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ABSTRACT. Disruptions of the circadian rhythm are associated with internal desynchronization. It affects
some internal functions of our body and behavior that are important to our health. Our modern lifestyle has
contributed to millions of people developing some circadian rhythm disruptions, making the subject very
important clinically as well as economically.

Motivated by studying a simple mathematical model that can reveal some features of internal synchroniza-
tion/desynchronization, in this contribution, we extend the coupling oscillator phase model proposed by
Strogatz [14] in the sense that memory is considered in the modeling. Such memory is a result of the intro-
duction of Caputo-type fractional derivatives in the coupling oscillators’ phase model dynamics, resulting
in a fractional phase model.

We show that the proposed fractional coupling oscillator phase model is well-posed. Furthermore, we ana-
lyze the synchronization phenomena. We obtain the synchronized solutions explicitly when the memory is
equally distributed between the oscillators. In contrast, when distinct levels of memory are imposed in the
modeling, we obtain lower and upper bounds because any existing synchronized solution must be confined
in between. We present numerical realizations that support the theoretical findings in great detail.

Keywords: circadian rhythms, synchronization, memory.

1 INTRODUCTION

Synchronization of oscillators have profound implications in many natural and technologi-
cal phenomena, ranging for neuroscience, where the contributions are in the development of
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246 SYNCHRONIZATION OF THE CIRCADIAN RHYTHMS WITH MEMORY

demand-controlled brain pacemakers for the therapy of neurological and psychiatric diseases,
cardiac pacemaker e.g [11,16], circadian rhythms e.g. [15,22], chemistry e.g [9], to laser physics
and electronics e.g [11, 15, 23], among others.

From the mathematical point of view, synchronization of coupled oscillators has been studied
since the seminal works of Winfree [22] and Kuramoto [9]. The general picture for the syn-
chronization of coupled oscillators depends on the topology of the coupling and the number of
oscillators. However, there are still many unsolved problems on this subject. [1, 2, 12, 15] and
references provide a comprehensive overview of the development and results of this setting.

Typically, circadian and sleep-wake rhythms are phase locked (synchronously) within and with
the light-darkness environment. However, the modern human lifestyle often disrupts the usual
schedule as a result of rotating shift work, jet lag, insomnia, or even today’s online social net-
works. Such disruptions are so important clinically and economically that they are reported to
affect millions of people every year [10,17]. As a major consequence of the circadian disruption
in the internal desynchronization of day-to-day functionality that regulates important functions
such as behavior, metabolism, hormone levels, sleep and body temperature, [10, 17].

In this contribution, we focus on a much simpler model1 with only two nonlinear in-phase cou-
pled oscillators, θ1 and θ2, with the dynamics driven by a Caputo type fractional derivative2 [5].
The main motivation is to test the memory-like hypothesis of the circadian rhythms. New find-
ings and models that incorporated memory in the circadian rhythms might help to propose and
design treatments for people wich circadian disruption [10,17]. For that fate, we chose to extend
the analyses of the dynamical circadian rhythms system of in-phase coupled oscillators proposed
by Strogatz [14], since it is a simple model for the sleep-wake θ1 and body temperature θ2 circa-
dian rhythms. The mentioned extension deals with the memory imputed into the dynamics by a
fractional order derivative (see Section 2 for details). In [3], the authors have contributed to the
proposed models numerically, but, as far as we are aware, this contribution is the first to analyze
the synchronization phenomena for the fractional phase model mathematically.

The main results of this contribution can be summarized as:

• The proposed Caputo fractional order dynamics for in-phase coupled oscillators advance
our understanding of memory’s influences on circadian rhythms and their synchronization
and dessynchronization phenomena;

• We show the well-posedness of the proposed dynamical system;

• We show that the synchronization phenomena for a pair of in-phase coupled oscillators
proposed by Strogatz [14] can be understood if the memory is equally distributed between
the oscillators. Hence, extending the conclusions in Strogatz [14];

1More circadian rhythm models can be found in [4, 8, 14] and the references therein.
2We have chosen the Caputo-type fractional derivatives in these contributions since they implies in biological interpetrable
initial condition for the dynamics [5]. The analysis of the model in termos of ψ-Hilfer pseudo-fractional operator [13,
19, 20] will be investigate in future contributions.

Trends Comput. Appl. Math., 24, N. 2 (2023)
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• The same phenomenon becomes extremely complex in a general picture, if each oscilla-
tor has a distinct level of memory. However, given the necessary conditions for the exis-
tence of a synchronized solution, lower and upper bounds are derived based solely on the
parameters, such that any existing synchronized solution must be confined in between.

• We present numerical realizations supporting the theoretical findings.

