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ABSTRACT. In this work, a comparative analysis between Gaussian and Golden wavelets is presented.
These wavelets are generated by the derivative of specific base functions. In this case, the order of the
derivative also indicates the number of vanishing moments of the wavelet. Although these wavelets have
a similar waveform, they have several distinct characteristics in time and frequency domains. These dis-
tinctions are explored here in the scale space. In order to compare the results provided by these wavelets
for a real signal, they are used in the decomposition of a signal inserted in the context of structural health
monitoring.

Keywords: gaussian wavelets, golden wavelets, vanishing moments, structural health monitoring.

1 INTRODUCTION

Wavelet analysis is a powerfull mathematical tool for several areas of science and engineering.
There are several problems in different areas that can be explored and solved using this theory.
Defined in a simple way, wavelets are analysis functions that satisfy certain conditions, mostly
used in the Wavelet Transform (WT) [5,16,17].
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140 GAUSSIAN AND GOLDEN WAVELETS

WT is a mathematical tool that splits signals into different frequency bands. As described by
Daubechies [5], WT can be divided into two main types: Continuous Wavelet Transform (CWT)
and the Discrete Wavelet Transform (DWT). The WT type choice depends on the objective and
the problem to be analyzed. CWT is more inidicated for a detailed time-frequency (scale) analysis
or precise localization of signal transients. Generally, DWT is used to obtain the sparsest possible
signal representation for compression, denoising, or signal transmission [21]. In a general sense,
this paper focuses on CWT.

The result of the WT depends directly on the wavelet function used. Thus, the wavelet choice
must be made carefully, and it is done directly by the characteristics of the signal to be analyzed
[17]. Wavelets can be complex or real-valued functions. Real wavelets are used to detect sharp
signal transitions. On the other hand, analytic complex wavelets are used to identify instantaneous
frequency evolution [16].

There exist many different types of wavelet functions to be chosen. Some wavelets belong to
specific families such as the well-known Daubechies wavelets [5]. The derivatives of the Gaus-
sian probability density function form another example of real wavelets family, known as Gaus-
sian wavelets [24]. Another example recently presented is the Golden wavelets family, where
the members are obtained by the derivatives of the quotient between two distinct Fibonacci-
coefficient polynomials (FCPs) [10]. For both wavelet families, the order of the derivative also
indicates the number of vanishing moments that the generated wavelet has. The number of van-
ishing moments is a very important property, since this value is directly related to the smoothness
of the wavelet.

In Gossler et al. [11], a comparative analysis between Mexican and Golden Hat wavelets was pre-
sented. Mexican Hat is a well-known wavelet in the literature, defined as the second derivative
of the Gaussian probability density function [5], and therefore, it is a Gaussian family member.
Golden Hat wavelet is a Golden family member and it is generated by the fourth quocient deriva-
tive between two distinct FCPs. It was verified that, although Mexican and Golden Hat wavelets
have similar waveforms, they can present significantly different results. In fact, a crucial dif-
ference between these wavelets is that Golden Hat has twice as much vanishing moments than
Mexican Hat [11].

In this work, a comparative study will be presented considering a variety of Gaussian and Golden
wavelets. Using the methodology similar to that presented in [11], some evaluation metrics will
be used in order to characterize these wavelets in time and frequency domains. For a comparative
analysis, twenty wavelet functions will be analyzed, ten of them belong to the Gaussian family,
and the other ten are Golden wavelets. After comparing the wavelets using the chosen metrics,
they will be used to decompose signals in the context of structural health monitoring (SHM)
systems. The purpose of this application is to compare in practice the results obtained with the
considered wavelets.

SHM based on wavelet analysis is a significant subject of research [26]. Taha et al. [22] presents
a state-of-the-art review study of WT applied to SHM systems, where specific needs of SHM are
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addressed to WT. In the specialized literature, there is a variety of articles in which wavelets are
proposed as a basic signal processing tool in SHM applications [8, 13, 14,19,20,23].

