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1. Introduction 

Agriculture in developed countries has primarily relied on synthetic herbicides 
for weed management for more than 70 years. This technology is showing its age 
with the ever growing evolution of resistance to available commercial herbicides and 
even resistance by non-target site mechanisms of resistance to herbicides yet to be 
introduced (Gaines et al., 2020). The number of herbicides being introduced with 
new molecular targets and/or new chemical classes for which no resistance exists is 
few (Qu et al., 2021). Natural products have been the inspiration for insecticides and 
fungicides with new molecular targets, but to a much lesser extent with herbicides 
(Lorsbach et al., 2019; Sparks, Duke, 2021). This may be partially due to the relatively 
reduced effort of herbicide discovery after glyphosate dominated the herbicide market, 
reducing the overall value of that market significantly (Duke, 2012). The fungicide 
and insecticide markets have not experienced a similar phenomenon. Nevertheless, 
information on the molecular targets of many natural phytotoxins indicates that 
natural products could be the basis for new herbicides to help cope with the growing 
herbicide resistance problem (Dayan, Duke, 2014). 

Microbial bioherbicides, as defined by the United States Environmental Protection 
Agency, are preparations of killed or live microbes to kill weeds. Their utilization 
carries different problems and risks than those of chemical herbicides. Although 
there have been significant improvements in the adoption of microbial biofungicides 
and bioinsecticides in the past 50 years (Marrone, 2019), there have been relatively 
few advancements in this area with microbial bioherbicides. We briefly discuss these 
problems and how they might be overcome. 

The growing popularity of and political pressure for organic agriculture and food 
grown without synthetic pesticides is also providing an impetus to discover and 
develop weed management technologies that can meet these criteria. The demands 
for such products are not necessarily based on unequivocal information that such 
organic or more natural farming is more environmentally or toxicologically safe than 
conventional farming. For example, some studies have shown organic grains to have 
more mycotoxins than those from conventional farms (e.g., Kuzdraliński et al., 2013). 
Some mycotoxins (e.g., fumonisins) produced by microbial pathogens that infect 
crops are orders of magnitude more toxic to humans than most pesticide residues. 
Nevertheless, there is good reason for intensifying research to provide safe weed 
management technologies to meet the demands of farmers, consumers, and regulatory 
bodies though the use of natural phytotoxins and microbial bioherbicides.

Abstract: There is a popular demand for more natural means of pest 
management, including weed management, as well as a demand by farmers 
for herbicides with new chemistries and/or new modes of action to which 
current weed resistances do not apply. Natural compounds offer a source 
compounds that can either meet these needs in their natural state or as 
templates for herbicides with better physicochemical properties for field 
use. In some cases, simply identifying a good herbicide target site with a 
natural phytotoxin can be valuable, even though that compound is not used 
as a template for new herbicides. Compared to insecticides and fungicides, 
natural compounds have been under-utilized for herbicides. Despite their 

need, living, microbial biocontrol agents have had little impact on weed 
management in crops, despite decades of research to discover and develop 
such products. Management of insect and plant pathogens with microbial 
biopesticides has been much more successful. The reasons for this and 
possible solutions are discussed. Killed microbial preparations containing 
potent phytotoxins avoid some of the issues with live microbes, and such 
products are under development. This type of product can also offer more 
than one new mode of action in a single preparation. Precision and smart 
spray systems can improve the economics of both natural product-based 
herbicides and microbial bioherbicides. 
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The natural phytotoxin parts of this review have been 
covered in part by recent papers (e.g., Dayan, Duke, 2014; 
Lorsbach et al., 2019; Marrone, 2019; Westwood et al., 2018), 
as have the microbial bioherbicides parts (Cordeau et al., 
2016; Harding, Raizada, 2015; Morin, 2020; Watson, 2018; 
Hasan et al., 2021; Berestetskiy, 2021).  This review is 
meant to discuss the literature on these two topics together, 
showing how they are related.

2. Natural Compounds

2.1 Used as a herbicide without modification

Unlike for insecticides and fungicides, few natural 
compounds are used as found in nature for pest management 
(Gerwick, Sparks, 2014). Pelargonic acid, a simple fatty 
acid, has a limited market as a contact herbicide. Its effects 
are mainly through disruption of the plasma membrane 
(Dayan, Watson, 2011). It is a contact herbicide used at high 
application rates. Simple organic acids such as acetic acid 
are also sold for the organic weed control market (Dayan, 
Duke, 2010; Duke et al., 2019a). Various plant essential 
oils such as lemon grass, clove, cinnamon, citrus, and pine 
oil are sold for weed management (Dayan, Duke, 2010; 
Duke et al., 2019a). Some of the constituents of these oils 
are interesting because of their unique modes of action. For 
example, citral, a monoterpene aldehyde that is a mixture 
of two isomers and a component of Citrus aurantiifolia oil 
used for organic weed management (Fagodia et al., 2017) 
apparently acts by inhibition of single strand DNA-binding 
proteins (Graña, 2020), a novel mode of action.

