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ABSTRACT. In this note, we consider the Complex Ginzburg-Landau equations with a bilinear control
term in the real line. We prove well-posedness results concerned with the initial value problem for these
equations in Zhidkov spaces using splitting methods.
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1 INTRODUCTION

In this note, we deal with the 1-dimensional system{
∂tu = (α + iβ )∂xxu+ γu+(c+ id)|u|2u+(a+ ib)v(x, t)u,

u(0) = u0
(1.1)

where u(x, t) is a complex valued function with x ∈ R, t > 0, α > 0,β > 0,γ ≥ 0, a,b,c,d > 0
and v is a bounded control function. The linear term represented by (α + iβ )∂xx characterizes
the Complex Ginzburg-Landau equation (CGLe). For β = 0 (1.1) reduces to a nonlinear heat
equation and for α = 0 to a nonlinear Schrödinger equation. The cubic CGLe is one of the most
important nonlinear equations with applications in physics. It describes a large number of linear
and nonlinear phenomena from superconductivity, superfluidity and Bose-Einstein condensation
to liquid crystals [1]. Well-posedness of (1.1) has been studied with different nonlinearities and in
different spaces (see for instance, [4,11,12]). Our aim is to study the well-posedness of the Com-
plex Ginzburg-Landau equation with a bilinear control term, in Zhidkov spaces, using splitting
methods. Controllability problems in parabolic equations were studied with different control al-
ternatives and nonlinearities [2,3,15,16]. Zhidkov spaces were introduced by P. Zhidkov in [17]
defined as bounded and uniformly continuous functions, with derivatives up to k order in L2.
Many applications were found for these spaces, for instance, in nonlinear optics, Zhidkov func-
tions are used to model dark solitons. In [8], dark soliton solutions are described for a special case
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of the complex Ginzburg-Landau equation. A typical example of a function in Zhidkov spaces
is described in [10, 13]. These are solutions of the form u(x, t) = uv(x− vt), in particular for the
one dimensional case we have:

uv(x) =

√
1− v2

2
tanh

(√
1− v2

2
x√
2

)
+ i

v√
2

The goal of this article is to prove well-posedness of (1.1) for Zhidkov spaces in the real line,
using splitting the result in [4]. These are numerical methods that split the flow of the equation,
to approximate solutions. The time interval is divided into equal parts, and in each one, the
equation evolves alternating the linear and nonlinear flows. This establishes an advantage for us,
it exchanges a complicated problem (1.1), for two simpler equations. In this case, we extend the
method to a “triple splitting”, dividing the equation into three parts. It is important to remark that
this same method can be applied to prove well-posedness for other well known equations such
as, reaction-diffusion and Schrödinger control equations in Lp spaces. The splitting method is
based on a Lie-Trotter method developed recently for numerical purposes [6, 14].

The paper is organized as follows: In Section 2 we set notations and state some preliminary
results. In section 3 we analyze the nonlinear problem. Finally, in section 4 and using splitting
methods, we combine results from sections 2 and 3 to show that the solution of (1.1) is in a
Zhidkov space.

2 NOTATIONS AND PRELIMINARIES.

We introduce some definitions and preliminary results.

Definition 2.1. We define Cu(R) as the set of uniformly continuous and bounded functions on R.

Definition 2.2. For k > d/2, we define the Zhidkov space as,

Xk(Rd) = {u ∈ L∞(Rd)∩Cu(Rd) : ∂ ju ∈ L2(Rd),1≤ | j| ≤ k}

equipped with the norm:

‖u‖Xk = ‖u‖L∞ + ∑
1≤| j|≤k

∥∥∂ ju
∥∥

L2 (2.1)

Remark 2.1. Zhidkov spaces are closed for the norm defined in (2.1). (See [10])

The following definitions and proofs can be extended to x ∈ Rd (See [9]).

Definition 2.3. We denote U(t) as the one parameter semigroup that solves the underlying linear
equation

∂tu = (α + iβ )∂xxu+ γu (2.2)

Trends Comput. Appl. Math., 23, N. 3 (2022)
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The operator can be represented by the convolution in x

U(t)u0 = (4πt(α + iβ ))−1/2e(−x2/[4t(α+iβ )])+γt ∗u0 = Gt(x)∗u0

and the kernel Gt satisfies:

|Gt(x)|= (4πt(α2 +β
2)1/2)−1/2e(−αx2/[4t(α2+β 2)])+γt

Clearly, Gt(x) ∈ L1(R).

