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ABSTRACT. In this contribution, we present a predictive tool developed to help in the management of
the evolution of the COVID-19 pandemic situation in Rio Grande do Sul (RS) - Brazil. This tool is the
result of georeferenced data analysis, mathematical modeling, and parameter calibration for the dynamics
of a SIR-type model defined on a spatial structure that allows distinct subpopulations to interact, similar
to the controlled distancing (Al for l = 1, · · · ,21)) groupings proposed by the RS government and public
health authorities. The predictive analysis, updated biweekly, provides three distinct scenarios per month
(milder, average, and severe) and is made available as WebSIGs (Geographic Information System - GIS).
The forecast of the average scenario for each Al group is the result of a simulation of the proposed SIR-
type dynamics with calibrated parameters derived from an augmented Lagrangian maximum a posteriori
estimation and data on the number of infected cases made available by the RS Health Secretariat. The milder
and severe scenarios are obtained from the average scenario, with changes in the contagion rates of each
Al group. When compared to the number of infections reported in each Al group, the modeling predictions
for a biweekly time window (the first two weeks) were quite satisfactory, with errors ranging from 0% to
5.13%, gradually increasing over time. Therefore, we suggest a biweekly re-calibration of the parameters
and corresponding forecasts as a wise strategy.

Keywords: COVID-19 forecast, SIR-type model, parameter calibration, georeferenced data.

1 INTRODUCTION

Since the first reported case of COVID-19, there has been a great mobilization of the scientific
community to understand the dynamics of SARS-CoV-2 (the virus that causes COVID-19 [19])
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and how the virus spreads. In this scenario, the increased demand for drugs, and the rapid de-
velopment of vaccines, become the focus of most researchers. While known and tested drugs
have shown little or no efficacy, and mass vaccination of the entire world population is unthink-
able in the short term due to the time required for manufacturing, distribution, and application,
non-pharmacological procedures have remained an important alternative to tightening pandemic
effects. In this context, mathematical modeling has been an indispensable tool to formulate fore-
casts and to give assistance to public leaders in the making of public policies to slow the spread
of the disease, e.g., [1, 11, 14] and references therein.

On the other hand, it was also clear that science is not enough to contest the effects of the pan-
demic without an efficient way of spreading the relevant information. In this sense, the use of
geotechnologies has also proved to be of great value, especially Digital Cartography and Ge-
ographic Information Systems (GIS) as tools for georeferencing and spatial representation of
the occurrences of COVID-19. Several initiatives have used digital maps and cybercartography
for the cartographic organization of data, didactically illustrating the density of the epidemic
and, mainly, supporting decision-making in the effective application of control devices to reduce
the transmission of the virus [2, 9]. Such initiatives, both in the academic sphere and in territo-
rial management, follow an extensive tradition of Health Cartography as a technical-scientific
instrument to support epidemiological analysis.

The present study aims to add to the understanding, prediction, dissemination to society, and
support for decision-making regarding the dynamics and spread of the COVID-19 pandemic by
proposing a spatially structured SIR model integrated into georeferencing tools. We present a
predictive tool developed to help in the management of the evolution of the COVID-19 pan-
demic in the Rio Grande do Sul (RS) - Brazil. The work consists of three steps as follows: 1)
Organization and treatment of the reported data of infected people, in a georeferenced manner,
which serves as an entry in mathematical modeling (initial conditions and data for parameters
calibration for the proposed SIR type model), as detailed in Section 2; 2) Mathematical model-
ing and parameter calibration of COVID-19 dynamics by a SIR model with interacting multiple
populations, as proposed in Sections 3 and 4; 3) Organization of COVID-19 spread scenarios in
WebSIGs set-up as described in Section 4.

2 ORGANIZATION AND DATA OBSERVATION

Online digital mapping, also known as cybercartography, is an informational solution for publish-
ing georeferenced data, making it more accessible to other users [10]. The methodology consists
of three stages: the organization and processing of data provided by the State Health Department;
mathematical modeling; and the creation of the WebSIG (Figure 1).