However, these products are not as efficacious as 
commercial, synthetic herbicides, requiring much more 
of the product for poorer weed management at a much 
higher cost. For example, Young (2004) found glyphosate 
to give much better weed control than acetic acid or pine 
oil sold for weed management and to cost 50- to 80-fold 
less than these products. Few studies such as this have been 
done, but commercial farmers, even organic commercial 
farmers, use very little of these products because of 
cost and lack of adequate efficacy. For organic farmers, 
the cost of non-chemical means of weed management 
(e.g., hoeing) is less than for most of these products. For 
example, Boyd et al. (2006) found the combined cost of 
an array of stale seedbed treatments, including labor, for 
weed management ($USD 269/ha) to be much less than 
weed management with a clove oil product ($USD 388/
ha). Similarly, Shrestha et al. (2012) found a D-limonene-
based herbicide to provide poor weed management and to 
cost five- to ten-fold more than the use of steam or flame 
treatments for weed management. Papers abound on the 
use of exotic essential oils as herbicides (e.g., Hazrati et al., 
2017), however, the cost of these essential oils is likely 
to be even greater than those already on the market as 
herbicides. Another example is manuka oil, a product of 
Leptospermnum scoparium, a shrub found in New Zealand. 

It is active as a herbicide (Dayan et al., 2011) due to the 
natural hydroxyphenylpyruvate dioxygenase-inhibiting 
triketones found therein (Dayan et al., 2007) (see section 
2.2), but it is very expensive, even for use in aromatherapy 
(e.g., $USD 46.59 for 10 ml for one product on the web in 
June, 2021). The cost of the weed management with these 
products would be more than the value of the crop. 

The crude botanical product, maize gluten, is sold as a 
fertilizer, but has weed-controlling properties (Bingamen, 
Christians, 1995), possibly due to phytotoxic dipeptides 
(Liu, Christians, 1994). The application rate for weed 
management is huge (ca. 810 kg/ha). 

There are many studies published on formulation 
methods to improve the efficacy of such products (e.g., 
Taban et al., 2021), however, there are still no such completely 
natural commercial products that are competitive with 
synthetic herbicides. These natural, commercial products 
are used primarily by home gardeners who want greener 
pest management with no residual effects and are not 
concerned by cost. 

The plant natural amide compound sarmentine 
(Figure 1) has been patented and was/is being developed 
as a herbicide for organic weed management. It is 10 to 
30 times more herbicidal than pelargonic acid on grass 
and dicot weeds (Dayan et al., 2015). These authors found 
that it has several modes of action, including disruption of 
the plasma membrane, perhaps by inhibition of enoyl-ACP 
reductase, and inhibition of photosystem II (PSII) of 
photosynthesis. Having at least two targets makes the 

Sarmentine

Aspterric acid

7-deoxy-sedoheptulose

Linarin

Romidepsin

Figure 1 - Structures of some of the natural phytotoxins 
mentioned in the text.
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phytotoxic (Bajsa et al., 2012), and of the herbicide 
cinmethylin to the monoterpene 1,4-cineole (May et al., 
1985; Vaughn, Spencer, 1993). Both of these have modes 
of action that are unique among herbicides. Cinmethylin 
inhibits acyl-ACP thioesterase (Campe et al., 2018) and 
endothall inhibits serine/threonine protein phosphatase 
(Bajsa et al., 2012). These modes of action were not clearly 
determined and recognized by the Herbicide Resistance 
Action Committee (2021) until decades after they were 
first commercialized, so at the farm level, these are not 
really new modes of action. 

There are cases of potent natural phytotoxins with 
new molecular target proteins that might be modified to 
improve their physicochemical properties and/or to reduce 
the cost of production of the compound. For example, 
the microbial tetrapeptide tentoxin inhibits CF1 ATPase 
of the chloroplast and is active on key weed species at 
low concentrations and is harmless to maize and soybean 
(Duke, 1986; Lax et al., 1988); however, it is extremely 
expensive. Efforts have been made to make analogs to 
reduce the cost and improve the herbicidal activity of this 
molecule (e.g., Edwards et al., 1987). Similarly, the potent 
microbial phytotoxin hydantocidin that kills plants by 
inhibition of adenylosuccinate synthetase (Cseke et al., 
1996; Heim et al., 1995; Siehl et al., 1996) was the focus of 
numerous attempts to create more effective herbicides (e.g., 
Harrington, Jung, 1994). Hydantocidin is a proherbicide 
that must be phosphorylated to inhibit its target enzyme 
(Fonné-Pfister et al., 1996; Heim et al., 1995; Siehl et al., 
1996). This enzyme target is not used by any commercial 
herbicide. These are examples of potential herbicides with 
new modes of action that would be very useful in managing 
evolution of herbicide resistance, even though new 
modes of action alone are not a panacea for this problem 
(Gaines et al., 2021).