The remainder of the paper is organized as follows. Firstly, a basic description of real wavelets
and CWT from a signal analysis point of view is presented, as well as some of its mathemat-
ical properties and requirements. Then a comparative analysis between Gaussian and Golden
wavelets is presented in qualitative and quantitative terms. It is followed by the application
of these wavelets in the decomposition of real signals inserted in the SHM context. Finally,
conclusions are drawn.

2 REAL WAVELETS AND CONTINUOUS WAVELET TRANSFORM

Wavelet analysis is often capable of revealing characteristics or data aspects of a signal, such as
trends, breakdown points, discontinuities in higher derivatives, and self-similarity [5]. As well as
Fourier analysis, wavelet analysis deals with expansions of basic functions. In signal processing,
wavelet analysis can be used for a wide variety of fundamental tasks, being very useful in various
application fields, e.g., seismology, turbulence analysis, computer graphics, astronomy, pattern
recognition, quantum optics and biomedical engineering [16].

A family of functions of the form

1 _
%,T(t)z\/gy/(’;), 5,TER,5>0, @2.1)

generated from single function y by the operations of dilations s and translations 7, such that
2 e 2
WP = [ wio)Pdr <+

has been used frequently in recent years in various applications. These functions are called
wavelets [12]. A real wavelet y(r) satisfies the admissibility condition given by [3, 12]:

tee | I (S2)|2
= dQ oo 2.2
CV/ /0 < oo, ( )

where
oo

¥(Q)= v(t)e /¥ dt,

is the Fourier Transform (FT) of y/(z), Q is the angular frequency parameter, and j = /—1 is
the imaginary unit. y(¢) function is called a mother wavelet [17]. Condition (2.2) implies that
[T w(t)dt =¥(0) = 0, which means that wavelets are zero average functions [5].

For scaling s (s > 0) and translation T parameters, and for a specific real wavelet choice y(r), the
CWT for a continuous time finite energy signal x(¢) is given by Eq. (2.3) [5, 16, 17]:
~+oo

WY em) = [ xOwar 2.3)

—o0
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142 GAUSSIAN AND GOLDEN WAVELETS

Note that W, (s, 7) measures, in a certain sense, the fluctuations of the signal x(r) around the
point 7, at the scale given by s [17]. When s increases, y(¢) is expanded, and its frequency
content moves to the lower frequency bands. Decreasing s implies the compression of y(¢), and
its frequency content moves to the higher bands. Generally, wavelet functions are considered to

have unit energy, i.e., | y|*> = 1, and the normalization factor 1/,/s ensures || y||* = | y; </

Eq. (2.3) can also be rewritten as a convolutional product [16]. Therefore, the real CWT can
be also interpreted as a frequency-based filtering of the signal by rewriting (2.3) as an Inverse
Fourier Transform (IFT):

WY (s,7) = % | /::CX(Q) VP (sQ) 07 dQ, 2.4)

where X (Q) is the FT of the signal x(r).

The information concerning the frequency content of the signal is provided by a relative fre-
quency fy estimated from the mother wavelet center frequency f, in Hz, the signal sampling rate
T and the decomposition scale s. To relate scale and frequency the following relation is used [1]:

Je

:7’ 2.5
T.xs 2.5

s
where f, can be estimated by association with a periodic signal or by the predominant frequency
of [¥(Q)|. In [16], the expression given by Eq. (2.6) is presented to calculate the center angular
frequency denoted by 1. This parameter is associated with analytic complex wavelets, since
Y(Q) is zero at negative frequencies, i.e., ¥(Q) =0if Q < 0.

1

r4-c0 5
n= E/o QW (Q)|%dQ. (2.6)

The wavelet time location is defined by u = [*Z¢|y(t)|?dt. The spread around p and 1 are
measured by the variances

Foo 1 e
of= [ _u—uPlyPd, md od=— [ (@-nPw@Pde, @)

respectively [16]. From the Heisenberg uncertainty principle, we obtain that o; X 6 > 1/2, i.e.,
there is a minimum surface that limits the time-frequency resolution [7].