The creation of the geographic information plan requires data only from official sources. The
2019 vector base in the shapefile format provided by the Brazilian Institute of Geography and
Statistics (IBGE) was admitted as a municipal area1. The regionalization of the modeling, in the

1Available in https://www.ibge.gov.br/
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Figure 1: Flowchart representative of the stages involved in the work.

form of regional blocks or clusters, had as reference the information provided by the portal of
planning, state budget, and health management of RS, which were distributed into twenty-one
clusters provided by the controlled distancing model of the state, corresponding to the 30 health
regions (see [6, Fig. 2]).

To this end, the thirty Health Regions of RS, which subsidize actions in the sphere of planning
and infrastructure of the State’s health, served as the basis for the construction of the twenty-
one groups provided for by the Controlled Distancing Model of RS (Data control COVID-19
CORONAVÍRUS, 2020) and in this work the same criteria were adopted. According to the epi-
demiological action plan, which includes the classification flags of the degree of risk and the
respective social distancing protocols, such groups were delimited using criteria of health and
economic activity.

Each cluster is composed of one or more health regions that aggregate, respectively, a fraction
of the 497 municipalities that make up the state of RS. In this study, the same special criteria
proposed by the Controlled Distance Model of RS were adopted, facilitating access to the registry
of reported infected people, data made available daily by the Painel Coronavirus – RS 2, as well as
comparisons between the epidemiological actions and the results obtained by the modeling over
the past few months. Because the data is cumulative for each day, a subtraction was performed
with the count of the cases from the previous day to obtain the new cases for each day.

2.1 Organization and processing of geographic data: COVID-19 positive cases reported

The methodologies of organization, acquisition, and processing of data on the number of infected
cases by Sars-Cov-2 officially reported by the Health Department of RS, available in electronic
means, are presented in this work between the months of March 2020 and June 2021. In addition,
we demonstrated how such a set of data is used to calibrate the parameters for a mathematical
modeling of the spread of the disease in the 21 health groups of the state, which results in a set
of predictive data for three distinct scenarios for the spread of COVID-19, in RS over a period of
28 days from the initial date of the data of positive cases reported. Such a set of predictive data
can be used by health authorities as an auxiliary means in the decision-making for measures to
control and combat the spread of COVID-19 and these are available for access through interactive
maps WebSIGs with the spatial distribution of the projected cases. In this manuscript, we present
a small sample of the collected and stored data as well as the projected data, the complete set of

2Available in https://ti.saude.rs.gov.br/covid19/

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A7-1671” — 2023/6/22 — 18:49 — page 490 — #4 i
i

i
i

i
i

490 GEOREFERENCED FORECASTING THE COVID-19

which is in the repository https://github.com/exactum-furg or as complementary material in [6].
In a simplified procedure, the processes described above can be represented by the following
flowchart:

First, we performed the creation process of the Geographic Information Plan of RS, which cor-
responds to the first step of the flowchart presented in Figure 1. IBGE 2021 data in the form
of a shapefile from an automatic recovery system was used for this purpose. This information
was used as the basis of the territorial and demographic division of the municipalities of RS and
reorganization in the form of regional blocks or clusters, covering the 21 health groupings pro-
vided by the social-distancing plan developed by the State Government, based on the information
provided by the Portal of Planning, Budget, and Health Management of RS. In [6, Fig. 2] it is
possible to notice this geographical division.

Subsequently, the reported data of positive cases for COVID-19 from each of the 21 groupings
was accessed daily. The positive case data accumulated is downloaded and systematized in an
Excel spreadsheet in a georeferenced way. The georeferencing of the data allows us to link the
characteristics of each of the 21 health groupings that are used as input data for mathematical
modeling. Such characteristics of the health groups include the population, the area, the name of
the group, the code of the regions that make-up each group and the number reported of infected
cases (number of positive cases of COVID-19 reported). See the details in Table 1. According to
these data, it is possible to calculate important variables for the study, such as: new cumulative
cases of the week, population density, as well as the total number of infected cases reported for
each group.

The last step is the preparation of the acquired data of reported COVID-19 positivity cases for
use in mathematical modeling. To perform it, a conversion factor/pixel to standardize the output
spatial size of the cell (spatial resolution) of data rasters (vector format) generated by converting
formats is used. For the standardization of this factor, we adopted the combined relationship
between the centroids of the polygonal shape of each cluster and its maximum area, thus resulting
in a conversion factor of 0.1, which results in a spatial resolution of 10×10 km cell/pixel. This
resolution best matched the geometry of the health groups, preserving their original format [15].
This process allows the organization of the database of people infected by COVID-19 collected
from the Coronavirus panel, for each of the 21 health clusters, available in table format and, by
processing, feed files of the vector type (shapefiles) that are converted into arrays with coordinate
registration (raster). Finally, the database is transformed into ASCII format for later use as initial
conditions and data for mathematical modeling and parameter calibration.