Outline: In Section 2, we present the proposed fractional phase model and corresponding cou-
pling topology that will be analyzed during this contribution. In Section 3, we prove the well-
posedness of the proposed model. In Section 4 we discuss the synchronization phenomena. In
particular, we rapdly review the synchronization analysis of the phase model proposed by Stro-
gatz in Subsection 4.1. We present explicitly the synchronized solutions for the fractional phase
model in Subsection 4.2 and the bounds for any existing synchronized solution for the multi-
order fractional phase model in Subsection 4.3. The distinct scenarios for synchronization of the
proposed models are presented in Section 5. Finally, some conclusions and future directions are
summarized in Section 6.

2 THE FRACTIONAL PHASE MODEL

One essential point in the modeling of the proposed model is the coupling topology. Many cou-
pling strategies have been studied in the literature, for example [9, 15] and references therein.
Motivated by the circadian rhythm modeling proposed by Strogatz [14], in this contribution we
shall consider the coupling topology presented in the Figure 1.

Figure 1: Schematic coupling topology of the oscillators system.

Trends Comput. Appl. Math., 24, N. 2 (2023)
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By observing the coupling topology in Figure 1, the fractional-order coupled oscillators, θ1 (the
temperature) and θ2 (the sleep-wake), follow the dynamic

Dα1θ1(t) = ω
α1
1 −Bα1 cos(2π(θ1(t))) (2.1)

θ2(t) = 0, (2.2)

for t ∈ [0, f2] and

Dα1θ1(t) = ω
α1
1 −Bα1 cos(2π(θ2(t)−θ1(t))) (2.3)

Dα2θ2(t) = ω
α2
2 +Aα2 cos(2π(θ1(t)−θ2(t))), (2.4)

for t ≥ f2.

In (2.1)-(2.3), ω j are strictly positive constant that represents the intrinsic frequency given by
ω j =

1
τ j

for the period (in hours) τ j, A,B are the coupling strength and Dα j(·) is the Caputo
fractional derivative operator [5] of order α j ∈]0,1], for j = 1,2, respectively.

The left hand side of equations (2.3)-(2.1) has dimension of (time)−α j , for j = 1,2, respectively.
Therefore, in order of time dimension match (be consistent), the parameters ω j,B,A on the right
hand side of (2.3)-(2.4) have powers α j, for j = 1,2, respectively. See [6] for further details
on the dimension consistence of the proposed system. It is also worth noting that, in the limit
case of α j → 1, with f2 = 0 the system (2.3)-(2.4) recover the phase model proposed by Stro-
gatz [14]. Hence, we are analyzing a generalization of the model proposed by Strogatz [14], with
the premise that our circadian rhythms have memory. Here, memory is recovered thanks to the
properties of the fractional Caputo derivative as motivated by [5, Remark 6.4].

Furthermore, we assume that oscillators’ movements are counter-clockwise. The signals on the
coupling constants are determined to attend to this hypothesis. Therefore, it follows from the
schematic system in Figure 1 that the coupling from θ2 to θ1 is contrary to the movement. As a
result, the signal representing the coupling forces B is negative, whereas the signal representing
the coupling A is positive.

The system (2.3)-(2.4) is completed by initial conditions as follows: we assume that the period
that we are at sleep is a fraction f2 of the phase θ2(t). Hence, for t0 = 0 we will have the initial
condition

θ2(t0 = 0) = 0 , (2.5)

or no activities (sleeping). As the Figure 1 suggest, we have

θ2(t) = 0 for t ∈ [0, f2[ and θ2(t = f2) = F2, (2.6)

In this setting, F2 > 0 means abrupt changes in the asleep stage. On the other hand, F2 = 0
means that you have a smooth change between the sleep-asleep stages and can be interpreted as
a normally asleep situation. Hence, whatever is necessary in the forthcoming analysis, we assume
that F2 = 0.

Trends Comput. Appl. Math., 24, N. 2 (2023)
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Furthermore, we assume that the temperature before the activity is lower. Therefore, after
normalization, we assume that

θ1(t0 = 0) = 0. (2.7)

The system (2.3)-(2.4) is a multi-order fractional differential system with initial conditions (2.7)-
(2.5) e.g., [5]. In particular, for α1 = α2 = 1 and f2 = 0, we have the phase coupled oscillators
proposed by Strogatz [14]. We will refer the model (2.1)-(2.3) as the Strogatz phase model when
α1 = α2 = 1, fractional phase model when α1 = α2 ou multi-order fractional phase model when
α1 ̸= α2.

3 WELL-POSEDNESS

In this section, we prove the well-posedness of the fractional system of nonlinear coupled
oscillators (2.3)-(2.4) with initial conditions given by (2.7)-(2.5) with α j ∈]0,1], for j = 1,2.