An important property of wavelets is the number of vanishing moments. The greater it is the
smoother is the wavelet. Vanishing moments are crucial to measure the local regularity of a
signal [16]. A wavelet y/(r) has N vanishing moments if the following condition is verified [17]:

+oo
/ Fy(t)dt =0,k =0,1,-- \N—1, 2.8)

—o0

from which follows that any wavelet has at least one vanishing moment. Based on the vanishing
moments definition (2.8) the following theorem can be proved [16]:
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Theorem 2.1 (). A wavelet y(t) with a fast decay has N vanishing moments if and only if there
exists 0(t) with a fast decay such that

dN
v(t) = (—I)th—NQ(t). (2.9)
As a consequence
avy
WY (s, 1) = SNW(X* 6,)(1), (2.10)

with
0,(1) =5 120(—1/s).

Moreover, y(t) has no more than N vanishing moments if and only if

/w 0()di = K, K £0.

The convolution x % O, can be interpreted as a weighted average of x with a kernel dilated by s.
In [16], Mallat also proved that the following equation holds:

WY (s, 7) av

lim =K ya(1). @2.11)

50 sN+1/2
for an N times continuously differentiable function x(r) in the neighborhood of 7.

From Egs. (2.3), (2.4) and (2.10), it is clear that the coefficients Wx"/(s,r) are the result from
scale and translation parameters variations and the choice of the wavelet function, since these
parameters are applied in order to change the function shape. In [24], Torrence and Compo list
four determinant factors for this function choice, related to orthogonality, counter-domain, width
and shape.

Orthogonal wavelets provide a fast implementation analogous to a filter bank approach, and
they are generally used in DWT. On the other hand, for analysis purposes, the non-orthogonal
wavelet functions considered in CWT are more suitable because their redundancy reveals spectral
information of the signal. In time series analysis this non-orthogonal transform is useful since
smooth and continuous fluctuations are expected [24].

Regardless of the wavelet function chosen, there exists a trade-off between its support (width)
in time and frequency domains, which affects CWT resolution. If the wavelet function is narrow
in time, then it has good time-resolution but poor frequency-resolution, and vice-versa, due to
Heisenberg uncertainty principle. Meyer wavelets, for example, have finite support in frequency
but infinite support in time [16]. Wavelet functions described in Section 3 has infinity! support
in time. However, there are examples of compactly supported wavelets, such as Daubechies or-
thogonal wavelets [5]. Thus, the choice of the wavelet function must prioritize the domain (time
or frequency) that is expected to have a better resolution.

! Despite the infinite support, in practice it is considered an effective support, which is finite.
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144 GAUSSIAN AND GOLDEN WAVELETS

The shapes of wavelet functions depend on the number of vanishing moments and on their sym-
metry with respect to the y-axis. In relation to symmetry, symmetric wavelets imply in linear
phase response. This property is desirable in many problems due to waveform-preserving in
time-domain. With the exception to the Haar wavelet, no other orthogonal compactly supported
wavelet is symmetric [5]. Therefore, the wavelet choice is very important and depends on the
signal features. Some wavelets belong to specific families generated by Eq. (2.9). Gaussian and
Golden wavelets are examples of families generated from (2.9). Such wavelets are symmet-
ric/antisymmetric, non-orthogonal and have infinite support in time domain. In the next Section
these wavelet families are presented.

3 GAUSSIAN AND GOLDEN WAVELETS

By Theorem 2.1, it can be verified that for a particular choice of 8(¢), wavelet functions can be
obtained with a desired number of vanishing moments. An example of a function that can be used
to obtain wavelets according to (2.9) is the Gaussian probability density function [24], defined
by Eq. (3.1).

Ogaus(t) = ¢ /2. 3.1

Therefore, deriving the Gaussian probability density function, several wavelets can be obtained.