It is worth noting that every day at 6 p.m., data on the number of reported positive COVID-19
infections is accessed and downloaded from the Coronavirus panel. Afterward, these are grouped
by the weekly cumulative, to correct any issues related to the data reported at the weekends. As
a result, for each new date defined as the basis, the number of cases will be presented week by
week, beginning with the first week.

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A7-1671” — 2023/6/22 — 18:49 — page 491 — #5 i
i

i
i

i
i

J. C. MARQUES ET AL. 491

Table 1: Data organization according to the planning regions of the state of Rio Grande do Sul,
t1
0 = 24/03/21 and t2

0 = 07/04/21.

Health region Groupings Area km2 Population
R01,R02 A1-Santa Maria 26535.20 270865
R03 A2-Uruguaiana 41475.58 395831
R04,R05 A3-Capão da Canoa 8766.41 458551
R06 A4-Taquara 5896.09 236699
R07 A5-Novo Hamburgo 1337.51 902777
R08 A6-Canoas 2733.80 727179
R09 A7-Guaı́ba 11093.46 323594
R10 A8-Porto Alegre 2893.78 2125191
R11 A9-Santo Ângelo 15396.88 265271
R12 A10-Cruz Alta 8805.18 178743
R13 A11-Ijuı́ 726798 229464
R14 A12-Santa Rosa 5774.34 415175
R15 R20 A13-Palmeira das Missões 11052.07 363139
R16 A14-Erechim 6628.44 299323
R17,R18,R19 A15-Passo Fundo 19552.53 655264
R21 A16-Pelotas 34902.26 998250
R22 A17-Bagé 15192.96 152731
R23,R24,R25,R26 A18-Caxias do Sul 18880.02 1247004
R27 A19-Cachoeira do Sul 12063.63 202303
R28 A20-Santa Cruz do Sul 7467.65 634963
R29,R30 A21-Lajeado 4922.09 340656
Groupings Counties Reported at t1

0 Reported at t2
0

A1 32 765 487
A2 11 464 344
A3 23 97 338
A4 8 189 118
A5 15 775 628
A6 18 848 836
A7 19 240 284
A8 6 642 595
A9 24 125 184
A10 13 193 189
A11 20 209 105
A12 22 152 94
A13 52 270 180
A14 33 127 90
A15 62 477 482
A16 22 216 403
A17 6 65 206
A18 49 555 667
A19 12 159 68
A20 13 438 349
A21 37 534 213

Trends Comput. Appl. Math., 24, N. 3 (2023)
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2.1.1 Spatial resolution

The choice of spatial resolution went through two important criteria for the generation of results:
a) The size of the pixels in relation to the geometry (area) of the Health Regions, that is, whether
the pixel quantity satisfactorily respects the contour of the Regions of Health, b) result processing
time.

For the first criterion (pixels×geometry), it was evident that the 30 km resolution overgeneralized
(vector simplification criteria) the polygons that form the health clusters, mischaracterizing them.
Thus, the pixels of resolutions of 10 km and 5 km better represent the geometries of the clusters,
that is, a generalization that does not deform the geometry of the clusters.

The last criterion takes into account the processing time of each scenario, with the difference
between the 5 km resolutions and the 10 and 30 km resolutions being evident. While the 10
km resolution takes 4 min to process all the data from the projected cases, the 5 km resolution
takes approximately 40 min, taking more computational time for processing. Whereas the mod-
eling was performed using a notebook with Inter® Core™ i7-7500U CPU @ 2.70GHz x 4, with
7.6GiB of memory and Mesa Inter® HD Graphic 620 (KBL GT2) video graphics.

In view of the criteria, the 10 km resolution presented better results in general without significant
loss of area or boundary deformation. This is responsible for good coefficients in the cross-
analysis; it represents the geometric features of the health region clusters and a relatively low
processing time for the amount of data analyzed.

