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ABSTRACT. This article analyzes the performance of combining information from Scanning Electron
Microscopy (SEM) micrographs with Static Light Scattering (SLS) measurements for retrieving the so-
called Particle Size Distribution (PSD) in terms of experimental features. The corresponding data fusion is
implemented using a novel Monte Carlo-based method consisting in a SMF (Sampling-Mapping-Filtering)
approach. This approach provides an important reference to assess the strategy of the experiment for this
specific problem by means of solving an inverse problem. Furthermore, low levels of volume fraction and
a PSD represented by log-normal distributions are considered in order to reduce processing and model
errors due to ill-posedness. The prior statistics corresponding to the SEM micrographs have been achieved
by means of the Jackknife procedure used as a resampling technique. The likelihood term considers iid
normal measurements generated from the Local Monodisperse Approximation (LMA) and also makes use
of the same model as forward linear model, in an inversion case known as inverse crime. However, it has
been proved that the LMA performs well in practice for low fraction volume systems as considered here.
The PSD retrieval is measured in terms of improvement in precision with respect to one of the log-normal
parameters in SEM micrographs, i.e., the desirability. Estimates are expressed as a function of a typical
system parameter such as polydispersity, as well as experimental variables, i.e., number of particles per
micrograph (PPM) and noise level € in the SLS measurements. These estimations are then analyzed by
means of the Box-Behnken (BB) design and the response surface methodology (RSM) in order to generate
a surrogate model from which rules for the optimization of the experiment are made when desirability is
maximized. Finally, a Rule-Based System (RBS) is proposed for future use.
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1 INTRODUCTION

Inverse problems (IP) arise in a large number of processes in a diverse number of science and
engineering fields. Among these IP, indirect estimation of a desired quantity is an often, al-
most unavoidable, aim at their solution. In particular, estimation of the Particle Size Distribution
(PSD) is a common goal for several applications including areas such as biology, meteorology
and nanomedicine. This estimation goal is, however, a very difficult one to perform due to limi-
tations in experimental techniques. In fact, no single technique provides a complete description
of the PSD [31]. As a consequence, a considerable number of signal processing methodologies
has been developed, where the ones which perform the so-called multi-source information fusion
(MSIF), i.e., methodologies which combine processing from two or more different measurement
techniques stand out as the most promising. In this sense, there are several methodologies within
the framework of MSIF techniques, with the only requisite of expressing information in a sta-
tistical manner, through a probability density function (pdf). For example, several articles have
successfully applied Bayesian approaches to the PSD retrieval such as [7,26]. Nevertheless, an
effective employment of typical Bayesian methodologies such as Monte Carlo Markov Chain
(MCMC) and Sequential Monte Carlo (SMC) methods to realistic cases often implies a large
computational cost, mostly because in such Monte Carlo algorithms is the need to numerically
evaluate the posterior distribution, up to a normalisation constant, commonly many thousands or
millions of times [33]. This work, on the other hand, is focused on building an appropriate prior
so a direct mapping from this prior on the solution field through an integral transform can be
found using a Monte Carlo (MC) methodology. This is performed in a very similar fashion to
previously mentioned Bayesian procedures but not attached to the Bayes theorem itself, as it will
be seen later.

On the other side, design of experiments (DOE) is another cross-sectional field with many appli-
cations in science and engineering including chemometrics, one of the specific areas where this
article can be addressed in. Nowadays, with the increasing power of computers, conventional
experimental methods are sometimes replaced with computer code that serve as a proxy for the
physical processes, especially when the physical processes are hard to study. In this sense, one
can vary the inputs to the code and watch how the output is affected, as it happens with the
physical experiment, Such experiments are called computer experiments [32]. Once again, MC
methods have been successfully applied to computer experiments such as in [18]. Developments
using computer experiments are sometimes called ‘in silico’ as appearing in the title of this
article.

