re-
pair after 60 days of exposure (Figure 1), with the 
exception of two individuals, one from pH 8.08 and 
other from pH 7.88, that suffered damage to the shell 
lip during handling and their repair rate could not be 
assessed. More than 75% of the individuals in each 
treatment had fully repaired their shells, with the high-
est frequency registered at pH 7.88 (80%), followed 
by pH 7.65 and 8.08 (78.9% and 75%, respectively). 
There was no significant difference in the repair ratio 
patterns (total repair:partial repair) among pH treat-
ments (χ2

2=0.23; p=0.89). Four individuals in each 
treatment showed partial repair (Frequency8.08=20%; 
Frequency7.88=20%; Frequency7.65=21.1%).

No differences in elemental body composition 
were observed after 60 days in the three experimen-
tal treatments. Whole-animal mean nitrogen and car-
bon content of T. reticulata ranged between 9.5 and 
10.5% of the dry weight and 41.3 and 43.4% of the 
dry weight respectively (Figure 2A) with calculated 
C:N ratios ranging between 4.2 and 4.5 (Figure 2B). 
ANOVA analysis indicated no significant differences 
in nitrogen content (ANOVA, F3,65=2.53, p=0.07), car-
bon content (ANOVA, F3,65=2.07, p=0.11) or C:N ratio 
(ANOVA, F3,65=2.18, p=0.10) between the initial base-
line and the three experimental treatments.

Mean RNA:Protein ratios ranged between 25.1 
and 28.5μg RNA mg-1 protein (Figure 2C) and there 
were no significant differences between treatments 
(ANCOVA, F3,63=2.54, p=0.06; Figure 2C). However, 
RNA:DNA ratios ranged between 4.5 and 6.6μg RNA 
μg-1 DNA (Figure 2D) and were significantly differ-
ent (ANOVA, F3,64=5.02, p=0.004; Figure 2D) RNA:DNA 
ratios were significantly higher in the initial baseline 
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Figure 1. Examples of shell damage applied on the netted dogwhelk Tritia reticulata and status of repair after 60 days of exposure to pHs 8.08 
(A, E), 7.88 (C, F) and 7.65 (B, D). Few individuals (less than 5 per treatment) showed partial repair (A-B and E) and mostly showed total repair 
of the shell (C-D and F). The white arrows indicate the damage and, when the case, the repair. Scale bar: 5mm. Photographs were lightened to 
increase clarity.

samples compared to the three pH groups (Scheffe’s 
post-hoc multiple comparisons, all p<0.03). No differ-
ences were observed between the three pH groups 
(Scheffe’s post-hoc multiple comparisons, all p>0.90).

DISCUSSION

The results of this study show that seawater 
acidification did not impair rates of shell repair of 
Tritia reticulata as most individuals had fully re-
paired their shells after two-months’ exposure to OA. 

Furthermore, any increased calcification and repair 
costs did not affect physiological state and growth 
as both body composition (as indicated by elemental 
C:N) and nucleic acid biomarkers of protein synthesis 
and recent growth (RNA:DNA and RNA:Protein) were 
similar amongst the three treatments (pH 8.08, 7.88 
and 7.65). Although these results highlight a pos-
sible compensatory ability of T. reticulata, it is neces-
sary to consider the implications of food availability. 
For example, the bivalve M. edulis has shown that 
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Figure 2. Biochemical indicators of body composition and growth of the netted dogwhelk Tritia reticulata across all treatments (Initial baseline, 
pH 8.08, pH 7.88 and pH 7.65). Data are presented (mean ± standard deviation) for: (A) % Carbon and % Nitrogen composition; (B) C:N ratio; (C) 
RNA:Protein ratio; and (D) and RNA:DNA ratio. Histograms indicate the mean values and bars above each histogram the standard deviation. * 
indicates significant differences against other treatments (p<0.05).

juveniles and adults are less negatively impacted by 
low pH scenarios when food resources are not limited 
(Melzner et al., 2011; Thomsen et al., 2013). In our ex-
periment, food was not limiting and, as a result, rates 
of calcification and growth, and physiological state 
could have been maintained during exposure to OA. 
Thus, both food availability and compensatory abil-
ity of T. reticulata under hypercapnia could be equally 
responsible for our observations.

Under OA scenarios, shell production would 
be expected to exhibit increased energetic costs, 
reducing the energy available for somatic growth 
and reproduction (Sokolova et al., 2012). Our re-
sults show that under medium-term exposure to 
OA, T. reticulata possesses the capacity to maintain 
calcification with no measurable impact on physi-
ological status. However, other species may possess 

different strategies to counter the effects of OA,  for 
example, when exposed to low pH the estuarine gas-
tropod Indothais gradata regulates its physiological 
responses by either extending feeding and energy 
uptake or conserving energy by depressing metabo-
lism (Proum et al., 2017). These authors also observed 
changes in behaviour such as isolation and escape 
from the acidic water. Intertidal gastropods can main-
tain function near optimal conditions because they 
can regulate intracellular ion and pH under a great 
range of environmental conditions (Proum et al., 
2017). T. reticulata is likely to be resilient to the effects 
of OA because of the compensatory mechanisms 
that are inherent in intertidal animals, inhabiting an 
environment where highly fluctuating conditions 
can occur naturally over a tidal cycle (Wootton et al., 
2008; Whiteley et al., 2018). As highlighted by Maas et 
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al. (2012), the ambient environmental chemistry that a 
species will naturally encounter can influence its resil-
ience to ocean acidification. Intertidal species may be 
more resilient to future changes in H+ concentrations, 
as natural oscillations in pH can occur in rocky shore 
tidal pools (Wootton et al. 2008; Whiteley et al., 2018).