There are also examples of natural phytotoxins that 
have modes of action of commercial herbicides, but 
bind the molecular target differently than commercial 
herbicides, making target site-resistant weeds susceptible 
to them. For example, the fungal metabolite tenuazonic 
acid is a PSII inhibitor that binds the D1 differently than 
triazine herbicides (Chen, Quiang, 2017, Chen et al., 
2007). Derivatives of this compound have been patented as 
herbicides (Chen, Quiang, 2017). Tenuazonic acid itself is 
a good herbicide in cotton which is naturally tolerant to it 
(Zhou et al., 2019).

2.3 Used to identify new herbicide targets

Herbicides with new herbicide modes of action are in 
great demand because of the evolution of weed resistance 
to herbicides from almost all mode of action classes (Heap, 
Duke, 2018; Gaines et al., 2020) and the lack of commercial 
herbicides with new modes of action over the last 30 years 
(Duke, 2012; Qu et al., 2021). Therefore, herbicides with 
new molecular targets are needed for herbicide resistance 

evolution of target site resistance more improbable, a trait 
that no commercial herbicides have (Gressel, 2020).

The tripeptide bialaphos from Streptomyces hygroscopus 
has been sold in Japan as a fermentation-produced 
herbicide (Tachibanca, 2003). It must be converted to 
phosphinothricin in plants to attack its molecular target as a 
herbicide, glutamine synthetase (GS) (Wild, Ziegler, 1988). 
The synthesized version of phosphinothricin, glufosinate, 
is a major herbicide with a growing market, due to the 
increased utility of glufosinate-resistant crops because of 
increased in glyphosate-resistant weeds (Duke, 2019a). The 
commercial product is a racemic mixture of the active, pure 
L-glufosinate which is identical to phosphinothricin and the 
inactive D-glufosinate (Copping, Duke, 2007). Efforts are 
being made to economically produce the L-enantiomer, the 
use of which would be advantageous to reduce crop injury 
and for potential toxicological reasons (Takano, Dayan, 
2020; Yue et al., 2020). There are numerous other natural 
GS inhibitors that are not commercialized as herbicides 
(Lydon, Duke, 1999), perhaps because of high cost and/or 
inadequate physicochemical properties. 

There are many papers on the phytotoxicity of natural 
compounds that suggest that they have potential as 
herbicides (e.g., Dayan and Duke, 2014), but, as discussed 
above, few are likely to ever be used directly as herbicides. 
The reasons for this are combinations of high costs, poor 
efficacy, unsuitable physicochemical properties, and/or 
unacceptable mammalian toxicity. Weed management is 
the biggest pest problem of many organic farmers, so an 
effective, economical, and safe natural product herbicide is 
in great demand, presenting a strong incentive to discover 
such a natural product that could be used directly as a 
commercial herbicide. 

2.2 Used as templates for better herbicides 

Simplification of natural compound structure to reduce 
cost and/or alteration of the structure to improve activity 
or physicochemical properties (Sparks, Duke, 2021) has 
been very successful in both commercial pesticide and 
pharmaceutical development. Compared to insecticides 
and fungicides, there are relatively few commercial 
herbicides that can trace their origins back to a natural 
product (Gerwick, Sparks, 2014; Sparks et al., 2017; 
Lorsbach et al., 2019; Sparks, Duke, 2021). The clearest 
case of important herbicides being derived from a natural 
compound is the triketone HPPD inhibitor herbicides that 
were derived from the natural triketone allelochemical 
leptospermone (Lee et al., 1997). This was a new herbicide 
mode of action when the triketone herbicides were 
introduced. Other resemblances of commercial herbicides 
to natural compounds may be by chance, as there is no 
public documentation of their derivatization from a 
natural molecule. Two examples of this are the strong 
resemblances of the herbicide endothall to the natural 
compound cantharidin from insects, which is also very 
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romidepsin as both a phytotoxin and a HAD inhibitor. 
However, APO is a stronger phytotoxin than DIBOA 
(Macías et al., 2005a).