This article has also coupled DOE and knowledge engineering (KE) through rule-based systems
(RBS). RBS are a tool omnipresent in science, technology and everyday life, although their
encoding, analysis and design are seldom a matter of deeper theoretical investigation. The RBS
are sets of rules imitating logical implication. Even after years of investigation of various other
formalisms, rules proved to be generic core and very universal knowledge representation tool for
the widest posible spectrum of applications [16]. In this paper, authors propose a RBS based on
fuzzy logic for future work.

Trends Comput. Appl. Math., 23, N. 4 (2022)



F.A. OTERO and G. FRONTINI 751

Finally, a fourth keystone applied in this article is data analysis. In this sense, as suggested by [19]
authors have applied Exploratory Data Analysis (EDA) and confirmatory data analysis (CDA) in
a complementary way. The process constructed by authors has followed Tukey [35] in his steps
on both CDA: i) State the question(s) to be investigated ii) Design an experiment to address the
questions iii) Collect data according to the designed experiment iv) Perform a statistical analysis
of the data v) Produce an answer; and also on EDA: 1) Start with some idea.and ii) Iterate between
asking a question and creating a design. In fact, both EDA and CDA steps have been successfully
applied here along the development process.

This work considers computer experiments starting from an initial PSD resulting from a Scan-
ning Electron Microscopy (SEM) micrograph which is resampled by means of the Jacknife pro-
cedure. This statistical information is then combined with data obtained from Static Light Scat-
tering (SLS) measurements. Each computer simulation is solving an IP using the new proposed
methodology. Finally, the performed computer simulations, which are designed under a Box-
Behnken (BB) scheme, are employed to build a surrogate model (SM) by means of the classical
response Surface methodology (RSM). From the numerical optimization of this SM a set of rules
is drawn and a final RBS is generated in order to properly build the experimental set up for future
measurements.

2 CONTRIBUTIONS

This article has three main contributions: first, the proposed inversion methodology and the anal-
ysis of its application to the specific problem of estimating the PSD; second, a study on the
influence of the SLS noise, the number of particles per micrograph (PPM) and the polydispersity
of the particle system on estimations achieved with this methodology; and finally, the generation
of rules for combining these experimental variables in order to maximize the so-called desirabil-
ity using a surrogate model obtained by means of the BB design, the RSM optimization and the
fuzzy logic.

The rest of the work is organized as follows. In section 3, a brief preliminary for both employed
SLS and SEM models is given. A second section of background concepts related to the method-
ology appears in section 4. Section 5 includes the complete description of the problem formu-
lation. Section 6 describes the proposed methodology employed for combining information, as
well as the other techniques employed in the article. Section 7 presents the computational imple-
mentation and the selected examples. In section 8, results are presented and discussed. Finally,
conclusions are shown in section 9 and the URL for downloading the corresponding codes is
provided in the Appendix.

3 PHYSICAL PROBLEM: SEM AND SLS MODELLING

The SEM micrographs are the result of a direct microscopy measurement technique and allow
capturing details from the structure on the surface of the particles. However, they are experimen-
tally expensive and the electron beam may distort the results [25]. Electron microscopy methods
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have been widely simulated using the MC method. It can be mentioned the pioneer job of Joy [13]
and more recently works related to the field of biophotonics such as [11]. For reasons of simplic-
ity, the complete process of SEM microscopic imaging has not been simulated here. This work
uses a simplified random sampling MC routine as described in [26] and is applied to a sample
of a low number of particles, that is far below the several hundreds needed in order to make a
reliable statistics per se [25].

The SLS, on the other side, is an indirect measurement technique for the PSD estimation. It
briefly consists on illuminating the sample with laser light and measures the scattered light in-
tensity average over time at different angles and relating to the PSD according to some model. In
this case, the used model is the Local Monodisperse Approximation (LMA) developed by Ped-
ersen in [27]. According to the LMA model SLS intensities, denoted as ;(g), can be computed
by solving a first kind Fredholm integral equation as in Eq. (3.1)

Lo =K | " F(R)S(p.q,R)P(,R) dR 3.1)

where g represents the magnitude of the scattering vector, f(R) is the PSD with R as the radius as
integration variable; S(p, ¢, R) is the so-called structure factor where p as an effective model pa-
rameter; P(g,R) is the shape factor and K is a global constant that ‘absorb’ all the proportionality
terms.