Lemma 3.1. The fractional order initial value problem (2.1)-(2.7) has a unique continue solution
on [0, f2]. It solution depends continuously on the parameters, the fractional order α1 ∈]0,1] and
on the initial condition-(2.7).

Proof. Since |cos(x)| ≤ 1 ≤ 1+ |x|, it follows that the right hand side of the system (2.1) is
continuous w.r.t. t and Lipschitz continuous w.r.t. the second argument. Therefore, [5, Theorem
6.1 - Theorem 6.5] implies the existence of a unique solution on the interval [0, K̂∗], for some
K̂∗ > 0, that depends only on the parameters, the Lipschitz constant and on α1 ∈]0,1].

Moreover, since cos(x) is uniformly bounded, it follows that cos(x) ≤ 1 + |x|µ , for some
µ ∈ [0,1]. Hence, the right hand side of (2.1) easily satisfies [18, Theorem 3.2], for with the
continuous extension of a solution of (2.1)-(2.7) to the interval [0, f2] follows. □

Now, we can formulate the following result

Theorem 3.1. Let α j ∈]0,1], for j = 1,2, respectively. Assume F2 = 0. Then:

i) There exist a unique continuous solution (θ1(t),θ2(t))T for multi-order fractional differ-
ential system (2.3)-(2.4) with initial conditions (2.7)-(2.5) on the interval [0,K∗], for some
K∗ > 0.

ii) The solution (θ1(t),θ2(t))T of the multi-order fractional differential system (2.3)-(2.4) de-
pends continuously on the initial conditions (2.7)-(2.5), on the parameters of the system
and on the order of the derivatives α j ∈]0,1], for j = 1,2.

iii) The solution (θ1(t),θ2(t))T of the multi-order fractional differential system (2.3)-(2.4) can
be continuously extended to the interval [0,∞[.

Proof. It follows from Lemma 3.1 that item i) and item ii) are true on the interval [0, f2], for with
θ2(t) is identically zero on [0, f2]. Furthermore, θ1( f2) is well defined.

Trends Comput. Appl. Math., 24, N. 2 (2023)
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Therefore, is enough to prove the claims for the multi-order fractional differential system (2.3)-
(2.4) with initial conditions θ1(t0) = θ1( f2) and θ2(t0) = F2 := 0.

It is done similarly to the arguments in Lemma 3.1.

Since |cos(x)| ≤ |x|+1 it follows that the right hand side of the system (2.3)-(2.4) is continuous
w.r.t. t and Lipschitz continuous w.r.t. the second argument. It follows from [5, Theorem 8.11]
the existence of a unique solution as claimed in item i). Following the steps in [5, Theorem 8.9]
one can see that the system (2.3)-(2.4) can be transformed in a system with the same fractional
derivative order in each equation, for with, if the right-hand side is continuous and Lipschitz
continuous the transformed system also is continuous and Lipshitz continuous. Hence, one can
apply now [5, Theorem 8.11] to conclude the existence of a unique continue solution on [ f2,K∗]

that depends continuously on the initial data, the parameters, and the derivative orders as claimed
in i) ii).

The extension of the solution of (2.3)-(2.4) to the interval [0, f2] was already proved in
Lemma 3.1. Again, since cos(x) is uniformly bounded, it follows that the right hand side of the
system (2.3)-(2.4), with initial conditions on f2 as above, easily satisfies [18, Theorem 3.], for
with the continuously extension to the interval [ f2,∞[ follows. It concludes the claim of item iii).
□

It is worth noting that if F2 > 0, then we we cannot prove the continuity of θ2 in [0,∞[, becouse
θ2(t) = 0 for t ∈ [0, f2[. However, we could consider a piecewise continue solution (θ1(t),0)T

on [0, f2[ given by Lemma 3.1 and (θ1(t),θ2(t))T on [ f2,∞[, which follows the line of proof of
Theorem 3.1. It will appear explicitly in the next sections.

The next corollary is an essential part of the synchronization analysis presented in the next
section.

Corollary 3.1. Let the assumption on Theorem 3.1 holds true and let f2 = 0. Then the unique
solution of the multi-order fractional system(2.3)-(2.4), with initial conditions (2.7)-(2.5), are
given by

θ1(t) =
1

Γ(α1)

∫ t

0
(t − s)α1−1g1(s) ds (3.1)

θ2(t) =
1

Γ(α2)

∫ t

0
(t − s)α2−1g2(s) ds (3.2)

where

g1(t) = ω
α1
1 −Bα1 cos(2π(θ2(t)−θ1(t))) (3.3)

g2(t) = ω
α2
2 +Aα2 cos(2π(θ1(t)−θ2(t))). (3.4)

Proof. The existence and uniqueness follows from Theorem 3.1. Then, the claim of this corollary
follows from a component-wise application of [5, Lemma 6.2] in (2.3)-(2.4) with the null initial
conditions (2.7)-(2.5). □

Trends Comput. Appl. Math., 24, N. 2 (2023)
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4 ON THE SYNCHRONIZATION ANALYSIS

In this section, we investigate the synchronization of the fractional phase model (2.3)-(2.4). More
precisely, we will investigate the macroscopic synchronization phenomena associated with the
model (2.3)-(2.4) for different choices of the fractional derivatives α1,α2 ∈]0,1].