Functions of the type
4P
y(t) = ﬁegaus(f )
are known as Gaussian wavelets or derivative of a Gaussian (DOG) [24]. An example of a
Gaussian wavelet is the Mexican Hat, obtained when p=2 [5].

Golden wavelets are obtained by the Nth derivative of the quotient between two distinct FCPs
[10]. A FCP of degree n is defined by

n
pa(t) =Y Fept"™,
k=0
where Fy = Fy_1 + Fy_», k > 2, by setting po(¢) = 1 and Fy = F; = 1. The polynomial sequence
{pn(t)},_ is called Fibonacci-coefficient polynomial sequence [9]. The Golden Hat wavelet is
a Golden wavelet example, and it is defined as the fourth derivative of the function [11]

1

Gt )=

3.2)
According to Eq. (2.9), the Nth derivatives of both functions defined in (3.1) and (3.2) result in
wavelets with N vanishing moments. Thus, using the property of the FT derivative, the FT of the
Gaussian and Golden wavelets with N vanishing moments, can then be calculated by Egs. (3.3)
and (3.4), respectively:

P oaus(Q) = Ay (j X Q)" Ogaus (), (3.3)

oo (Q) = By (j x Q)N Oy (Q), (3.4)
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where @gg,s(Q) and O,,4(Q) are the respective FT of O,q,s(f) and Oy,4(f). Parameters Ay and

By are constants satisfying | ¥(Q)|*> = 27.

For the comparative analysis in this study, twenty wavelet functions will be analyzed, ten from
Gaussian family, and ten from Golden family. In order to facilitate the notation, gausN and
goldN notations will be used, where N indicates the number of vanishing moments and also
the derivative order:

N
gausN = CNdTNGgWS(I), N=1,...,10, (3.5)
dN
goldN :DthiNegold(tf 1/2)7 N=1,...,10, 3.6)

where Cy and Dy are chosen in such a way to ensure unit energy. As it can be seen in Eq. (3.6),
a delay of 1/2 unit is applied in g,4(7) function. It is due to the fact that the Golden wavelets are
located att = 0.

In Figure 1 gausN and goldN waveforms are shown (with normalized amplitudes), for N = 1,5, 8.
Qualitatively, for the same number of vanishing moments, it is remarkable that such wavelets
have a certain similarity waveforms. Although, in [11] it was shown that gaus2 (Mexican hat)
and gold4 (Golden Hat) have a high degree of similiarity, Golden wavelets have less expressive
oscillations than Gaussian wavelets. The main difference comes from the support between them.
As they are generated, Golden wavelets have an effective lower support than Gaussian wavelets.

In order to quantify the comparison between the wavelets, evaluation metrics will be computed
for the purpose of characterizing differences between the functions in time and frequency do-
mains. The chosen metrics are the variances 6> and 652), the product o; X 0g, the center frequency
7 and the predominant frequency €2, the bandpass [Qrp,Qup|, where Qrp and Qup are respec-
tively lower and upper frequency limits, and finally, the bandwidth Aq = |Qup — Q5. Bandpass
and bandwidth were characterized by the magnitude spectrum with normalized amplitude. The
bandpass was calculated using a cutoff frequency of 6 dB attenuation (close to 0.5 relative to
peak). In Table 1, the computed metrics are shown for each considered wavelet.

Observing Table 1, it can be seen the evolution of 6/ and Gé. The o7 value tends to decrease
when the number of vanishing moments increases, and, on the other hand, O'é tends to increase
when the number of vanishing moments increases. It means that, the greater the number of van-
ishing moments is, the better is the resolution in time domain, and it is most evident for Golden
wavelets. Therefore, the time spread o for a specific wavelet goldN is much smaller than for
gausN, except when N = 1. This is expected, since the effective goldN support is smaller than
that of gausN, as it can be seen in Figure 1.