The PSD is parameterized using a log-normal distribution as a function of parameters and g as in
Eq. (3.2). Relations between these parameters and the mean and variance of the PSD can be seen
in [25]. It is worthy to point out that this article has followed the parameterization of the PSD
applied in [25], that is, representing the PSD by the two parameters Ry and g* = In(g)

1= Lo -s[es (2] a2

The LMA is a reduced model but it can rigorously represent the complete model when particles
are grouped according to their size, and the system is highly diluted so the structure factor equals
to 1. Narrow and low-concentrated particle systems are best suited for the use of the LMA,
however practice demonstrated that the estimation of the PSD remains quite unaffected as the
other parameters ‘absorb’ the model approximations, at least for moderate particle concentrations
and breadth of the PSD [24]. Authors also recommend [8,24] as extended references concerning
the LMA model and its use in data analysis.

The corresponding compound experiment to be designed is the combination of SEM and SLS ex-
periments, each of them performed on their own and when the proposed methodology is applied.
It seems important to remark the dependence of the compound experiment on the methodology
because the proper methodology is an active part of the experiment as in [28].
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4 THEORETICAL BACKGROUND FOR THE METHODOLOGY
4.1 Inverse problem methodology

The methodology for combining information is following a ‘SMF’ (Sampling-Mapping-
Filtering) strategy. It starts with the achieved micrograph of a given number n particles as a first
sampling object to be processed by means of a resampling technique as the Jackknife procedure,
which is briefly described next.

4.1.1 The Jackknife procedure

The Jackknife procedure, formerly formulated by Quenouille [30], applied to this specific case
can be considered the preprocessing stage and it basically consists in generating n resamples
of n— 1 particles each one, obtained from the micrograph, where every resample is achieved by
deleting a different particle at each time. From these resamples, approximate normal distributions
are drawn for Ry and g* with means 1 (Ry) and i (g*) (the original sample averages using the total
number of PPM) and standard deviations 6 (Ry) = vVPPMog, and o(g*) = /PPMo,+ where
0(Ry)* and o(g*)* are the variances of each parameter obtained by resampling the micrograph
with Jackknife [25].

After this procedure and corresponding drawing of normal distributions, the actual three stages
in the SMF methodology are performed. These are shortly presented from sections 4.1.2 to 4.1.4.

4.1.2 Monte Carlo sampling

Monte Carlo (MC) sampling methods refers to a class of methods for randomly sampling from
a probability distribution. Its motivation relies in that for most probabilistic models of practical
interest, exact inference is intractable, and so we have to resort to some form of approximation
[5]. In the particular case of this work normal distributions are managed through MC sampling
instead of using an analytical approach.

4.1.3 Integral Transforms

An integral transform like Eq. (3.1) is a linear operation that converts the PSD to an intensity
function in the scattering vector domain g. Integral transforms are used to map one domain into
another in which the problem is simpler to analyze in the measurements space.

4.1.4 Discrepance principle and noise estimation

The discrepancy principle, formulated by Morozov [22], can be applied when available informa-
tion about the noise level € or a corresponding bound. The basic idea in this method, (originally
employed to select a regularization parameter) is to choose the value of the model parameters
to estimate in such manner that the norm of residues is equal to the noise level or a bound. In
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this article, since we are working with simulations, the SLS noise level is known, however in
practice this situation can hardly happen. As an alternative, in order to estimate this noise, it is
posible to apply the singular spectrum analysis, also called averaging Hankel or Cadzow’s basic
algorithm [9]. Summarizing the Cadzow iteration algorithm, It takes the data and forms a Hankel
matrix, say H, then performs a singular value decomposition H = USVT and retains only the
significant singular values. It then reconstructs the matrix with H, = U; S ViT. Then it averages
over the main anti-diagonals to reconstruct a Hankel matrix. It does another SVD and repeats the
procedure over and over again until the Hankel matrix has an exact rank. The level of noise can
be estimated (i.e., noise floor). The selection of € is also discussed in [4].