Proposition 2.1. The one-parameter family {U(t)}t≥0 of operators defined as U(t)u0 = Gt ∗u0

is a strongly continuous semigroup on Cu(R).

Proof. The proof is similar to Proposition 2.2 in [5]. �

Lemma 2.1. If u0 ∈ X1(R) then U(t)u0 ∈C([0,T ∗(u0)),X1(R)) for t > 0

Proof. As u0 ∈ L∞(R) and Gt(x) ∈ L1(R) then using Young’s inequality we have

‖Gt ∗u0‖L∞ ≤ ‖Gt‖L1 ‖u0‖L∞

On the other hand, we obtain

‖∂x(Gt ∗u0)‖L2 = ‖Gt ∗∂xu0‖L2 ≤ ‖Gt‖L1 ∗‖∂xu0‖L2

As Gt ∈ L1(R) and ∂xu0 ∈ L2(R) we have the result. �

Remark 2.2. Similarly, if x∈Rd and we have k derivatives of U(t)u0, a similar procedure proves
that U(t)u0 ∈C([0,T ∗(u0)),Xk(Rd)).

Next, we consider integral solutions of the problem (1.1). We say that u ∈C([0,T ],Cu(R)) is a
mild solution of (1.1) if and only if u verifies

u(t) =U(t)u0 +
∫ t

0
U(t− t ′)B(x, t ′,u(t ′))dt ′. (2.3)

where B(x, t,u) = (c+ id)|u|2u+(a+ ib)v(x, t)u. If B is a locally Lipschitz map, for any z0 ∈
Cu(R) there exists a unique solution of the equation{

∂tz = B(t,z),

z(0) = z0,
(2.4)

defined in the interval [0,T ∗(z0)). Moreover, there exists a nonincreasing function T̄ : [0,∞)→
[0,∞), such that T ∗(z0)≥ T̄ (|z0|). The solution of (2.4) is solution of the integral equation

z(t) = z0 +
∫ t

0
B(t ′,z(t ′))dt ′. (2.5)

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Also, one of the following alternatives holds:

- T ∗(z0) = ∞;

- T ∗(z0)< ∞ and |z(t)| → ∞ when t ↑ T ∗(z0).

We denote by N : R+×R+×Cu(R)→Cu(R) the flow generated by the ordinary equation, i.e.:
for any x ∈ R, N(t, t0,u0)(x) is the solution of the problem (2.4) with initial datum z0 = u0(x).
Therefore, if u(t) = N(t, t0,u0)

u(x, t) = u0(x)+
∫ t

0
B(x, t ′,u(x, t ′))dt ′

We recall a well-known local existence result for evolution equations.

Theorem 2.1. There exists a function T ∗ : Cu(R)→R+ such that for u0 ∈Cu(R), exists a unique
u ∈C([0,T ∗(u0)),Cu(R)) mild solution of (1.1) with u(0) = u0. Moreover, one of the following
alternatives holds:

• T ∗(u0) = ∞;

• T ∗(u0)< ∞ and limt↑T ∗(u0) supx∈R |u(t)|= ∞.

Proof. See Theorem 4.3.4 in [7]. �

Proposition 2.2. Under conditions of the theorem above, the following statements hold true:

1. T ∗ : Cu(R)→ R+ is lower semi-continuous;

2. If u0,n → u0 in Cu(R) and 0 < T < T ∗(u0), then un → u in the Banach space
C([0,T ],Cu(R)).

Proof. See Proposition 4.3.7 in [7]. �

3 NONLINEAR EQUATION

In this section, we first analyze the following control equation:{
∂tu = (a+ ib)v(x, t)u,

u(0) = u0
(3.1)

where v ∈C([0,T ∗(u0)),L∞(Ω)) and Ω is a bounded interval of R with supp(v(·, t)) ⊆ Ω. The
following Lemma allows us to have well-posedness of the control equation in X1(R) which is
essential to apply the splitting method.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Lemma 3.2. Let v ∈C([0,T ∗(u0)),L∞(Ω)) with ∂xv ∈C([0,T ∗(u0)),L∞(Ω)) and let B(x, t,u) =
(a+ ib)v(x, t)u, then B : R+×R+×X1(R)→ X1(R) is a well-defined operator and B(x, t,u) is
a locally Lipschitz map in u.