It is noteworthy that Gé values indicate that Gaussian wavelets have approximately the same
frequency dispersion, independent of the number of vanishing moments. On the other hand,
Golden wavelets have a frequency dispersion that varies significantly, where it is verified that
the greater is the number of vanishing moments, the greater is O'é. Note that the time-frequency
resolution is more accurate when N also increases. Thus, the product 6; X 0q also decreases as
the number of vanishing moments increases.

Trends Comput. Appl. Math., 22, N. 1 (2021)
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Figure 1: Gaussian and Golden wavelets.

Since the magnitude spectra of the wavelets are asymmetric, the center frequency is not the
peak frequency for Gaussian and Golden wavelets. In relation to the bandpass and bandwidth,
note that Ag does not vary greatly for gausN wavelets, although bandpass has changed. For

Trends Comput. Appl. Math., 22, N. 1 (2021)
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Table 1: Evaluation Metrics for Gaussian and Golden wavelets.

Wavelet o7

gausl 1.50 0.22 0.57 1.12 1.00
gaus2 1.16 024 0.50 1.50 141
gaus3 1.10 0.24 0.51 1.80 1.73
gausd 1.07 0.24 0.50 2.06 2.00
gaus5 1.05 024 0.50 229 223
gaus6 1.04 0.25 0.50 250 244
gaus7 1.03  0.25 0.50 269 2.64 1.86,3.51]  1.65
gaus8 1.03  0.25 0.50 287 2.82 2.04,3.69]  1.65

[Qrp,Qus]  Aa
[
[
[
[
[
[
[
[
gaus9 1.02  0.25 0.50 3.04 3.00 [2.21,3.86] 1.65
[
[
[
[
[
[
[
[
[
[

031,1.92] 1.61
0.68,2.31]  1.63
0.97,2.62] 165
1.23,2.88]  1.65
1.46,3.11]  1.65
1.67,3.32]  1.65

63 oixoq N Q

gausl0  1.02 0.25 0.50 320 3.16 2.37,4.02] 1.65
goldl 1.75 042 0.85 1.13  0.75 0.17,2.02] 1.85
gold2  0.58 0.71 0.64 1.88 1.51 0.57,3.14]  2.57
gold3 0.35 1.00 0.59 264 226 1.05,4.17]  3.12
gold4 025 1.28 0.56 340 3.02 1.57,5.17]  3.60
gold5 0.19 1.57 0.54 415 3.77 2.12,6.13]  4.01
gold6  0.15 1.85 0.52 491 4.53 2.69,7.07]  4.38
gold7 0.13  2.14 0.52 5.66 529 3.27,8.01] 4.74
gold8 0.11 242 0.51 6.42  6.04 3.86,8.92]  5.06
gold9 0.10 271 0.52 7.18 6.80 4.47,9.83] 536
gold10  0.09 3.00 0.51 7.93 7.55 [5.08,10.74] 5.66

Golden wavelets, Ag varies significantly according to the number of vanishing moments. It can
be explained by the frequency dispersion O'é value.

4 GAUSSIAN AND GOLDEN WAVELETS APPLICATION

In order to show the different results obtained from Gaussian and Golden wavelets, in this Sec-
tion they will be used in the decomposition of real signals. The signals used for such analyzes
represent electrical voltages for a given sensor in the context of SHM systems based on the
electromechanical impedance (EMI) principle.

4.1 Structural Health Monitoring - SHM

SHM aims to monitor the integrity of a structure in order to minimize repair and maintenance
costs. In this way, such systems can provide a greater level of security to users, avoiding possible
catastrophic failures. Therefore, SHM is an important research subject with many applications in
different areas, such as mechanical, aerospace and civil engineering [6].

Trends Comput. Appl. Math., 22, N. 1 (2021)



148 GAUSSIAN AND GOLDEN WAVELETS

The main techniques used in SHM systems have their origin in nondestructive evaluation (NDE)
methods. In this context, the method based on EMI principle has been considered as one of
the most promising [4, 18,25]. Such method was initially proposed by Liang and Sun [15], and
basically consists in monitoring the mechanical impedance in a structure caused by a damage
presence.