A complication in determining the mode of action of 
some natural compounds as herbicides is that they may 
have more than one molecular target. For example, the 
relatively potent allelochemical sorgoleone inhibits PSII, 
mitochondrial electron transport, HPPD, and root H+-
ATPase activity (Dayan et al., 2010). However, there are no 
papers that demonstrate multiple modes of action at a single 
concentration under realistic field conditions. In the case of 
sorgoleone, PSII appears the be the dominant mode of action 
in seedlings, with additional modes of action being involved 
in older plants (Dayan et al., 2009). Similarly, the natural 
phytotoxins linarin (Figure 1), a flavone phytochemical, 
(Rios et al., 2018) and 3-acetyl-5-isopropyltetramic acid 
(Chen et al., 2011), both PSII inhibitors, also appear to 
have other modes of action. The multiple modes of action 
of sarmentine (Dayan et al., 2015) are discussed above. For 
natural products that are the result of their evolution to be 
phytotoxic, the evolutionary process occurred over a much 
longer period than that of the use of synthetic herbicides, 
so avoidance of evolved target site resistance to them 
would favor compounds with multiple modes of action. As 
mentioned earlier, no synthetic herbicides have multiple 
modes of action at recommended application rates, but, 
considering the current herbicide resistance problems, a 
compound with multiple modes of action would be highly 
desirable (Gressel, 2020).

Clearly, a synthetic compound that effectively inhibits 
the targets of natural phytotoxins that kill plants at low 
concentrations could be a desirable commercial herbicide 
with a new mode of action if its cost is not prohibitive and 
its toxicological profiles (human and environmental) are 
benign. Natural products provide better clues to targets for 
herbicides than other strategies such as knocking out genes 
for potential targets. The limitations of the gene knockout 
approach are detailed by Duke et al. (2009).

3. Microbial Bioherbicides

Microbial bioherbicides, as defined by the United 
States Environmental Protection Agency, are live or killed 
microbes that are applied to kill or manage weeds. To our 
knowledge, regulatory agencies in other parts of the world 
do not consider killed microbe preparations to be microbial 
bioherbicides. Most of the effort with such products 
has been with live microbes, using either an inoculative 
or inundative approach. The inoculative approach is to 
introduce a microbe to an area infested by the target 
weed(s) and let it spread. This approach has been used 
primarily for management of invasive weeds in non-crops 
settings (Morin, 2020). This type of classical biocontrol is 
not suitable for most crops, especially annual crops, as the 
spread and action of the microbe are usually too slow to 
sufficiently protect a crop during a production season. Also, 

management strategies. One approach to achieve this goal 
is to establish that inhibition of a new molecular target will 
kill plants. For several possible reasons, not all potential 
molecular targets are amenable as a herbicide target 
(Dayan, Duke, 2020). There are, however, many natural 
compounds that kill plants through inhibition of enzymes 
of molecular targets that are not one of those of commercial 
herbicides, indicating that these are potentially good 
targets for focusing herbicide discovery. Dayan and Duke 
(2014) reviewed the molecular targets of natural herbicidal 
compounds known at that time, describing many that 
have potential for the development of new herbicides. We 
will not repeat this extensive review, but since this review 
was published, several new molecular targets of microbial 
metabolite phytotoxins have been published that we cover 
below. We also discuss some older compounds not covered 
in previous reviews.

Compounds that have not received significant 
recognition in previous reviews are the phytotoxic 
naphthopyranone derivative compounds from the 
coprophilous fungus Guanomyces polythrix (Macías et al., 
2001). These compounds appear to act primarily through 
interference with calmodulin (Mata et al., 2003), a novel 
target for a herbicide. Martínez-Luis et al. (2007) discuss 
several natural compounds that may act as phytotoxins by 
interfering with calmodulin function.  

Aspterric acid (Figure 1), a phytotoxic, sesquiterpene 
metabolite of several fungi, was found to be a potent 
inhibitor of the last enzyme of the branched chain amino 
acid pathway, dihydroxy acid dehydratase (DAD) (Yan et al., 
2018). As pointed out by Duke et al. (2019b), this compound 
is herbicidally weak compared to commercial herbicides, 
although DAD is potentially a good, new target that has 
been the focus of past company herbicide discovery efforts. 

The cyanobacterial non-primary metabolite sugar, 
7-deoxy-sedoheptulose (Figure 1), was found to be  
phytotoxic by inhibition of 3-dehydroquinate 
synthase, the second enzyme of the shikimate pathway 
(Brislisauer et al., 2019). Its activity on Arabidopsis 
thaliana seedling growth was similar to, if not greater 
than, that of glyphosate, another inhibitor of an enzyme 
(5-enolpyruvylshikimate-3-phosphate synthase) of the 
shikimate pathway that is the most successful herbicide 
in the world (Duke, Powles, 2008).