In this setting, we will consider synchronization as the well-known emerging phenomenon aris-
ing in the analysis of oscillators for which, independently of their differences, there is a sponta-
neous lock of one to another such that, they will oscillate exactly at the same frequency. In other
words, by defining the phase difference

ψ(t) = θ1(t)−θ2(t) , (4.1)

we will say that the phase oscillators θ1 and θ2 are synchronized when ψ(t) = c, for some con-
stant c. Therefore, this synchronization of two oscillators only make sense for θ2 ̸= 0, otherwise
it does not influence in θ1. Hence, we only analyze the synchronization for with t ≥ f2.

Below we will present a complete analysis of analytic synchronization for the case of α1 =

α2 ∈]0,1]. Furthermore, we will persuade the reader that spontaneous synchronization for multi-
fractional fractional phase oscillators with α1 ̸= α2 (although α1,α2 ∈]0,1]) is an extremely
complex phenomenon, as the presence of synchronization is difficult to demonstrate analytically.
On the other hand, we show lower and upper bounds for any existing synchronized solutions.

4.1 Synchronization for the Strogatz phase model - α1 = α2 = 1

For the sake of completeness, in this subsection, we revisit the Strogatz analysis on synchro-
nization of the phase model (2.3)-(2.4). That means, we are looking for the system of phase
oscillators (2.3)-(2.4) with α1 = α2 = 1.

Consider the phase difference ψ(t) as in (4.1). It follows from (2.3)-(2.4) (with α1 = α2 = 1) that
the derivative of ψ(t) w.r.t. t satisfies the equation

ψ
′(t) = Ω−Dcos(2πψ(t)) , (4.2)

where Ω = ω1 −ω2 is the intrinsic phase difference of the oscillators and D = A+B is the total
coupling strength of the system.

As a result, the synchronization of the phase oscillators θ1 and θ2 coincide with the stable
stationary point of the dynamic (4.2), i.e., ψ ′(t) = 0. Using this in (4.2), we obtain

ψ(t) =
1

2π
arccos

(
Ω

D

)
. (4.3)

Notice that the spontaneous synchronization of the phase oscillators implies the following
relation between the intrinsic phase difference Ω and the total coupling strength D, given by

K :=
∣∣∣∣D
Ω

∣∣∣∣> 1. (4.4)

Trends Comput. Appl. Math., 24, N. 2 (2023)
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The relation (4.4) is known as the Winfree constraints for spontaneous synchronization, e.g.
[15, 22].

Using (4.3) in the system (2.3)-(2.4) (with α1 = α2 = 1), we have that, during synchronization,
the dynamics satisfies

θ
′
1(t) =

Aω1 +Bω2

A+B
= θ

′
2(t) . (4.5)

Integrating both sides of (4.5) w.r.t. t and using the initial conditions (2.7)- (2.5), as well as
the fact that θ2(t) = 0 on the interval [0, f2], we find that the synchronized analytic solution of
(2.3)-(2.4) is given by

θ1(t) =

(
Aω1 +Bω2

A+B

)
t (4.6)

θ2(t) =

(
Aω1 +Bω2

A+B

)
(t − f2)+F2. (4.7)

It follows from (4.1) and (4.6)-(4.7) that, in the synchronization stage, the phase differences,
ψ(t) = f2

(
Aω1+Bω2

A+B

)
−F2 is constant. This influence of f2 and θ2( f2) was not capture in the

original paper by Strogatz [14].

Notice that, from (4.5), the frequency during synchronization ω∗ = θ ′(1) = θ ′
2 is given by

ω
∗ =

Aω1 +Bω2

A+B
.

It differs from the natural frequency ω1 and ω2, by

δω1 = ω
∗−ω1 =−BΩ

D
, (4.8)

δω2 = ω
∗−ω2 =

AΩ

D
,

respectively. Hence, we can conclude that, during synchronization, the frequencies of the
oscillators are shifted from their intrinsic values in proportion to the coupling strengths, i.e.,∣∣∣∣δω1

δω2

∣∣∣∣= B
A
. (4.9)

4.2 Synchronization for the fractional phase model

In this subsection, we will show that there exist an analytic synchronized solution for the frac-
tional system (2.3)-(2.4), with α1 = α2 = α ∈]0,1[. The idea is to follow the same steps on
Subsection (4.1).