3 MATHEMATICAL MODELING

The georeferenced forecasting for COVID-19 proposed here assumes that the constant popula-
tion N is subdivided into a spatially structured network with a size corresponding to the size
of the state of RS sub-divisions as described in Section 2. Indeed, this network is composed of
68× 83 sites (regions). This network is organized so that each cluster is composed of a certain
number of sites established in the data organization step described in Section 2. It should be
noted that this number depends on the precision adopted in the rasterization process and on the
grouping area. According to the Coupled Map Network (CMN) theory, e.g. [18] and references
therein, each site x= (xi,x j) of this network is represented by integer coordinates xi = is, x j = js,
where s is the size of the site, for i ∈ {1, · · · ,63} , j ∈ {1, · · · ,83}.

The total population Ni, j of each (i, j) site is normalized with respect to the population density
and assumed constant, such that the total population in the lattice satisfies ∑

68
i=1 ∑

83
j=1 Ni, j = 1.

Such assumptions have implications for the magnitude of the model parameters (see Table 2).
Furthermore, the model is considered as a SIR-type compartmental model, e.g., [12, 13, 14]
and references therein, where the total population of each site Ni, j is divided into the suscep-
tible fractions Si, j(t), infected Ii, j(t) and removed Ri, j(t), at each time instant t ≥ 0, following a
compartmental SIR-type model [12, 13].

Trends Comput. Appl. Math., 24, N. 3 (2023)
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Table 2: Calibrated parameters from the COVID-19 infected people reported in t0 = 24/03/21
and t0 = 07/04/21, obtained from algorithm ((4.6)) for the corresponding health clusters. The
relative errors between predicted and reported cases for the two weeks following the day t0 for
the average scenario are ER1% and ER2%. For the severe scenario, ERP2% is the relative error
of the second subsequent week from the day t0.

t0 A j βi, j βî, ĵ γi, j ER1% ER2% ERP2%
A1 0.2420 0.0017 0.0774 0.37 0.60 0.26
A2 0.3580 0.0025 0.1161 0.09 1.73 1.36
A3 0.7800 0.0052 0.2516 3.26 2.41 1.95
A4 0.4300 0.0029 0.1387 0.35 0.71 0.18
A5 0.2920 0.0019 0.0942 0.13 2.78 2.23
A6 0.3399 0.0023 0.1096 0.32 0.05 0.15
A7 0.4900 0.0033 0.1581 0.36 0.17 0.82
A8 0.5830 0.0039 0.1890 0.08 0.15 0.48
A9 0.4990 0.0033 0.1610 0.66 1.95 1.51

24/03/21 A10 0.2860 0.0019 0.0922 0.64 5.3 5.1
A11 0.3290 0.0022 0.1061 0.69 6.56 6.91
A12 0.3550 0.0024 0.1145 0.18 2.24 1.43
A13 0.3710 0.0025 0.1197 1.38 3.12 4.67
A14 0.4000 0.0027 0.1290 0.06 0.47 0.54
A15 0.3750 0.0025 0.1219 0.12 5.13 5.18
A16 0.5460 0.0036 0.1760 2.19 0.86 1.07
A17 0.5390 0.0036 0.1739 0.98 2.39 2.54
A18 0.5280 0.0035 0.1706 0.36 1.77 2.41
A19 0.4100 0.0027 0.1322 1.34 1.13 1.17
A20 0.3040 0.0020 0.0981 0.32 3.91 2.74
A21 0.3500 0.0023 0.1130 0.57 1.75 2.72
A1 0.365 0.0024 0.1177 0.35 29.63 15.30
A2 0.5200 0.0044 0.1677 0.08 7.98 21.66
A3 0.392 0.0026 0.1264 0.27 1.76 10.18
A4 0.574 0.0038 0.1852 0.20 5.87 11.26
A5 0.341 0.0023 0.11 0 44.51 29.58
A6 0.3000 0.0020 0.0968 0.23 30.95 18.89
A7 0.4200 0.0028 0.1355 0.14 3.34 9.48
A8 0.3420 0.0023 0.1103 0.18 28.52 15.21
A9 0.3900 0.0026 0.1258 0.24 4.97 7.19