Romidepsin (Figure 1), one of two phytotoxic natural 
compounds from a biopesticide based on the soil microbe 
Burkholderia rinojensis (see Section 3), inhibits plant histone 
deacetylases (HDAs) (Owens et al., 2020). It is highly active 
on A. thaliana (IC50 = 0.19 µM) and is seven-fold more 
active on HDAs in the reduced than the oxidized form. The 
aminophenoxazinone compound 2-amino-3H-phenoxazin-
3-one (APO), which is produced by soil microbes through 
metabolism of the plant-produced benzoxazinoid 
allelochemical 4-dihydroxy2H-1,4-benzoxazin-3(4H)-one 
(DIBOA) (Macías et al., 2005b), is also a HDA inhibitor 
(Venturelli et al., 2015), although it is weaker than 
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if successful, the microbe can become native to the treated 
area, so that more of the bioherbicide is not needed – a 
disincentive for commercialization. The microbe of choice 
for the inoculative approach is usually one from the center 
of origin of the invasive weed. There are ecological risks 
to introduction of a microbe into a habitat in which it has 
never existed. Also, the Nagoya Protocol has complicated 
use of microbes from the country or countries of origin in 
countries where the microbe is not found (Copping, 2015). 

The inundative approach has been to treat an agricultural 
field with a formulation of an indigenous plant pathogen 
that is harmless to the crop and to nearby non-weed plant 
populations. The application is much like that of a chemical 
herbicide, not spreading significantly to plants that are not 
sprayed. In most cases, the pathogen has been a fungus, 
formulated as a mycelial, conidia, or spore preparation. One 
viral (Tobacco mild green mosaic virus) and three bacterial 
microbial (Xanthomonas campestris pv. poae, Pseudomonas 
fluorescens and Streptomyces scabies) bioherbicides have 
been developed (Table 1). Most of these products that 
were available are no longer sold. Several living microbial 
bioherbicides have been approved for commercial use and 
marketed, but their use has been very limited for several 
reasons. Examples of most of these are in Table 1. 

At the time of the review of Morin (2020), only three 
of the products were commercially available. Many other 
microbes have been suggested as potential microbial 
bioherbicides. For example, Dalinova et al. (2020) provide 
a list of Alternaria species with potential as mycoherbicides. 
Unfortunately, considerable effort and money has been 
spent on some of those listed (e.g., A. cassia, and A. 
destruens) without a viable commercial product being 
produced. With the increasing cascade of evolved resistance 
to synthetic herbicides (Heap, Duke, 2018), some of these 
might be reexamined, especially those that target weeds 
species that have become major problems across wide areas 
because of evolved herbicide resistance. The A. alternata 
pathovars that infect Amaranthus retroflexus (Lawrie et al., 
2000) and Echinocloa spp. (Motlagh, 2012) are examples of 
these. Many other genera of fungi have been researched 
for use as mycoherbicides without a commercial success. 
Examples of these are Stagonospora cirsii for Cirsium arvense 
control (Sokornova, Berestetskiy, 2018) and Colletotrichum 
truncatum for control of Bidens (Vieira et al., 2018) and 
Sesbania species (Weaver et al., 2007). Several of these 
studied, but not commercialized species before 2015 are 
listed by Harding and Raizada (2015).

A living microbial bioherbicide is attractive in the 
USA for three major reasons (Table 2). First, the cost 
of development and regulatory approval is significantly 
less (usually a few million $USD) than that of chemical 
herbicides for which this cost is hundreds of millions 
of $USD (Marrone, 2019). Second, if the product is not 
genetically engineered or formulated with synthetic 
chemicals, it can be accepted by organic farmers. Third, it 
should leave no chemical residues in the crop. There exists 

a huge market potential for an economical and efficacious 
microbial bioherbicide. Additionally, there is still no 
evolved resistance to such products. Most of the companies 
involved in discovery and development of these products 
are in North America, in large part because the regulatory 
climate for their approval is more favorable than in other 
parts of the world, such as the European Union (Balog et al., 
2017, Damalas, Koutroubas, 2017).

However, there are many limitations of microbial 
bioherbicides (Table 2), and, because of these, there are few 
successful products of this type. For unclear reasons, there 
has been much more success with microbial biopesticides 
that target insect and plant pathogen pests (Marrone, 
2019), and, thus, reviews of microbial biopesticides rarely, 
if at all, mention microbial bioherbicides (e.g., Ruiu, 2018; 
Thakur et al., 2020). The limitations were reviewed over 
25 years ago by Auld and Morin (1995). Many of these 
limitations were further discussed by Boyetchko and Peng 
(2003) and Hallett (2005) a decade later and more recently 
by Harding and Raizada (2015), Cordeau et al. (2016), 
Watson (2018), Morin (2020), Berestetskiy (2021) and 
Hasan et al. (2021). These limitations still exist, but recently 
developed technologies might help to overcome them.