Proof. Let u ∈ X1(R) then

‖B(x, t,u)‖X1 = ‖(a+ ib)v(x, t)u‖X1 ≤ K(‖v(x, t)u‖L∞ +‖∂x(v(x, t)u)‖L2)

= K(‖v(x, t)u‖L∞ +‖∂xv(x, t)u+ v(x, t)∂xu‖L2)

≤ K(‖v(x, t)u‖L∞ +‖∂xv(x, t)u‖L2 +‖v(x, t)∂xu‖L2)

As v(x, t) is a bounded function in Ω then ‖B(x, t,u)‖X1 < ∞. On the other hand, using the
notation B(x, t,u) = B(u), we have

‖B(u)−B(w)‖X1 = ‖(a+ ib)v(x, t)u− (a+ ib)v(x, t)w‖X1 = ‖(a+ ib)v(x, t)(u−w)‖X1

≤ K ‖v(x, t)(u−w)‖X1 ≤ K ‖v(x, t)(u−w)‖L∞ +K ‖∂x(v(x, t)(u−w))‖L2

≤ K ‖v(x, t)(u−w)‖L∞ +K ‖(∂xv(x, t))(u−w)‖L2 +K ‖(v(x, t))(∂x(u−w))‖L2

≤ K ‖v(x, t)‖L∞ ‖(u−w)‖L∞ +K ‖(∂xv(x, t))‖L∞ ‖(u−w))‖L2

+K ‖(v(x, t))‖L∞ ‖(∂x(u−w))‖L2

= K′ ‖(u−w)‖L∞ +K′′ ‖(u−w))‖L2 +K′ ‖(∂x(u−w))‖L2 ≤ k‖u−w‖X1

where in the last step we used Hölder’s inequality. �

We have the same result for the solution for the nonlinear problem associated with the term |u|2u,
that is the equation {

∂tu =−(c+ id)|u|2u,

u(0) = u0,
(3.2)

Lemma 3.3. If u0 ∈ X1(R) then the solution of the problem (3.2), u(t) ∈C([0,T ∗(u0)),X1(R)).

Proof. See [4] Lemma 3.1. �

4 SPLITTING METHOD

This section is based on the splitting method developed in [5, 6, 14]. We apply the Lie-Trotter
method to the linear and nonlinear problem. The temporal variable must be broken down
into regular intervals and the evolution of the linear, nonlinear and control problems are con-
sidered alternately. This is described by three sequences: {V0,k} for the linear equation and
{V1,k},{W2,k} for the nonlinearity and the control term, respectively. Using Theorem 3.9 from
[14], the approximate solution converges to the solution of problem (1.1), when the time intervals
h = t/n→ 0.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Let X be a Banach space and we define α j : R→ R a periodic function of period 1 as:

α j(t) =

{
3 , if k+ j/3≤ t < k+( j+1)/3,
0 , if k+( j+1)/3≤ t < k+ j+1,

for k ∈ Z and j = 0,1,2.

Given h > 0, we define the function αh : R→R as α jh(t) = α j(t/h). Clearly 0≤ α jh ≤ 3, α jh is
h-periodic and its mean value is 1.

We consider τh : R2→ R given by

τh(t, t ′) =
∫ t

t ′
α0h(t ′′)dt ′′,

We define ω = {(t, t ′) ∈ R2 : 0≤ t ′ ≤ t} and Uh : ω →B(X) given by Uh(t, t ′) =U(τh(t, t ′)).

We consider the system,{
∂tuh +α0h(t)σ(−∂xx)uh(x, t) = α1h(t)B1(x, t,uh(x, t))+α2h(t)B2(x, t,uh(x, t)),

uh(x,0) = uh0(x)

where u(x, t) ∈ X , t > 0, σ ∈ C and B j : R×R×X → X is a continuous function with j = 1,2.

Similarly, we define the integral equation:

uh(t) =Uh(t,0)uh0 +
∫ t

0
Uh(t, t ′)(α1h(t ′)B1(x, t,uh(t ′))+α2h(t ′)B2(x, t,uh(t ′)))dt ′ (4.1)

The following two theorems are developed similar to the results of section 4 of [5], where all
results are proved for one nonlinearity. We extend the proofs to consider two nonlinearities. The
following Theorem is similar to Propostion 4.3 of [5].