4.2 DOE methodology

The second part of this work is devoted to the generation of rules for the DOE, specifically in
terms of the PPM, the noise level € and the PSD breadth ¢ (degree of polydispersity) which are
the important factors in the experimental set up. In this sense, there are few works combining
DOE and RBS through fuzzy logic, such as the recent articles [1, 14]. This second part starts
with the selected examples solved with the SMF methodology following certain design, i.e., the
Box-Behnken design, that will be seen next.

4.2.1 Box-Behnken Design

Box—Behnken (BB) designs are experimental designs for Response Surface methodology (RSM)
(next to be seen), devised by George E. P. Box and Donald Behnken in 1960 [6]. Each factor is
placed at one of three equally spaced values, usually coded as -1, 0, +1. In fact, at least three
levels are needed. The design should be sufficient to fit a quadratic model, that is, one containing
squared terms, products of two factors, linear terms and an intercept. BB design is still considered
to be more proficient and most powerful than other designs such as the three-level full factorial
design, central composite design (CCD) and Doehlert design, despite its poor coverage of the
corner of nonlinear design space. Authors recommend [20] for further information.

4.2.2 Response Surface Methodology

RSM hinges on a rather simple idea - that of obtaining an approximate form of the objective
function by simulating the system at a finite number of points, which are carefully sampled
from the function space [10]. RSM has been employed here to optimize and analyze the effects
of several independent factors on a treatment process to obtain the maximum output, which
is called here desirability D. In particular, polynomial response Surface methodology (PRSM)
uses regression analysis and analysis of variance to determine the relationship between design
variables and responses. In PRSM linear polynomial is used to approximate the implicit limit
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state equation. The coefficients of the linear polynomial are determined through the BB design
described above [12]. The general form of a PRS model relation is shown in Eq. 4.1

m m m

D(x):BO+Zﬁixi+ZZﬁijxin+...+E 4.1
i=1 i=1j>i

where E is the statistical error, x; is the i-th component of the m-dimensional predictor and Sy, f;

and f;; are parameters to be estimated and can be arranged in a certain order to form a column

vector ﬁ . In this case, m=3 and xi, x2,x3, are the considered factors, correspondingly, the PSD

standard deviation o, the number of PPM, and the noise level €.

4.2.3 Rule-based systems

Rule-Based Systems (RBS) or to be more precisely a Rule-Based Fuzzy System (RBFS) as the
one employed here- have flexible enough structure to represent adequately non-linearity and un-
certainty of real processes and they are transparent enough to be easy for inspection, analysis,
incorporation of existing knowledge and suppression of undesired one. They have been devel-
oped during the last four decades as a result of an interaction of the Fuzzy Set Theory and
the Control Theory [3]. RBFS contains four components—rules, fuzzifier, inference, and output
processor—that are interconnected as shown in Fig. 1. Once the rules have been established,
the fuzzy system can be viewed as a mapping from the factors to the output desirability D and
this mapping can be expressed quantitatively as D = f(x;,x5,x3). Rules are quantified using the
mathematics of fuzzy sets, and that mathematics is different for type-1, interval type-1, and gen-
eral type-2 fuzzy sets. [21]. To see further about this topic applied to this work readers should go
to the second part of the methodology in section 6, where a RBFS is proposed.

Desirability D

Output
Processor

Factors
X1,
x27 x3

Inference

P
|

Fuzzy

. output sets
input sets

Figure 1: Scheme of a RBFS with input factors x1, x2, x3 and output D.
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5 FORMULATION OF THE PROBLEM
There are two main problems to be considered in this work:

The first one, defined as a part of an IP, can be formulated as the selection of the parameters Ry
and g* such as

[1e(q) — I(Ro, 8%)|| < & (5.1

where I (g) are the noisy SLS measurements, /; are simulated SLS measurements generated by
Eq. (3.1) for the parameters g* and Ry which are the sampled values from the approximate normal
distributions developed after performing the Jackknife procedure; meanwhile € corresponds to
the SLS level noise.