First, the plant pathogens used most always have a very 
limited host range. This provides some assurance that it 
will not spread to non-weed plants, but if only one or two 
weed species are targeted, rather than many weeds species, 
the cost of the bioherbicide and applying it may not justify 
its use. An exception to this problem is Phoma macrostoma 
(Table 1) which is effective on at least 38 dicot weed species 
(Bailey et al., 2011). Research has been conducted to 
increase host range and virulence by genetic modification 
of the microbe (e.g., Greaves et al., 1989; Sands, Miller, 
1993; Amsellem et al., 2002). However, the potential for 
environmental mishap with this approach is much higher 
than that of genetically engineered crops. Improved 
formulations can extend the host range and/or increase the 
virulence of mycoherbicides on normally non-target weed 
species (e.g., Boyette, Abbas, 1994; Boyette et al., 1996; 
2019). This approach is less risky, but more limited in what 
can be accomplished.

There are significant problems with living products. 
These include a limited shelf life and more limited storage 
conditions, lack of compatibility with other pesticides, and 
the need for a specific, well-defined microenvironment for 
the microbe to infect the target weed. Shelf life and storage 
conditions can be improved by formulation (Amsellem et al., 
1999; Zidack, Quimby, 2002), freeze drying (Hoagland et al., 
2017), and by low temperatures and a modified atmosphere 
in the packaging (Teshler et al., 2007). These problems are 
less with viral, microbial bioherbicides such as Tobacco mild 
green mosaic virus for control of tropical soda apple (Solanum 
viarum) (Charudattan, 2007). 

To effectively infect the target weed, the microbe 
propagule must have a proper microenvironment for a 
sufficient period of time to germinate and/or grow and infect 
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that weed. Those involved in development of plant growth- 
and health-promoting microbes for crops have had to deal 
with similar problems, although these microbes infect the 
root, where maintaining a proper microenvironment is not 

as difficult as for foliar-applied microbes (Zvinavashe et al., 
2021). The microenvironment problem can be partially 
overcome by a formulation that provides the proper 
microclimate when applied. For example, a gel that does not 

Table 1 - Examples of microbial bioherbicides for use in agriculture that have been commercialized at one time or gotten to the 
trade name stage. Some of the products were reintroduced with new trade names

Microbe & Ref. Weed target(s) & Status Trade name Year of Introduction or 
registration

Alternaria cassia 
Bannon 1988

Cassia obtusifolia
C. coccidentalis

Crotalaria spectabilis
Never commercialized

Casst™ never

Alternaria destruens
Bewick et al. 2000

Cusucta spp.
Discontinued

Smolder™ 2005

Chondrostereum pupureum
Hintz 2007

Populus and Alnus spp.
Unknown

Chontrol™ 2004

Colletotrichum acutatum
Morris 1989

Hakea sericea
Discontinued

Hakatak™ 1990

Colletotrichum gloeosporiodides
f. sp. aeschynomene
Cartwright et al. 2010

Aeshynomene vigrinica
Available on demand

Collego® 1982

Colletotrichum gloeosporiodides
f. sp. malvae
Boyetchko et al. 2007

Acacia mearnsii and  
A. pycnantha
Discontinued

Stumpout™ 1997

Cylindrobasidium leave
Morris et al. 1999

Acacia mearnsii and A. pycnantha
Discontinued

Stumpout™ 1997

Phoma macrostoma
Bailey et al. 2011

many broadleaf weed species
Available

Bio-Phoma™ 2016

Phytophthora palmivora
Ridings 1986

Morrentia oderata
Discontinued

DeVine® 1982

Pseudomonas fluorescens
Kennedy et al. 2001

Bromus tectorum
Discontinued

D7® 2014

Puccinia canaliculata
Phatak et al. 1983

Cyperus esculentus
Discontinued

Dr. Biosedge™ 1987

Puccinia thlaspeos
Knopp et al. 2002

Isatis tinctorial
Discontinued

Woad Warrior® 2002

Sclerotina minor
Watson2018

Taraxacum officinale
Discontinued

Sarritor® 2009

Streptomyces scabies
O’Sullivan et al. 2015

several grass and broadleaf weeds
Never commercialized

Opportune™ 2012

Tobacco mild green mosaic vírus
Charudattan & Hiebert 2007

Solanum viarum
Available

SolviNix™ 2014

Xanthomonas campestris pv. poae
Imaizaumi et al. 1999

Poa annua
Discontinued?