Theorem 4.2. Let uh be the solution of (4.1), if W2,k = uh(kh+ h), V0,k = uh(kh+ h/3) and
V1,k = uh(kh+2h/3) then

V0,k+1 =U(h)W2,k, (4.2a)

V1,k+1 = N1(kh+h/3,kh+2h/3,V0,k+1), (4.2b)

W2,k+1 = N2(kh+2h/3,kh+h,V1,k+1), (4.2c)

where N j, ( j = 1,2) is the flux associated to:{
∂tw = α jh(t ′)B j(t,w(t)),

w(0) = w0,

Proof. For t1 ∈ (0, t) it is verified

uh(t) =Uh(t, t1)uh0(t1)+
∫ t

t1
Uh(t, t ′)(α1h(t ′)B1(x, t,uh(t ′))+α2h(t ′)B2(x, t,uh(t ′)))dt ′

Trends Comput. Appl. Math., 23, N. 3 (2022)
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taking that t1 = kh and t = kh+h/3, we have

V0,k+1 =Uh(kh+h/3,kh)W2,k +
∫ kh+h/3

kh
Uh(t, t ′)(α1h(t ′)B1(x, t,uh(t ′))+α2h(t ′)B2(x, t,uh(t ′)))dt ′,

since α0h(t ′)= 3 for t ′ ∈ [kh,kh+h/3), we have τh(kh+h/3,kh)= h and we get (4.2a). Similarly,
α0h(t ′) = α2h(t ′) = 0 for t ∈ [kh+h/3,kh+2h/3), then τh(t,kh+h/3) = 0 and therefore

uh(t) =V0,k+1 +3
∫ t

kh+h/3
B1(x, t,uh(t ′))dt ′,

evaluating in t = kh+2h/3, we obtain (4.2b). The same process can be done to obtain (4.2c). �

Theorem 4.3. Let u ∈C([0,T ∗),X) the be solution of the integral problem

u(t) =U(t)u0 +
∫ t

0
U(t− t ′)B(x, t,u(t ′))dt ′,

with B = B1 +B2 both defined as in (4.1). Let also T ∈ (0,T ∗) and ε > 0. Then there exists
h∗ > 0 such that if 0 < h < h∗, then uh the solution of (4.1) with uh(x,0) = u0(x), is defined in
the interval [0,T ] and verifies ‖u(t)−uh(t)‖X ≤ ε for t ∈ [0,T ].

Proof. The proof is similar to Theorem 4.4 from [5], considering two distinct nonlinear Lipschitz
terms. �

Now, we apply Lemma 2.1 from Section 2 related to linear equation and Lemmas 3.2 and 3.3
from Section 3 related to the control equation. In order to obtain the well-posedness result
for the solution u(t) of equation (1.1), we use Theorem 4.3. We denote by N1 : R+ ×R+ ×
Cu(R)→ Cu(R) the flow generated by the equation (3.2) as u(t) = N1(t, t0,u0), and similarly
u(t) = N2(t, t0,u0) the flow generated by the equation (3.1) defined for t0 ≤ t < T ∗(t0,u0).

Theorem 4.4. Let u0 ∈ X1(R), then the solution of satisfies (1.1) u(t) ∈ C([0,T ∗(u0)),X1(R))
for t ∈ (0,T ∗(u0)).

Proof. For t ∈ [0,T ∗(u0)), let n ∈ N, h = t/n and {W2,k}0≤k≤n,{V0,k}1≤k≤n,{V1,k}1≤k≤n be the
sequences given by W2,0 = u0,

V0,k+1 =U(h)W2,k,

V1,k+1 = N1(kh+2h/3,kh+h/3,V0,k+1),

W2,k+1 = N2(kh+h,kh+2h/3,V1,k+1), k = 0, . . . ,n−1.

We claim that W2,k ∈C([0,T ∗(u0)),X1(R)) for k = 0, . . . ,n. Clearly, the assertion is true for k = 0.
If W2,k ∈C([0,T ∗(u0)),X1(R)), from Lemma 2.1, we have U(h)W2,k ∈C([0,T ∗(u0)),X1(R)) and
from Lemma 3.3 we can see that

V1,k+1 = N1(h,V0,k+1) ∈C([0,T ∗(u0)),X1(R)).

Trends Comput. Appl. Math., 23, N. 3 (2022)
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Similarly, using Lemma 3.2, we have that

W2,k+1 = N2(h,V1,k+1) ∈C([0,T ∗(u0)),X1(R)).

By Theorem 4.3 we have that W2,n→ u(t) when n→∞. As X1(R) is closed, we obtain the result.

�
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