The second one, defined as a part of the RBS generation problem, can be formulated as the
optmization problem of the so-called desirability function D as in:

maxj B.c {D(comb(A, 37 C) )}

where the desirability function D is specifically the relative improvement in the precision for
parameter Ry from Eq. (3.2) in terms of several combinations of factors appearing in Eq. (4.1),
and x; = A, x, = B and x3 = C, where A is the PSD standard deviation o, B is the number of
PPM, and C is the noise level €.

6 METHODOLOGY

The selection problem formulated in the last section as in Eq. (5.1) is solved using the pro-
posed SMF methodology, however this problem is just the final step (filtering) involved in it. The
complete methodology for combining SEM and SLS data (including the preprocessing stage de-
scribed in 4.1., i.e., the Jackknife procedure and the successive approximate normal distributions)
is described in the flowchart in Fig. 2

It can be asked a reasonable question after studying this inversion procedure and the LMA: What
happened with the rest of the parameters in the model besides those related to the PSD? How
should we take them into account? The answer is not unique and authors give two possibilities: 1)
these nuisance parameters, i.e., p and K in Eq. (3.1) can be estimated using an standard inversion
method, such as the Levenberg-Marquardt algorithm [15, 17] and then to be used this estimate
point or 2) their corresponding confidence intervals (CIs) can be drawn after performing several
MC simulations. In this work authors have considered the first option.

When analyzing the second part of this work, once again, the numerical optimization in section
5 is just a step in the RBS generation problem, which has three phases: in the first one, the BB
design is drawn. In the second one, the RSM is applied. In the last one, the final RBS is built
from the results of solving such optimization. The first two phases are standard and can be seen in
more detail in good and amenable books such as [2,20]. However, it seems important to remark
that for RSM models with orders greater than linear or with interactions, univariate optimization
will not reach to the optima. In this sense, the algorithm used in the RSM numerical optimization
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Sampling of a n-particle SEM micrograph

Resampling of SEM micrograph by means of Jackknife

Approximate Normal Distributions for parameters Ry and g*

Monte Carlo sampling values for Roand g* (g* and R,) from the normal distributions

Mapping of the LMA for g* and Ry: Is=A(p) f(g*, R,)

Acceptance of sample g; = g* and Ry ;- R,

Yes

Filtering

Build the final

i<Nmax .
histogram

Figure 2: Flowchart of the proposed SMF methodology for the resolution of the IP.

is the downhill simplex (Nelder-Mead) multi-dimensional pattern search whose code is extracted
from [29] and it has a good performance in multivariate optimization, however convergence to
global optima is not guaranteed.

Trends Comput. Appl. Math., 23, N. 4 (2022)
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Now with all of the above, authors may focus on the proposed RBS generation. First, as a first
approach, rules are drawn according to the following setting given in the corresponding software
(section 7) (noted as SETTING1):

i) One factor is set with goal: “equal to ->" a value in the range [—1, 1]
ii) The other two factors are set with goal: “in range” with lower limit -1 and upper limit 1
iii) The desirability is set with goal: “To maximize”

In this case, factors in i) and ii) are varied between values {—1,0, 1}, i.e., the three levels, result-
ing in 9 possible configurations. Some important conclusions can be derived from these results
and probably more detalied configurations should be set as SETTING?2:

i) Two factors are set with goal: “equal to ->" a value in the range [—1, 1]
ii) The other factor is set with goal: “in range” with lower limit -1 and upper limit 1
iii) The desirability is set with goal: “To maximize”

In this case, once again factors are varied between values {—1,0,1} resulting in 27 possible
configurations. These results should probably be enough to build an acceptable set of rules.

Finally, if it is still found to be an uncomplete set of rules, a third option is to consider all the 81
possibilities varying the values for factors between —1,0, 1 given in SETTING3:

i) The three factors are set with goal: “equal to ->" a value in the range [—1, 1]
ii) The desirability is set with goal: “To maximize”

It is also possible (but not considered in this work) to use intermediate not integer values between
-1 and 1. In this case, it should be used once again SETTING1, SETTING2 or SETTING3.