Camperico™ 1997

Several fungi
Gale & Goutler 2013

Parkinsonia aculeate
Available

Di-Bak® 2019

Source: Adapted in part from Watson (2018) and Morin (2020)
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dry out quickly, providing enough moisture and nutrients 
for the microbe to grow and infect the weed can be used. 
Another example is an invert emulsion formulation that 
can retard evaporation, allowing the fungal propagule more 
time to germinate and/or grow and infect the host weed 
(Daigle et al., 1989). Unfortunately, such formulations 
with high viscosity usually require air-assist spray systems 
that are more expensive and complicated than standard 
spray systems. This specialized application technology 
contributes to the reluctance to use a bioherbicide that kills 
only one or a very few weed species. 

Certain co-formulated chemicals can improve the 
efficacy of live microbial bioherbicides. For example, the use 
of a low dose of glyphosate with a mycoherbicide was almost 
commercialized (Christy et al., 1993). In some cases, a low 
glyphosate dose synergizes mycoherbicides by reducing 
the production of weed phytoalexins and other defensive 
compounds (e.g., lignin) derived from the shikimate 
pathway (Gressel, 2010, Duke, 2018b). Such a product 
would not have been used by organic farmers, but would 
be suitable for farmers wishing to reduce herbicide residues 
in marketed crops, the major market for bioherbicides 
(Marrone, 2019). Glyphosate and a mycelial preparation of 
Myrothecium verrucaria synergistically managed the hard-
to-kill perennial weeds redvine (Brunnichia ovata), kudzu 
(Pueraria lobata), and trumpet creeper (Campsis radicans) 
(Boyette et al., 2006; 2020). Others (Mitchell et al., 2008) 
found application of subtoxic glyphosate doses to shattercane 
(Sorghum bicolor (L.) Moench.) before application of the two 
proposed mycoherbicides Colletotrichum graminicola and 
Gloeocercospora sorghi enhanced their efficacy, but there 
was antagonism if the order of application was reversed. 
Similarly, Boyette et al. (2008) found application of low 
doses of glyphosate (150 g ha-1) applied before low doses 
(1.25 x 106 spores mL-1) of the mycoherbicide Colletotrichum 
truncatum to hemp sesbania (Sesbania herbacea) provided a 
greater herbicidal effect than the added effect of the two 

treatments alone. No more than an additive effect occurs 
when glyphosate and the microbe were applied together 
or when the microbe was applied before glyphosate. 
Commercial “inert” formulation ingredients of glyphosate 
can be incompatible with mycoherbiides. For example, 
Hoagland et al. (2018a) found technical grade glyphosate to 
synergize the efficacy of M. verrucaria on palmer amaranth 
(Amaranthus palmeri) when formulated together, but some 
commercial formulations of glyphosate inhibit the fungus. 
Peng and Wolf (2011) give examples additive or synergistic 
interactions of Pyricularia setariae and sethyoxydim on 
green foxtail (Setaria veridis) and other weed species, as 
well as positive interactions of Colletotrichum truncatum 
and metribuzin, 2,4-D, clopyralid, and MCPA on scentless 
chamomile (Matricaria perforata). 

Even though a herbicide or other chemical may 
synergize the efficacy of a microbial bioherbicide by effects 
on the target weed, it might also antagonize some plant 
pathogens by direct effects on the microbe (Duke, 2018b). 
For example, Hoagland et al. (2018b) found glufosinate 
did not synergize the mycoherbicide C. truncatum when 
glufosinate was applied in combination with sub-lethal 
spore concentrations of the bioherbicidal fungus in 
experiments with hemp sesbania. However, glufosinate 
incorporated in a growth agar medium at 0.25 mM to 2.0 
mM, caused a 10% - 45% reduction of C. truncatum colony 
radial growth, compared to fungal growth on agar without 
glufosinate, and the herbicide also inhibited sporulation 
of this fungus. This agrees with other findings, in which 
glufosinate inhibited or suppressed fungal growth and 
disease severity of several different plant pathogens such 
as Pythium ultimum (Liu et al., 1997), Magnaporthe grisea 
(Tada et al., 1996), Cochliobolus miyabeanus (Ahn, 2008), 
and Rhizoctonia solani (Wang et al., 2003). 

Fungicidal effects or some herbicides are not surprising, 
as fungi have some of the same enzymes targeted by 
herbicides in plants. A solution to this type of antagonism 
could be to genetically engineer the microbe to be resistant to 
the herbicide or chemical. For example, Brooker et al. (1996) 
inserted the bar gene for bialaphos/glufosinate resistance 
into the mycoherbicide Colletotrichum gloeosporioides f. 
sp. aeschynomene (Table 1) to make it compatible with 
bialaphos. They found that the transformant and bialaphos 
were synergistic, allowing reduced application rates of both 
the mycoherbicide and the natural product herbicide. 