07/04/21 A10 0.2290 0.0015 0.0739 0.65 30.79 21.19
A11 0.4490 0.0030 0.1448 0.35 8.45 20.54
A12 0.42889 0.0028 0.1383 1.73 3.25 15.46
A13 0.3290 0.0022 0.1061 0.63 18.89 6.93
A14 0.4830 0.0032 0.1558 1.38 29 38.96
A15 0.3850 0.0025 0.1241 0.05 0 11.56
A16 0.4080 0.0027 0.1316 0.05 6.95 5.93
A17 0.3200 0.0021 0.1032 0.55 11.33 0.51
A18 0.4060 0.0027 0.1309 0.07 11.77 1.74
A19 0.5910 0.0039 0.1906 0.61 27.11 39.15
A20 0.3330 0.0022 0.1074 0.15 13.44 78.25
A21 0.3990 0.0026 0.1287 0.11 5.22 19.98

Trends Comput. Appl. Math., 24, N. 3 (2023)
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We assume that the dynamics of evolution occurs through the coupled system (compartmental
model of the SIR type with the interaction of multiple populations and without vital dynamics in
the i ∈ {1, · · · ,68} and j ∈ {1, · · · ,83} sites) given by

Ṡi, j(t) =−Si, j(t)

(
βi, j(t)Ii, j(t)+ ∑

(î, ĵ)∈Vi, j

βî, ĵ(t)Iî, ĵ(t)

)

İi, j(t) = Si, j(t)

(
βi, j(t)Ii, j(t)+ ∑

(î, ĵ)∈Vi, j

βî, ĵ(t)Iî, ĵ(t)

)
− γi, j(t)Ii, j(t)

Ṙi, j(t) = γi, j(t)Ii, j(t) ,

The initial conditions for the model are obtained at each site (i, j) from the fraction of infected
reported cases Ii, j(t0) (at the instant t0), given by the relationship

Si, j(t0) = 1− Ii, j(t0)−Ri, j(t0), Ii, j(t0)≥ 0,Ri, j(t0)≥ 0 , (3.1)

Furthermore, because the model does not account for reinfection, Ri, j(t0) is the accumulated
proportion of individuals removed during the entire course of the pandemic up to time t0. Thus,
Ri, j(t0) represents the population density in each (i, j) site that is not yet infected.

Next, we make some observations regarding the dynamics (3.1)-(3.1), where we take the op-
portunity to describe the parameters and the notation used. The dynamic (3.1) should be in-
terpreted as follows: the probability of infection is due to contact between susceptible and in-
fected individuals from the same site and is proportional to the effective contact rate βi, j(t),
or by contact with infected individuals from neighboring sites, Vî, ĵ to î ∈ {1, · · · ,68 , : î ̸= i}
and ĵ ∈ {1, · · · ,83 , : ĵ ̸= j}, which is proportional to the rate βî, ĵ(t). The rate of removals
(recovered or dead) is given by γi, j(t). If βî, ĵ(t) = 0 for every î ∈ {1, · · · ,68 , : î ̸= i} and
ĵ ∈ {1, · · · ,83 , : ĵ ̸= j}, then (3.1) reduces to the SIR model for the isolated population at each
site, e.g., [14] and references therein. The central question is how the disease spreads through
the network given the interaction with the neighborhoods Vî, ĵ and, in this case, the respective
βî, ĵ(t) ̸= 0. As a result, we will assume that the interaction occurs in an infinitely small time-
step relative to the time of the dynamics t, with no migration. In other words, individuals from
different populations interact and return to their reference sites faster than the time t→ t +∆t.

We ended this section by showing the well-posedness of the initial value problem (3.1)-(3.1).

Theorem 3.1. Let T > t0 ≥ 0 be given. Assume the model parameters be continuous in [t0,T ].
Then, the model (3.1)-(3.1) has a unique positive solution in [t0,T ]. This means that its state
variables remain non-negative for any trajectory initialized at non-negative initial conditions.
Moreover, the solution is continuous with respect to the initial data and the model parameters in
the interval [t0,T ].