Second, it is worth to mention that results from SETTING1, SETTING2 and SETTING3 may
probably give intermediate values. These values should be fuzzified according to the set of
memberships, which are given next.

Third, authors have selected to work with type-1 fuzzy sets. Also, a set of membership functions
(mf’s) and corresponding attributes should be proposed for the three (now normalized) factors
and desirability D. This is needed for the fuzzification, the inference and the output processor
blocks in Fig. 1. Typical mf’s include triangular, trapezoidal, sigmoidal and Gaussian. In this
case, a generic trapezoidal mf has been chosen for a generic factor between —1 and 1 with a
profile such as the one in fig. 3, with three attributes, “low”, “medium” and “high” and variations
of these with the use of logical modifiers. For the case of the desirability D, authors have fed
back the RBFS with the RSM results and the induced rules. As a consequence the attributes with

the corresponding mf’s appear in fig. 4.

Fourth and finally, there is need of finishing the setting for the inference and the output processor
blocks by defining the type of logic. As in [23] authors have proposed compensatory fuzzy logic
for defining the corresponding connectors and modifiers based on its performance as a sensitive
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and idempotent inference system. See also [23] for the structure of these connectors and modi-
fiers. In this work, authors use the modifiers ‘hyper’ and ‘quite’. Authors have also used “hardly
high” with a specific-defined mf.

All of these are very important issues to be solved, since rules are defined on the base of the
different mf’s and the type of sets and logic employed in the inference, fuzzification and output
processor. In fact, it is a common procedure to build mf’s in function of type of used logic and
the set of rules.

© o o9
> o o

degree of membership
o
N

factor level

Figure 3: Corresponding mf’s to attributes “low” (straight blue line), “quite low” (straight light
blue line), “medium” (red dashed line), “quite high” (straight black line) and “high” (green
dashed-dotted line) for a generic normalized factor.

7 COMPUTATIONAL IMPLEMENTATION AND EXAMPLES

The first part of the work, i.e., the computer simulations performing the SMF methodology have
been implemented using the MATLAB® 2015b package. Results from this part are considered
the input of the analysis phase from the second part of the work, i.e. the design of the experiment.
This phase, as well as the analysis, the RSM and the numerical optimization of the DOE, have
been implemented by means of the Design-Expert® 7.0 software. Meanwhile, the final phase of
this second part, i.e., the generation of rules, is of human-crafted nature.

The examples considered in this paper follows the previous article [25] and they belong to a
typical range of polymeric systems such as the ones studied for a solid polymer matrix in [34].
Three values of PSD standard deviation of 0.02, 0.05 and 0.10 um for a mean radius of 0.25
um as well as three values for SLS noise levels of additive normal distribution of 0.1%, 1%
and 10% from the measurement peak, and three values of PPM (50, 80 and 100 particles). All
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level of normalized desirability D

Figure 4: Corresponding mf’s to attributes “medium” (dashed orange line), “hardly high” (brown
dashed-dotted line), “high” (green straight line) and “hyper high” (straight blue line) for a nor-
malized desirability D.

of these cases correspond to volume fractions of 1%. It has been performed a MC sampling of
100 samples for parameters Ry and g*. The BB design places three equally spaced values, coded
as —1, 0 and +1 as stated in section, which are in correspondence to the three values for every
factor in an increasing order. This design includes 15 runs with 3 center points per block. Since
authors have included the study of the lack of fit (LOF), repetitions are needed. In this case, this
implies three repetitions at the center (0,0, 0) as can be seen in Table 1.

8 RESULTS AND DISCUSSION

As stated in the introduction, this work is involved with both qualitative and quantitative data
analysis, i.e. EDA and CDA. EDA was concerned about the question: how can we design the
experiment including the inversion methodology? And more specifically, how can we fuse data
from SLS and SEM? How can we measure improvement in such a data fusion? What type of
model can we make for optimizing the design of the experiment? CDA was concerned about the
process of responding these questions in practice following those steps dictated by Tukey.