Typical SHM applications generally use commercial impedance analyzer with a high cost or
impedance measurement systems based on frequency response functions (FRF). The EMI-based
SHM technique also stands out for its simplicity and the use of PZT (Lead Zirconate Titanate)
piezoelectric transducers that are low cost components [25]. In such systems, to detect and locate
damages in a structure, PZT piezoelectric actuators/sensors are used to excite/measure electrical
impedance at high frequency ranges. In this case, damage identification is made by comparing
the electrical impedance of the transducer measured with the structure in an initial condition,
considered integral, with the impedance measured after the structure has suffered a possible
damage. Generally, this comparison is performed by means of metric failure indexes, such as
Correlation Coefficient Deviation Metric (CCDM) defined by Eq. (4.1).

In [2] and [25], methods for measuring electrical impedance in frequency and time domains,
respectively, were presented. In [25], it was shown that PZT time response is enough to get any
variation in the structure condition, and therefore, it is not necessary to perform FT to obtain
the FRF.

4.2 General description

The goal of this case study is to analyze the time-domain response of a PZT sensor using Gaus-
sian and Golden wavelets. Thus, the results obtained by these wavelets can express, in practice,
the differences between them. The analyzed signals were provided by the Laboratory of Signal
Processing and Instrumentation (LabPSI) from Sdo Paulo State University - [lha Solteira cam-
pus. Such signals were experimentally obtained and were used in [4], where an SHM system is
based on the one proposed in [25]. Signals were acquired using a sensor/actuator, a piezoelectric
capsule, model 7BB-27-4 from Murata, adhered to a 500 mm x 30 mm x 2 mm aluminum bar.

In [4], four damages were simulated in different locations, for distances at 10cm, 20cm, 30cm
and 40cm from the sensor. All measurements were made with the structure in the free-free
configuration, i.e., with the two extrema suspended by elastic and ambient temperature.

In this work, the scenario of experiments is the same as in [4], where the chirp excitation signal
was adhered with an initial and final frequency of 3 kHz and 35.6 kHz, respectively, and with a
sampled rate at 250 kHz. In this way, five different signals are analyzed. One of these signals,
denoted Vp(t), represents the time response of the pair PZT-Structure in healthy condition. The
other signals, denoted Vp; (), Vpa(t), Vp3(t) and Vpa(t), represent the structure with simulated
damages at 10 cm, 20 cm, 30 cm and 40 cm distance from the sensor, respectively. Figure 2
presents time responses for V() and Vp; (7).

Trends Comput. Appl. Math., 22, N. 1 (2021)
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(b)

Figure 2: Signals (a) V() and (b) Vp (7).

4.3 Methodology

The application will follow the script: CWT will be applied to the signal Vg(¢) (also known as
baseline) and to the signals Vi (t), Vpo(2), Vpa(t) and Vpa(t). CWT will be applied in a certain
range of scales. This range will be determined according to the wavelet and the spectral content of
the analyzed signal. Therefore, the initial scale s; corresponds to the maximum relative frequency
contained in the signals (35.6 kHz), and the final scale sy corresponds to the lowest relative
frequency (3 kHz). In this case, to determine the range of scales for the CWT computation, the
relation expressed by (2.5) will be used:

_ [ _ [
- ) Sf - )
T\' X ﬁnux T\ X ﬁm'n

where fi,in and fiq correspond to the minimum and the maximum frequency contained in the

Si

signal, respectively.

After determining the scale range [s;,sy] corresponding to each wavelet, CWT is then applied to
the signals Vp(¢) and Vp(#). In practice, CWT is computed using y(¢) discretized version and
parameters s and 7. In this case, we use the notation W," [s, 7] to denote the discretized wavelet
coefficients. It is expected that there is a difference between the CWT coefficients W‘Z [s,7] and
W‘}’; s, 7]. To quantify this difference, CCDM will be computed:

L (Whls, 7] =W ) (Wi ls. 7] - W)

Ve (Wt W) e (W - W)

where the variables WT}Z and Wi‘}’; are the averaged values of W‘}Z [s,7] and WVV; [s, 7], respec-

CCDM =1-—

, “4.n

tively. The value obtained by Eq. (4.1) will varies between 0 and 1. As it is described in [26], if
CCDM — 0 there is no damage, and if it increases towards unity, there is a high probability of
damage. However, the damage can be easily detected with small values of CCDM [26].