Proof. The continuity of the parameters implies the continuity of the right hand side with respect
to t. Furthermore, a direct calculation shows that all the coordinates of the Jacobian matrix on
the right hand side of (3.1) are continuous. As a result, uniformly bounded in [t0,T ]. Then, the

Trends Comput. Appl. Math., 24, N. 3 (2023)
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mean value theorem implies that the right hand site of (3.1) is Lipschitz continuous with respect
to the second variable. Hence, the assertions adhere to the general theory of the well-posedness
of initial value problems, for example, e.g. [16]. □

The results in Theorem 3.1 may possibly have an extension to [t0,∞[ (although we do not have a
proof for it). Since we are interested in short-running forecasted scenarios of the dynamics (3.1)-
(3.1), we restrict ourselves to finite time intervals in Theorem 3.1.

4 ON AN AUGMENTED LAGRANGIAN MAXIMUM A POSTERIORI (AL-MAP)
STRATEGY FOR CALIBRATING THE MODEL PARAMETERS

There are three main unknown parameters to be calibrated in the model (3.1). Indeed, the conta-
gious rate within the population βi, j, the contagious rates for interacting populations βî, ĵ and the
removing rate γi, j.

It is worth mentioning that parameter calibration for the model (3.1) is an inverse problem, e.g.,
[7] and references therein.

Since daily reported of COVID-19 infected cases are sparce and subject to many uncertainties,
mainly the sub-notifications during the weekends, we use the weekly cumulative of new COVID-
19 reported cases Yi, j = {It0

i, j, · · · ,I
t0+kτ

i, j } as observed data, where τ represents one week in the
time scale3, for each of the (i, j)-sites.

In this contribution, we propose calibrating the vector of constant parameter Xk
i, j(t) :=

(β
t0+kτ

i, j (t),β t0+kτ

î, ĵ
(t),γ t0+kτ

i, j (t)) = (β k
i, j,β

k
î, ĵ
,γk

i, j), for t ∈ [t0, t0+τ], using a constrained maximum
a posteriori probability (MAP) estimate approach [1, 4]. It is given by the following constrained
optimization problem

X̂k
i, j ∈ argmaxX Π

k
post(X

k
i, j|I

t0+kτ

i, j ) ,subject to Ct0+kτ

i, j (Xk
i, j) = 0 (4.1)

where, Ct0+kτ

i, j (Xk
i, j) = Îi, j(t0 + τ)− It0+kτ

i, j , for Îi, j(t0 + τ) := Ii, j(X̂k
i, j)(t0 + τ) representing cumu-

lative infected populations at the site (i, j) given by the unique solution of (3.1), with initial
conditions (3.1) the set of values at t = t0, as a function of the parameters Xk

i, j at t = t0 + τ .

Πk
post(X

k
i, j|I

t0+kτ

i, j ) is the log-posterior density functional given by

Π
t0+kτ

post (Xk
i, j|I

t0+kτ

i, j ) ∝ Π
k(It0+kτ

i, j |Xk
i, j)+Π

k
prior(X

k
i, j|Xk−1

i, j ) , (4.2)

for the log-likelihood density

Π
k(It0+kτ

i, j |Xk
i, j) ∝ It0+kτ

i, j log(σ Ît0+kτ

i, j ))−σ Ît0+kτ

i, j − log(It0+kτ

i, j !) . (4.3)

3In the numerical simulations presented in this contribution, we use the data of five consecutive weeks. Hence, k = 4. In
particular, in the simulations, where we use the It0

i, j as the initial conditions and It0+τ

i, j for the first step in the parameter

calibration and It0+2τ

i, j as the initial conditions and It0+3τ

i, j for the parameter re-calibration.
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Πt0+kτ(It0+kτ

i, j |Xk
i, j) is the logarithm of the Poisson distribution with mean given by σ Ît0+kτ

i, j :=

σ Ii, j(X̂i, j)(t0 + kτ) the unique solution of (3.1)-(3.1), for t = t0 + kτ . The log(It0+kτ

i, j !) is
approximated by the Stirling’s formula:

log(It0+kτ

i, j !)∼ (1/2) log(2πIt0+kτ

i, j )+ It0+kτ

i, j log(It0+kτ

i, j )− It0+kτ

i, j ,

in the data time-series Yi, j.