It was observed from the results for the different IP’s that improvements in the CI for parameter
Ry between 30% and 48% were found for the lesser number of PPM (50) correspondingly to a
decreasing value of SLS noise level. However, just for a few cases in general, improvement in
the CI for parameter g* were found. It was also observed that improving the number of PPM to
80, for the narrower PSD and for the lower SLS noise level, decrease the initial CI for Ry around
a 50 %. Once again, results on improvement for the CI's have shown a direct dependency on

Trends Comput. Appl. Math., 23, N. 4 (2022)
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the SLS noise level, i.e., the lower the noise is, the greater the CI shrinking is. Nevertheless, the
observed behavior seems to have a non-trivial dependency on the other two variables (factors A
and B), which has to be evaluated in a further analysis in the second part. As a sort of example
for the statistical improvements in the retrieved PSD’s, results corresponding to the run 5 in table
1 are shown in Fig. 5

30 - 30 -
20 | [ 20 I
10 | [ 10 W
0 -k 0 _'k
0 0.2 0.4 0 0.2 0.4
microns microns

Figure 5: Corresponding error bars for the initial PSD achieved from Jackknife on the left and
for the final PSD achieved with the SMF methodology on the right.

Table 1 shows the results for desirability D and their values normalized to the maximum after
solving the different inverse problems for the 15 runs of the BB design. Authors have selected
the relative improvement in the precision for the parameter Ry as the desirability D due to the
almost null improvement in the initial CI for the parameter g* in a relevant number of cases.

The “Sequential Model Sum of Squares [Type I]” suggested the linear model is adequate when
analyzing the selection of the highest order polynomial where the additional terms are significant
and the model is not aliased. However, in a more exhaustive analysis using the Analysis of Vari-
ance (ANOVA), as seen in Table 2, authors have chosen a reduced 2FI (two factor interaction)
model. In this case, it was included the interaction “AB” when its corresponding p-value is 0.083.
Values greater than 0.10 indicate the model terms are not significant, but values lesser than 0.05
are significant. However, this range between 0.05 and 0.10 is a sort of fuzzy and after studying
the behavior of this model and in particular for this interaction, authors decided to include it.
The model F-value of 25.34 including this interaction (also seen in Table 2) implies the model is
significant and the F-Value for the LOF of 2.95 implies the LOF is not significant relative to the
pure error. There is a 27.74% chance that a “Lack of Fit F-value” this large could occur due to
noise. It should be noticed that authors also included factor B in the model even when its p-value
is so high. This inclusion is due to the need for a hierarchical model. Furthermore, the ‘“Pred R-
Squared” of 0.8169 is in reasonable agreement with the “Adj R-Squared” of 0.8743. The analysis
also has shown an adequate precision of 15.411, which measures an appropriate signal to noise
ratio (SNR)
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Table 1: Results from the BB design for the DOE.

Run | Factor A | Factor B | Factor C | D (desirability) | D normalized
1 1 -1 0 29 0.5577
2 1 0 -1 44.2 0.85
3 -1 1 0 38 0.7308
4 0 0 0 33.8 0.65
5 0 -1 1 17.8 0.3423
6 1 1 0 18.7 0.3596
7 0 0 0 32 0.6154
8 1 0 1 0 0
9 0 -1 -1 37.6 0.7231
10 0 1 -1 42 0.8077
11 -1 -1 0 30 0.5769
12 0 0 0 28 0.5385
13 -1 0 1 15.6 0.3
14 0 1 1 17 0.3269
15 -1 0 -1 52 1

The final model is:

D =0.56-0.11A40.003125B — 0.30C — 0.088AB

Results show the significance of the SLS noise level in the surrogate model from the RSM. As it
has been seen in section 3, the range of PPM should be between 50 and several hundreds in order
to be comparable to the corresponding SLS noise. That is the reason for the preponderancy of
factor C. In order to make these two factors comparable between each other, several micrographs
should be taken into account