In order to compare the results obtained in the wavelet domain, CCDM in time domain will
be also computed. Table 2 shows CCDM results obtained in time domain for each considered

Trends Comput. Appl. Math., 22, N. 1 (2021)



150 GAUSSIAN AND GOLDEN WAVELETS

damage. Such values will serve as reference for comparisons with CCDM values obtained in the
wavelet domain.

Table 2: CCDM of the signals in the time domain

Damage 10 cm  Damage 20cm  Damage 30 cm  Damage 40 cm
CCDM 0.001789 0.001940 0.001977 0.001593

4.4 Results and Discussions

Applying CWT to the signals, and then calculating the CCDM among CWT coefficients from
integrated and damaged structure, greater values than those presented in Table 2 can be obtained.
For each considered wavelet, Table 3 shows the normalized maximum CCDM calculated in the
wavelet domain. These values are normalized in relation to CCDM values shown in Table 2:

CCDM,,/, = CCDM,,/CCDM,,

where CCDM,,, and CCDM; are the respective CCDM computed in wavelet and time domains,
respectively. Therefore, CCDM,, /; also indicates how efficient the difference found in the wavelet
domain was in relation to that computed in time domain.

As it can be observed, CCDM values are higher for wavelets with more vanishing moments.
This behavior was observed for both wavelet families considered. From Figure 1, it is pos-
sible to note that wavelets with larger number of vanishing moments have more considerable
oscillations. Therefore, the expressive variations between the signals can be more efficiently de-
tected with wavelets containing more vanishing moments, since CWT measures the similiarity
between a signal and the wavelet used. For a wavelet with N vanishing moments, gausN implies
in a higher CCDM than goldN. It can be explained by the fact that the Gaussians have a better
time-frequency resolution and more expressive oscillations than Golden wavelets.

In Figure 3-(a) the evolutions of CCDM indices for gaus2 (solid line) and gold2 (dashed line) are
shown for each considered scale. These values refer to signals V() and Vp, (¢). It was observed
that the CCDM characteristic has the same evolution behavior for the other wavelets, i.e., for a
given range of scales, a distributive behavior is observed such that CCDM > 1 from normalized
results. This range is of interest, since it presents a greater index than the reference CCDM
obtained in time domain. Figures 3-(b) and (c), CWT coefficients (at scale s = 2) from gaus2 and
gold2 are shown for just one stretch of the signal. Note the difference between the damage and
undamage structures signals.

As discussed earlier, Golden wavelets have a better time resolution than Gaussian (for N > 1
vanishing moments). It is expected that the detection and location of transients and singularities
present in the signals are different for both wavelets. Figures 4 and 5 show the CWT coefficients
at scales s = 1 and s = 3, respectively, in relation to a simulated Vp(z) singularity at + = 0.2324.
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Table 3: Normalized maximum CCDM at wavelet domain.