Lets take the Caputo fractional derivative of order α ∈]0,1[, of the phase difference ψ(t).
According to (2.3)-(2.4) we have that

Dα
ψ1(t) = Ωα −Dα cos(2πψ1(t)) (4.10)

Trends Comput. Appl. Math., 24, N. 2 (2023)
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where Ωα = ωα
1 −ωα

2 and Dα = Aα +Bα are the α-power intrinsic frequency differences and
the total coupling strength of the system, respectively.

Because Caputo’s derivatives of constants are zero (see the definition of Caputo derivative in [5],
synchronization of the oscillators θ1 and θ2 corresponds to the stable stationary points of (4.10),
i.e. Dα ψ1(t) = 0. In other words, the stationary phase difference satisfies

ψ1(t) =
1

2π
arccos

(
Ωα

Dα

)
. (4.11)

Remark 4.1. Notice that, since the domain of arccos ∈ [−1,1], it follows from (4.11), that a
necessary condition for synchronization is that |Ωα |< Dα . This condition is a generalization of
Winfree’s restriction, e.g. [15, 22], to the fractional phase model.

Therefore, substituting (4.11) into the system (2.3)-(2.4), we have that

Dα
θ1(t) =

Aα ωα
1 +Bα ωα

2
Aα +Bα

= Dα
θ2(t), (4.12)

on the synchronization stage. Using the fractional integral of order α (see [5]) on both side of
(4.12) and the initial conditions, we have

θ1(t) =
(

1
Γ(α)

∫ t
0(t − x)α−1

(
Aα ωα

1 +Bα ωα
2

Aα+Bα

)
dx
)

and

θ2(t) =
(

θ2( f2)+
1

Γ(α)

∫ t
f2(t − x)α−1

(
Aα ωα

1 +Bα ωα
2

Aα+Bα

)
dx
)

,

since θ2(t) = 0 for t ∈ [0, f2[.

Integrating the above equations implies that, during synchronization

θ1(t) =
(Aα ωα

1 +Bα ωα
2 )t

α

(Aα +Bα)αΓ(α)
(4.13)

θ2(t) =
(Aα ωα

1 +Bα ωα
2 )(t − f2)

α

(Aα +Bα)αΓ(α)
+F2.

It follows from (4.12) that the frequency during synchronization ω∗
α = Dα θ(1) = Dα θ2 is given

by

ω
∗
α =

Aα ωα
1 +Bα ωα

2
Aα +Bα

,

that differs from the natural frequency ωα
1 and ωα

2 , by

δα ω1 = ω∗
α −ωα

1 =−Bα Ωα

Dα
, (4.14)

δα ω2 = ω∗
α −ωα

2 = Aα Ωα

Dα
,

Trends Comput. Appl. Math., 24, N. 2 (2023)
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respectively. Similarly to the analysis on Subsection 4.1, the oscillator frequencies are shifted
from their intrinsic values in proportion to the fractional power coupling strengths, i.e.,∣∣∣∣δα ω1

δα ω2

∣∣∣∣= (
B
A

)α

, (4.15)

during synchronization.

From the analysis carried out before, we can argue about the influence of the fractional order
dynamics on the synchronization of the phase oscillator model (2.3)-(2.4). Indeed, from (4.9), the
oscillator frequencies are shifted from their intrinsic values in a linear proportion to the coupling
strengths for the case of α = 1 (the Strogatz model) and as a fractional power low for the case
of α1 = α2 = α . It follows that the frequency during synchronization is a monotone decreasing
(increasing) function of α ∈]0,1] towards B

A , if A > B (respectively, B > A).

4.3 Richness in Synchronization for the multi-order fractional phase model

In this subsection, we take a look on the richness of the dynamics of the multi-order fractional
phase model (2.3)-(2.4) with α1 ̸=α2. We will provide pieces of evidence that, if the dynamics of
our body is governed by such a model, then, the complexity of our circadian rhythm synchroniza-
tion is hidden behind a simple explanation as pointed out in Subsections (4.1)-(4.2). However,
some glimpses of the relationship between the coupling strengths and internal frequencies show
up in the calculations.

For ease of presentation, we assume that f2 = 0, otherwise, we shall analyze the synchronization
for t > f2. Considering the difference of (3.1) and (3.2) given in Corollary 3.1) and using a
standard calculation, we have

(θ1 −θ2)(t) =
∫ t

0

(t − s)α2−1

Γ(α2)
[g1(s)−g2(s)]

[
Γ(α2)

Γ(α1)
(t − s)α1−α2

]
ds

+
∫ t

0

(t − s)α2−1

Γ(α2)
g2(s)

[
Γ(α2)

Γ(α1)
(t − s)α1−α2 −1

]
ds. (4.16)

For the next steps we shall assume the following:

Assumption 4.1. g1(t)−g2(t) and g2(t) does not change signal, during synchronization.