Moreover, we use the Gaussian priors in the posterior densities

Π
t0+kτ

prior (X
k
i, j|Xk−1

i, j ) ∝−α∥Xk
i, j−Xk−1

i, j ∥
2 (4.4)

as the regularization term that accounts for the uncertainties in the data It0+kτ

i, j , with α > 0 the
regularization parameter [7]. It is worth mentioning that the (MAP) is a log-concave estimate of
an unknown quantity that equals the mode of the posterior distribution, resulting in a point esti-
mate of an unobserved quantity based on empirical data. (MAP) estimations are closely related
to the method of maximum likelihood (ML) estimation. However, (MAP) employs an augmented
optimization objective that incorporates a prior distribution (that quantifies the additional infor-
mation available through prior knowledge of a related event) over the quantity one wants to esti-
mate. Hence, MAP estimation can be seen as a regularization of maximum likelihood estimation.
In particular, the (MAP) estimation proposed in (4.1) can be interpreted as an iterated-Tikhonov
regularized solution, e.g., [5, Section 2.2] or [8].

Due to the constraints in the optimization problem (4.1), the (MAP) estimation cannot guarantee
that any maximizers of Π

t0+kτ

post (Xk
i, j|I

t0+kτ

i, j ) satisfies the constraints. For that fate, we propose the
augmented Lagrangian (AL-MAP). It consists in the introduction of the augmented Lagrange
functional L, which is formally defined by4

Lk
i, j(X

k
i, j;λ

k
i, j,µ

k
i, j) :=−Π

t0+kτ

post (Xk
i, j|I

t0+kτ

i, j )+ ⟨λ k
i, j C

t0+kτ

i, j ⟩+µ
k
i, j∥C

t0+kτ

i, j ∥2 . (4.5)

The Augmented Lagrangian replaces a constrained optimization problem by a series of uncon-
strained problems through the so-called duality theory [3]. In (4.5), Xk

i, j is the primal variable
(λ k

i, j,µ
k
i, j) are the dual variables. In particular, λ k

i, j can be interpreted as a “generalized” Lagrange
multiplier and the scalar µk

i, j > 0 is a penalty factor that allows one to establish a duality relation
for problems of non-convex (concave) type as (4.1).

Next, we present a framework from which an algorithm can be derived for the constrained op-
timization problem (4.1), in terms of the proposed (AL-MAP) approach. The main ideas and
necessary definitions can be found in [17, Cap. 11, Sec. K∗] or in [3, Section 4.4].

Theorem 4.1. Let the general assumption on this contributions holds true. Then:

i) There exists a pair (λ
k
i, j,µ

k
i, j) supporting an exact penalty representation as in Definition

11.60 [17].

4Remember that maxG = min−G, whenever a solution for the problem exist.
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ii) The optimal solutions of the primal and augmented dual problems are characterized as
saddle points of the augmented Lagrangian. In other words

X̂k
i, j = inf

X
Lk

i, j(X
k
i, j;λ

k
i, j,µ

k
i, j) , (4.6)

λ
k
i, j = sup

λ

Lk
i, j(X̂

k
i, j;λ

k
i, j,µ

k
i, j) , for any ,µk

i, j ≥ µ
k
i, j.

iii) Let (Xk,0
i, j ,λ

k,0
i, j ,µ

k,0
i, j ) and appropriated initial guess given, with µ

k,0
i, j large enough. Then,

the sequence (Xk,l
i, j ,λ

k,l
i, j ,µ

k,l
i, j ) generated as

Xk,l
i, j = inf

X
Lk,l

i, j(X
k
i, j;λ

k,l−1
i, j ,µk,l−1

i, j ) ,

µ
k,l
i, j = (1+ξ

l)µk,l−1
i, j (4.7)

λ
k,l
i, j = λ

k
i, j +µ

k,l
i, j C

k
i, j(X

k,l
i, j ) ,

for positive of ξ l , converges towards the saddle point of the augmented Lagrangian
Lk

i, j(X
k
i, j;λ k

i, j,µ
k
i, j).