wavelet Damage 10cm Damage 20cm  Damage 30cm  Damage 40cm

gausl 1.922855 2.015290 2.086269 2.018898
gaus2 2.405184 2.591219 2.756180 2.638077
gaus3 2.697404 2.940534 3.144309 2.959729
gaus4 2.935967 3.230968 3.479868 3.226715
gaus5 3.135846 3.484975 3.773217 3.458381
gaus6 3.314585 3.711504 4.039214 3.660776
gaus’7 3.472759 3.914407 4.275399 3.843052
gaus8 3.616134 4.097480 4.497113 4.005290
gaus9 3.748165 4.265711 4.699647 4.152437
gaus10 3.870505 4421715 4.886158 4.286010
goldl 1.527296 1.554084 1.565667 1.536037
gold2 2.086717 2.193278 2.269089 2.185383
gold3 2.400714 2.578198 2.721787 2.596156
gold4 2.566102 2789125 2987777 2.837845
goldS 2.696406 2.946259 3.163545 2.984424
gold6 2.814315 3.090860 3.327588 3.116043
gold7 2.922626 3.225772 3.482269 3.238515
gold8 3.022792 3.351048 3.626980 3.351615
gold9 3.117898 3.470344 3.765215 3.459285
gold10 3.205786 3.582656 3.897479 3.560578

As it can be seen from Figures 4 and 5, the considered wavelets detected the signal oscillations
at low scales. It can be observed that gaus1 and gold1 do not detect the singularity efficiently for
both scales. Furthermore, these wavelets provide very similar results. For s = 1, CWT coefficients
show that the singularity is efficiently detected by gaus5, goldS, gaus8 and gold8 wavelets. On
the other hand, for s = 3, the singularity is not detected by gaus5 and gaus8. This is due to the
fact that the detected oscillations of the signal overlap the singularity amplitude. It does not occur
for gold5 and gold8 wavelets.

5 CONCLUSIONS

In this work comparisons between Gaussian and Golden wavelets families were performed,
showing similarities and distinctions between them. Through this work it could be concluded
that the Gaussian wavelets considered maintain approximately the same time and frequency res-
olutions, independent of the number of vanishing moments. On the other hand, the time and
frequency resolutions for Golden wavelets change significantly as the number of vanishing mo-
ments varies. For Golden wavelets, the greater is the number of vanishing moments, the better is
the resolution in time, and consequently, implying a poor resolution in the frequency domain.
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Figure 3: (a) CCDM index evolution using gaus2 (dashed line) and gold2 (solid line) wavelets,
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using (b) gaus2 and (c) gold2 wavelets.
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Figure 4: CWT coefficients at scale s = 1 from signal Vg(¢) with a simulated singularity in

t =0.2324.
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Figure 5: CWT coefficients at scale s = 3 from signal Vp(¢) with a simulated singularity in
r =0.2324.

Gaussian and Golden wavelets were used to decompose a signal in the context of SHM systems.
The application shown in this paper indicates that the difference between the signals represent-
ing undamaged and damaged structures can be more expressive in the wavelet domain for a scale
range. This could be verified by comparing CCDM in time and wavelet domains. It was veri-
fied that CCDM value is directly proportional to the number of vanishing moments in the used
wavelet. For the considered application, Gaussians presented more expressive CCDM values than

Golden wavelets.

Since Gaussian and Golden wavelets have very similar waveforms, the differences from the re-
sults obtained in the application show that not only the wavelet waveform should be taken into
account, but also its time-frequency resolution. It is clear from the application shown in this pa-
per, since the difference in results between gausN and goldN is quite evident, although they have
very similar waveforms. Preliminary results show that the detection of transients or singularities
present in the signals can be performed more efficiently with Golden wavelets. It can also be
explained by the fact that Golden wavelets have good resolution in time domain.
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RESUMO. Neste trabalho, uma andlise comparativa entre as wavelets Gaussianas e
Golden € apresentada. Tais wavelets sdo geradas pela derivada de uma fun¢ao basica es-
pecifica. Nesse caso, a ordem da derivada também indica o nimero de momentos nulos da
wavelet. Embora essas wavelets tenham formas de onda muito semelhantes, elas possuem
vdrias caracteristicas distintas nos dominios do tempo e da frequéncia. Essas distingdes sao
exploradas aqui no espago de escalas. A fim de comparar os resultados das wavelets para
um sinal real, essas wavelets sdo usadas na decomposicio de um sinal inserido no contexto
do sistemas de monitoramento de integridade estrutural.

Palavras-chave: wavelets gaussiana, wavelets golden, momentos nulos, monitoramento de
integridade estrutural.
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