Before we continue with the analysis, it is worth noting some facts in relation to the
Assumption (4.1).

Remark 4.2. Let g2(t) > g1(t) in Assumption (4.1). Then, it follows from the definition of g1(t)
and g2(t) that

Aα2 +Bα1 cos(2π(θ2(t)−θ1(t))≥ ω
α1
1 −ω

α2
2

during the synchronization. Consequently, we have

Aα2 +Bα1 ≥ |ωα1
1 −ω

α2
2 |
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that is a generalization of Winfree constraints for synchronization, e.g., [22].

On the other hand, the requirement of g2(t) does not change the signal during synchronization
in Assumption 4.1, can be interpreted as the weakly coupled ideas necessary in the analysis of
Kuramoto’s and Winfree’s approaches [9, 15, 22], since Aα2 shall be small with relation to ω

α2
2 .

If the Assumption 4.1 holds true, we can apply the Mean Value Theorem [6, Theorem 2.1], from
with, we conclude that there exists τ ∈]0, t] such that, equation (4.16) is rewritten as

(θ1 −θ2)(t) =
Γ(α2)

Γ(α1)
(t − τ)α1−α2Jα2

0

(
(g1 −g2)(t)

)
+

(
Γ(α2)

Γ(α1)
(t − τ)α1 −1

)
Jα2

0

(
g2(t)

)
,

where Jα2
0 denotes the fractional integral operator of order α2 ∈]0,1], [5].

Defining the phase difference ψ2(t) := (θ1 −θ2)(t), we have

ψ2(t) =
Γ(α2)

Γ(α1)
(t − τ)α1−α2Jα2

0

((
(ωα1

1 −ω
α2
2 )− (Aα1 +Bα2)cos(2πψ2(t))

))
+

Γ(α2)

Γ(α1)

(
(t − τ)α1 −1

)
Jα2

0

((
ω

α2
2 +Aα2 cos(2πψt(s))

))
(4.17)

Next, we will apply the chain rule for fractional derivative [5] to the equation (4.17). Since
the chain rule for fractional derivative involves an infinity series, we assume that such a series
is convergent. Furthermore, to have some glimpses into the relationship between the coupling
strengths and the natural frequencies for the synchronization of the oscillators, we present the
lower order terms of the series explicitly. It means that we have

Dα2ψ2(t) =

k = 0
Γ(α2)

Γ(α1)

(
(t − τ)α1−α2(g1(t)−g2(t))+((t − τ)α1 −1)g2(t)

)

k = 1 +
Γ(α2 +1)

Γ(α1)

[
D1(t − τ)α1−α2

](
Dα2−1

[
Jα2

(
g1(t)−g2(t)

)])
+

[
D1

(
(t − τ)α1 −1

)][
Dα2−1

(
Jα2g2(t)

)]
+ higher order terms, k ≥ 2
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Using that Dα2−1 = J1−α2 for α2 ∈]0,1], see [5] and developing the terms for k = 1 above, we
arrive in

Dα2ψ2(t) =
Γ(α2)

Γ(α1)

(
(t − τ)α1−α2(g1(t)−g2(t))+((t − τ)α1 −1)g2(t)

)
+

Γ(α2 +1)
Γ(α1)

(t − τ)α1−(1+α2)

[
(α2 −α1)

∫ t

0
(g1(s)−g2(s))ds

+α1(t − τ)−(1+α2)
∫ t

0
g2(s)ds

]
+ higher order terms, k ≥ 2

As before, the synchronized solution satisfies Dα2ψ2(t) = 0. However, differently from the cases
in Subsections 4.1-4.2, there is a richness of factors around the coupling strengths and natural
frequencies, since the expression is dependent on t. Therefore, it is not clear whether to have an
explicit synchronized solution.

Because of the aforementioned analysis, we conjecture that the synchronization of two oscilla-
tors with different memories depends on other external forces known in the chronobiology and
medicine literature as zeitgebers, e.g. [1, 2, 8, 14]. It will be investigated in the future.

In the remaining part of this section, we will use the comparison principle [21, Theorem 2]
together with the necessary conditions of Assumption 4.1 to derive bounds that encapsulate the
synchronized solutions for the oscillators. It will be described in the following proposition.

Proposition 4.1. Let Assumption 4.1 holds true with g1(t) ≥ g2(t) and g2(t) ≥ 0. Then, the
unique synchronized solution θ1(t),θ2(t) of (2.3)-(2.4) are enclosed by θ jL(t)≤ θ j(t)≤ θ jU (t),
for j = 1,2, given, respectively, by

θlL(t) =
Aα2ω

α1
1 +Bα1ω

α2
2

α1Γ(α1)(Aα2 +Bα1)
tα1 , (4.18)

θ2L(t) = 0

and

θlU (t) =
Aα2ω

α1
1 +Bα1ω

α2
2

α1Γ(α1)Aα2
tα1 , (4.19)

θ2U (t) =
Aα2ω

α1
1 +Bα1ω

α2
2

α2Γ(α2)(Aα2 +Bα1)
(t − f2)

α2 +F2 .