Another problem is the quality control of fermentation 
products. There can be problems with producing sufficient 
mycelia, spores, or conidia, loss of virulence over time, and 
poor viability of mycelia, spores or conidia. If the presence 
of phytotoxins is required for the activity of the product, 
whether dead or alive, fermentation conditions can greatly 
alter their presence and quantity (e.g., Portela et al., 2020). 

Despite all these problems, several living microbial 
bioherbicides have been commercialized or almost 
commercialized, although almost all of those previously 
brought to market are no longer available (Table 1). This is 

Table 2 – Advantages and disadvantages of living 
microbial bioherbicides

Advantage Disadvantage

Low development cost Narrow host range

Low cost of regulatory 
approval Short shelf life

Good public acceptance Special storage conditions

No chemical residues Special formulation an application 
technology

Narrow host range Required microenvironment for 
infectivity

Approved for organic farming Quality control issues

No evolved resistance yet Relatively expensive

Low mammalian and  
ecotoxicity

Efficacy is usually poorer than 
chemical herbicides

Slower than chemical herbicides
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primarily because of a combination of relatively high cost 
for relatively limited or poor performance. Considering 
their highest pest management costs are for control of 
weeds, many organic farmers would pay a premium for an 
efficacious product that kills a major problem weed. 

In the USA, microbial bioherbicides can be composed of 
killed microbes. In such cases, the killed microbial formulation 
must contain a microbially-produced phytotoxin or 
phytotoxins. This type of product has several clear advantages 
over a living microbe. Such a product could be handled and 
applied in much the same way as a conventional herbicide, and 
there would be no risk of disease spread to non-target plants. 
Storage conditions, shelf-life, formulation, compatibility 
with agrochemicals, and infectivity are not problems or are 
lesser problems. Furthermore, the phytotoxins produced by 
microbes are often effective on a much wider range of weed 
species than the living plant pathogen.

A killed potato scab bacterium (Streptomyces 
acidiscabies) preparation containing the strong phytotoxin 
thaxtomin has been developed (Opportune™). Thaxtomin 
A is a potent cellulose synthesis inhibitor, that apparently 
binds a different binding site than the commercial synthetic 
cellulose synthetase inhibitor isoxaben (Scheible et al., 
2003; Tegg et al., 2013). Thaxtomin A provides effective, 
selective broadleaf weed control in turfgrass (Wolfe et al., 
2016a), with some control of smooth crabgrass (Digitaria 
ischaemum) in some turfgrasses (Wolfe et al., 2016b). The 
killed S. acidiscabies product is being developed for use in 
rice and other cereals.

An example of such a potential product is a preparation 
of the soil microbe Burkholderia rinojensis (Marrone, 
2019). It contains both the phytotoxins romidepsin and 
spliceostatin C. These compounds are quite potent on 
Amaranthus species. They have entirely new modes of 
action, with romidepsin inhibiting histone demethylase 
(Owens et al., 2020) and spliceostatin C inhibiting the 
function of the spliceosome (Bajsa-Hirschel et al., 2019).  

As discussed in section 2.2, many microbes produce 
potent phytotoxins, so if cultured under conditions 
favorable for production of high levels of the phytotoxins, 
these microbes may have use in killed microbe preparations 

of a microbial bioherbicide. Such products could be mixed 
to expand the range of weed species that could be managed. 
Some previously commercialized microbial bioherbicides 
might be more viable products if they were grown to 
maximize phytotoxin production and applied as a killed 
microbe formulation, thus eliminating issues associated 
with a live organism. For example, Phoma macrostoma 
produces highly phytotoxic macrocidins that have been 
studied as the basis for standalone chemical herbicides 
(Graupner et al., 2006).

4. Conclusions

There is a great need for new weed management options 
in crops that can be provided by both natural phytotoxins 
and microbial bioherbicides. Compared to products for insect 
and crop pathogen management, these tools have been 
underutilized for weed management. Natural phytotoxins can 
be used directly as herbicides, but this approach has not been as 
successful as using them as templates for synthetic herbicides. 
They can also be used for discovery of new modes of action 
and molecular targets for future herbicides. Development and 
regulatory approval of microbial bioherbicides for inundative 
use in crops is relatively inexpensive. Additionally, they 
have low environmental impact and good public acceptance. 
Despite these advantages, their success has been limited 
by narrow host specificity, quality control, short shelf life, 
microenvironment requirements, and variable efficacy. New 
technologies can overcome these problems. In the U.S.A., 
microbial bioherbicides can be preparations of killed microbes 
containing phytotoxins produced before the microbes are 
killed. This approach eliminates some of the disadvantages of 
applying live organisms. Natural product and microbe-based 
or -inspired weed management should play a larger future role.
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