Food availability could correlate with the ability to 
tolerate adverse stressors, such as OA. When exposed 
to different acidified scenarios and food concentra-
tions, the bivalve M. edulis exhibited less internal less 
internal shell corrosion at high food concentrations 
(Melzner et al., 2011). In this bivalve, these authors 
showed that internal energy budget allocation is relat-
ed to shell corrosion. In the gastropods Patella grana-
tina and P. argenvillei, shell lost by erosion are continu-
ously replaced and the cost of erosion increases with 
the age (Day et al., 2000). Therefore, considering the 
necessity of molluscs to maintain shell integrity, nutri-
tional state will be a major factor in determining the 
tolerance of a species to OA. In this regard, we cannot 
exclude the possibility that the ad-libitum feeding re-
gime applied in our study provided T. reticulata with 
enough energy to maintain calcification and physi-
ological state during OA exposure. How T. reticulata 
would react in terms of calcification and physiological 
performance in the face of OA under a limited food 
resource scenario is an important question for future 
research. The ability to compensate and maintain cal-
cification or suffer shell damage under OA scenarios 
appears to be species-specific and dependent on the 
pH to which the species is exposed and the timescale 
of exposure (McClintock et al., 2009; Coleman et al., 
2014; Chatzinikolaou et al., 2017).

Small, sub-lethal shell damage can result from 
predation encounters (Blundon and Vermeij, 1983) 
and gastropods will need to divert energy to repair it 
in order to maintain shell integrity as mortality rates 
are higher for shell-damaged individuals compared 
to gastropods with undamaged shells (Geller, 1990). 
In our study, all individuals showed signs of shell re-
pair (with >75% showing full repair in 60 days) and, in 
these situations, rapid response/repair rates to shell 
damage would also be expected in order to reduce 
predation vulnerability (Geller, 1990) and increase 
protection from wave impact. T. reticulata appears to 
compensate for OA effects, at least during a 60 day ex-
posure period, by maintaining both shell production 

and not restraining its physiological state (i.e. changes 
in RNA:DNA, RNA:Protein or C:N). These findings have 
also been reported for RNA:DNA ratios in sea urchins 
(Paracentrotus lividus; Catarino et al., 2012) and scal-
lops (Pecten maximus; Sanders et al., 2013). Similarly, 
reduced pH has no effect on the physiological re-
sponses of other nassarids. Zhang et al. (2016) report 
no change in rates of ingestion, absorption, respira-
tion and excretion in N. festivus after 31 days expo-
sure to acidified conditions. After 3 days of exposure 
to acidification, Nassarius conoidalis had a reduction 
in ingestion, absorption, respiration and scope for 
growth, however it recovered from this metabolic de-
pression within 30 days (Zhang et al., 2015). Two pos-
sible explanations were suggested: (1) an initial effect 
of acidification on the ionic availability in water, which 
interferes with the transport of oxygen in the blood 
in the respiration of organisms and (2) acclimation to 
acidified conditions as the exposure period increased. 
Therefore, a strong resilience and/or an acclimation to 
acidification stress appears to be a common feature 
among scavenger nassarids (Zhang et al., 2015, 2016; 
this study). The lack of influence of pH on the ratios 
of RNA:DNA, RNA:Protein and C:N within the cur-
rent study indicate that T. reticulata could be resilient 
within the medium-term to OA conditions when food 
is not limiting, because of the compensatory mecha-
nisms that are inherent in intertidal taxa (Wootton et 
al., 2008; Whiteley et al., 2018).

The up-regulation of calcification (Gutowska et 
al., 2008; Rodolfo-Metalpa et al., 2011) and metabo-
lism (Thomsen and Melzner, 2010) under OA can 
be difficult to maintain in the long term as these 
increased energetic costs may result in the impair-
ment of other processes, such as reproduction, 
growth and locomotion (Anderson et al., 2011). 
Further evaluations of the resilience of T. reticulata 
and other intertidal species to OA and other global 
climate change factors are important to identify ro-
bust species (Tate et al., 2017). If resilient character-
istics pass from adults to their progenies, the spe-
cies could be at an advantage under a future global 
climate change scenario. In the case of T. reticulata, 
future studies could focus on long-term exposure 
to OA and the relation between food availability, 
shell repair ( juveniles and adults) and physiologi-
cal state.
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