Proof. The uniqueness follows directly from Theorem 3.1. Then, from Assumption 4.1, it
follows that

−
ω

α2
2

Aα2
≤ cos(2πψ2)≤

ω
α1
1 −ω

α2
2

Aα2 +Bα1
. (4.20)

Hence, the claim follows by substitute (4.20) back in (2.3) and (2.4) and applying the comparison
principle [21, Theorem 2]. □
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An interesting conjecture about the synchronization for α1 ̸=α2 is possible by compare the result
in Proposition 4.1 with the synchronized solution for α1 = α2 in (4.13): there exists an external
mechanism that slow down the oscillator θ1 into the direction of θ1L and speed-up the oscillator
θ2 into the direction of θ2U as |α1 −α2| → 0, asymptotically.

5 NUMERICAL EXPERIMENTS

In this section, we present some numerical interpretation of the synchronization analysis carried
out during the writing of this manuscript. The parameters of the model are selected to satisfy the
Winfree restrictions where available (i.e., for the phase model and the fractional phase model).
In any of the cases, the parameters are calibrated from real data. Calibration (identification) will
be investigated in future contributions. For the multi-fractional phase model, where explicit syn-
chronized solutions are not available, we solve the multi-fractional differential equations (2.3)-
(2.4) numerically, using the numerical scheme proposed in [7] for solving multi-term fractional
differential equations.

It is worth mentioning that, since we are looking for synchronized solutions, in all the numerical
experiments we assume that f2 = F2 = 0. Furthermore, the intrinsic frequencies ωi of each oscil-
lator θi for i = 1,2 is related to the period τi, in hours, for with each oscillator complete their on
cycle. In other words, ωi =

1
τi
.

In the next table, we present the parameter value choices for each numerical example3.

Table 1: Table with the parameter values of the corresponding numerical examples.

Parameter Value Winfree restrictions
Example A B τ1 τ2 α1 α2 θ1 and θ2

1 0,016 0,03 22 24 1 1 synchronized by (4.4)
2 0,008 0,009 16 23 1 1 desynchronized by (4.4)
3 0,008 0,009 16 23 0,9 0,9 synchronized by Remark 4.1
4 0,0005 0,009 18 26 0,6 0,6 desynchronized by Remark 4.1
5 0,003 0,008 20 26 0,5 0,4 unavailable
6 0,006 0,004 20 24 0,5 0,8 unavailable

Figures 2 and 3 represents synchronized and desynchronized solutions of the Strogatz phase
model discussed in Subsection 4.1, respectively. The parameters for the model correspond to the
Winfree restriction (4.4), respectively.

Figure 4 correspond to synchronized solutions of the fractional phase model, for the fractional
order of Caputo derivatives given by α1 = α2 = 0,9 and the same intrinsic frequencies and
coupling forces used in the solution presented in Figure 3 (see the second and third line of Ta-
ble (1). This example collaborates with the thesis that memory induces synchronization. It is

3The Winfree restrictions correspond to the derived Winfree restrictions derived for the parameter values in each of the
phase models analysed. For the multi-order fractional phase model, those restrictions are unavailable.
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Figure 2: Solutions θ1 and θ2 of the phase model with parameter choice corresponding the first
line on Table (1). The phase difference is constant, indicating the synchronization. The Winfree
restriction (4.4) is satisfied.

Figure 3: Solutions θ1 and θ2 of the phase model with the parameter choice in the second line on
Table (1). The phase difference is not constant, indicating that the oscillators are desynchronized.
The Winfree restriction (4.4) is not satisfied, which also indicates the desynchronization.

worth mentioning that the parameter choices satisfy the generalized Winfree restrictions derived
from Remark 4.1.

On the other hand, Figure 5 shows a desynchronized solution of the fractional phase model (see
the fourth line of Table 1 for the parameter choices). It is also important to mention that the
simulated situation does not satisfy the generalized Winfree restriction for synchronization in
Remark 4.1.

Trends Comput. Appl. Math., 24, N. 2 (2023)
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Figure 4: Solutions θ1 and θ2 of the fractional phase model with the parameter choice in the
third line on Table (1). The phase difference is constant indicating that the oscillators are syn-
chronized. The generalized Winfree restriction (see Remark 4.1) is satisfied, which indicates the
synchronization.