Furthermore, the analysis of data for the interaction between factors A and B shows that a com-
bination of the two has a dramatic effect on maximization of D. This can be seen through Table
3 where no matter the value of C, the best combination for factors A and B is correspondingly
-1 and 1. It is important to stand out that quantitative analysis is as subjective as qualitative anal-
ysis: significant isn’t the same as meaningful. The more interactions are being compared, the
more likely it is that “significant” interactions that aren’t really significant are going to be found.
This is the reason for choosing the parsimony law as a guide in the model construction and to
consider just this interaction, which is justified by the ANOVA results and the rest of model tests.
Subjectivity is also present in the author’s choice of mf’s. In this sense, definition and parameter
identification of membership functions constitute the trickiest issue in the practical use of fuzzy
sets theory. There are a lot of discussions and no common fundamental recipe for doing this.
The mf’s for two users could be quite different depending upon their many factors, or, they can
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Table 2: ANOVA for the RSM (extracted from the Design-Expert® 7.0).

Source Sum of Mean F-Value P-Value
Squares Square Prob >
F-Value
Model 0.85 0.21 25.34 <0.0001 Significant
A-A 0.088 0.088 10.57 0.0087
B-B 7.80E-05 7.80E-05 9.36E-03 0.9249
C-C 0.73 0.73 87.07 <0.0001
AB 0.031 0.031 3.71 0.083
Residual 0.083 8.35E-03
LOF 0.077 9.62E-03 2.95 0.2774 Not
significant
Pure Error 6.51E-03 3.26E-03

be designed using optimization procedures [3,21]. Here, authors have used expert knowledge to

define mf’s.

Table 3: Optimal values for factors A and B for different levels of factor C.

C=-1|C=-05|C=0|C=05|C=1
A | -1 -1 -1 -1 -1
B |1 1 1 1 1
D | 1* 0.905 0.755 | 0.604 0.453**

* One of the 30 solutions found.

** One of 2 solutions found.

In this article, authors have just considered results from SETTINGI as a way of simplifying
the analysis. The construction of basic rules drawn using the SETTINGI (including suboptimal
solutions) are the following:

1- IF A IS LOW OR MEDIUM, AND B IS LOW AND C IS LOW THEN D IS HIGH

2- IFA IS LOW OR QUITE LOW AND B IS MEDIUM OR HIGH OR QUITE HIGH AND
C IS LOW THEN D IS HYPER HIGH

3- IFAIS LOW AND B IS HIGH AND C IS MEDIUM THEN D IS HARDLY HIGH

4- TF A IS LOW AND B IS HIGH AND C IS HIGH THEN D IS MEDIUM

5- IF A IS HIGH AND B IS LOW OR QUITE LOW AND C IS LOW THEN D IS HIGH
6- IF A IS MEDIUM AND B IS MEDIUM OR HIGH AND C IS LOW THEN D IS HIGH
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9 CONCLUSIONS

This article has successfully applied a novel inversion methodology to the specific problem of
estimating the PSD (represented parametrically by a log-normal distribution) by means of fusing
data from SLS and SEM measurements. This methodology based on Monte Carlo simulations
can be described as a three-step strategy: Sampling-Mapping-Filtering (SMF); specifically, the
inversions are used to generate data fusion rules in terms of three factors: the SEM particles per
micrograph, the SLS noise and the PSD breadth. Results of inversion have shown that shrink-
ing of the CI’s with respect to initial from SEM were only significant for parameter Ry. This is
the reason for choosing the improvement on this parameter as a measure for the objective func-
tion, called desirability, in the design of the generation of the experiment rules. It is important to
remark the dependence of the computer experiments on the proposed inversion methodology. Ex-
periment rules, which are human crafted, have presented two main features in order to optimize
the desirability (even when suboptimal solutions include other features): i) a low SLS noise level,
and ii) a combination of low polydispersity and high number of SEM particles per micrograph. It
has also been proposed a rule-based fuzzy system based on Type-I fuzzy sets and compensatory
fuzzy logic in order to derive solutions for other possible configurations.
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APPENDIX

MATLAB® codes from the first part and Design-Expert® file from the second part are made available at
http://www3.fi.mdp.edu.ar/virtuallab/MAMI/CODE_I_II.rar.
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