Figure 5: Solutions θ1 and θ2 of the fractional phase model with the parameter choice in the
fourth line on Table 1. The phase difference is not constant indicating that the oscillators are
desynchronized. The generalized Winfree restriction (see Remark (4.1) is not satisfied, which
indicates the desynchronization.

Given the numerical examples presented above, it seems that the generalized Winfree restriction
(see Remark 4.1) is a bifurcation point for the synchronization. However, the conclusion of such
an observation will not be analyzed in this contribution.

In Figures 6 and 7, we present a synchronized and a desynchronized solution for the multi-order
fractional phase model studied in Subsection 4.3, respectively. Since for this approach, we were
unable to derive analytic synchronized solutions, the parameter choices (given by the fifty and

Trends Comput. Appl. Math., 24, N. 2 (2023)
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sixth lines of Table 1, respectively) were considered satisfying a generalized Winfree’s kind of
restrictions, given by Aα1 +Bα2 > |ωα1

1 −ω
α2
2 | and Aα1 +Bα2 < |ωα1

1 −ω
α2
2 |, respectively.

In particular, Figure 6 numerically verifies the conclusions on Proposition 4.1.

Figure 6: Solutions θi, θiL and θiU (as pointed in Proposition 4.1) of the multi-order fractional
phase model with the parameter choice in the fifth line on Table 1. The phase difference is
constant, indicating that the oscillators are synchronized. The generalized Winfree restriction
is unavailable but it satisfies Aα1 + Bα2 > |ωα1

1 −ω
α2
2 | what we conjecture that indicates the

synchronization.

Figure 7: Solutions θ1 and θ2 of the multi-order fractional phase model with the parameter choice
in the sixth line on Table 1. The phase difference is not constant, indicating that the oscillators are
desynchronized. The generalized Winfree restriction is unavailable, but it satisfies Aα1 +Bα2 <

|ωα1
1 −ω

α2
2 | what we conjecture that indicates the desynchronization.
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(a) Solutions θi, θiL and θiU of the multi-order
fractional phase model with A,B,ω1,ω2 as in the
fifth line on Table 1 and α1 = 0,48 and α2 = 0,4

(b) Solutions θi, θiL and θiU of the multi-order
fractional phase model with A,B,ω1,ω2 as in the
fifth line on Table 1 and α1 = 0,45 and α2 = 0,4

(c) Solutions θi, θiL and θiU of the multi-order
fractional phase model with A,B,ω1,ω2 as in the
fifth line on Table 1 and α1 = 0,42 and α2 = 0,4

(d) Solutions θi, θiL and θiU of the multi-order
fractional phase model with A,B,ω1,ω2 as in the
fifth line on Table 1 and α1 = 0,41 and α2 = 0,4

Figure 8: Asymptotic behaviour of the solutions θi, θiL and θiU of the multi-order fractional
phase model as α1 → α2.

In the remained numerical example presented in Figure 8a-d, we test the conjecture presented just
after Proposition 4.1, regarding the asymptotic convergence of a possible synchronized solution
for the multi-order fractional phase model towards the up and lower bound solutions, as α1 →α2.
For that fate, we choose the coupling forces and intrinsic frequencies corresponding the values
in the fifth line on Table 1. Then, we plot the corresponding solutions θi, θiL and θiU , for i = 1,2,
for α1 = 0,48;0,45;0,42; and 0,41, while α2 = 0,4, respectively in Figure 8a-d. As it can be
see in Figure 8, the conjecture is numerically verified.

6 CONCLUSIONS AND FUTURE WORKS

In this contribution, we have extended the coupling oscillators phase model proposed by Stro-
gatz [14] employing a Caputo fractional derivative dynamics (fractional coupling oscillators
phase model). Such an approach has the potential to reveal some features related to the internal
synchronization/desynchronization of the circadian rhythm with memory.

We have shown the well-posedness of the proposed model as well as provided explicitly the
synchronized solutions for the fractional phase model. We also derived the Winfree restrictions,
which allow attesting synchronization using only the system’s parameters. We obtain lower and
upper bounds for the multi-order fractional phase model, for any existing synchronized solution

Trends Comput. Appl. Math., 24, N. 2 (2023)
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must be confined in between.We also provide numerical simulations supporting the theoretical
findings.

Many questions regarding the present approach remain open and will be investigated in future
contributions.

• Analyse the proposed model using other versions of fractional derivatives, e.g., [13,19,20].

• The calibration (identification) of the model parameters from real data.

• Analyse the Winfree restriction (see Remark 4.1) as bifurcation point for the
synchronization.

• Improve the understanding of synchronization of multi-order fractional phase models.

• Investigate the synchronization of the multi-order fractional phase model and its relation
with external forces, known in the chronobiology and medicine literature as zeitgebers,
e.g. [1, 2, 8, 14].
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