Proof. Notice that augmented Lagrangian (4.5) is a proximal Lagrangian in the sense of [17,
Exemple 11.57], for a convex function −Π

t0+kτ

post (Xk
i, j|I

t0+kτ

i, j ). Hence, the assertions on items i)
and ii) follows from [17, Theorem 11.61] and [17, Theorem 11.59], respectively. Item iii) follows
from the theory developed in [3, Section 4.4]. □

5 COVID-19 FORECASTED SCENARIOS FOR RS

In this section, we presented the COVID-19 infected population forecasted scenarios for RS, in
one of the hostile phases of the pandemic, namely, between March and May of 2021, in which:
a) - called average scenario - in which the forecasts are driven by the dynamics (3.1)-(3.1) with
the parameters X̂k

i, j calibrated from the (AL-MAP) algorithm (4.6) and b) based on changes in the
parameters of the situation a), we determine milder scenarios (or optimistic) and more severe (or
pessimistic) scenarios by decreasing or increasing the contagion rate β̂ k

i, j calibrated in a). These
last two scenarios emulate low or high population adherence to control measures of COVID-19
dissemination.

The presented scenarios are obtained by following the steps below. The numerical routines are
implemented by the authors in Octave using the lsqnonlin routine for the nonlinear minimization
of the augmented Lagrangian.

1) Select date t0 for the database (as in Section 2). Let the initial conditions (3.1) be given
at t0. It corresponds to k = 0 in the corresponding data set Yi, j. Let T > t0, where T is
final time in which the predictive dynamics is considered. In our simulated scenarios T
corresponds to 28 days.

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A7-1671” — 2023/6/22 — 18:49 — page 498 — #12 i
i

i
i

i
i

498 GEOREFERENCED FORECASTING THE COVID-19

2) Calibrate the model parameters with the algorithm (4.6), and then treat them as constant
for t0 ≤ t ≤ T .

3) While t0 ≤ t ≤ T , the forecasts follow the discrete-time (3.1) dynamics corresponding to
Euler’s method, with step-size h = 1/2.

4) The forecast is assumed to follow the dynamic (3.1) as long as t ≤ T or until a new base
(and a new t0, for example t0← t0+2τ) becomes available. In any case, go back to item 1).

Then, the forecasted scenarios are georeferenced to the corresponding Al health clusters in a
process that is, basically, inverse to the data acquisition presented in Section 2. In the end, five
distinct layers (in color scales) are generated in the health clusters map, representing, respec-
tively, the number of infected people reported in the analyzed week and the number of infected
predicted for the next 7, 14, 21 and 28 days, for each of the previously announced scenarios.
These results are made available in a WebSIG (interactive and georeferenced format) on the
project’s website5.

5.1 Forcasted example

In this subsection, we present the results of predictions for the infected population by COVID-19
with our proposed strategy. It differs from the ones available on the project’s website4, since it
appears below as the graphics of the infected population dynamics of the clusters for the health
clusters determined by the controlled distancing model proposed by the government of the state
of RS. The parameters are calibrated from algorithm (4.6) based on reported COVID-19 infected
people at two databases t0, in 24/03/21 and 07/04/21, respectively.

We only present the results from the clusters A1-Santa Maria, A2 - Uruguaiana, A8 - Porto Ale-
gre, A15-Passo Fundo, A16-Pelotas and A18 - Caxias do Sul, as shown in Figures 2-3, respec-
tively. Such selections represent clustering with high population density, such as the RS capital
Porto Alegre and the industrialized region of Caxias do Sul; medium-populated clustering re-
gions (Passo Fundo, Pelotas, and Santa Maria); and sparsely populated areas, such as Urugua-
iana. Hence, it covers the most important population dynamics in the state of RS. It is worth
mentioning that the simulations are performed for all the 21 clusters simultaneously.

In Table 2, we present the calibrated parameters for the average scenario (the one obtained with
the parameters calibrated using the observed data and algorithm (4.6)). The COVID-19 reported
cases used as initial conditions and database in simulations are given in the data paper [6].

Figures 2-3 show the predictions of infected population from the simulations obtained from the
calibrated parameters shown in Table 2. The continuous lines in Figures 2-3 correspond to the
COVID-19 infected people predictions (for the 3 scenarios - (green, blue, red) correspond to
(milder, average, severe) scenarios, respectively. ) for the dates of 07, 14 and 21/04/21 with the
parameters calibrated based on the reported infected cases on t0 = 24/03/21 as initial condi-
tions. The parameters are then re-calibrated based on the number of infected people reported in

5Available in https://exactum.furg.br/

Trends Comput. Appl. Math., 24, N. 3 (2023)



i
i

“A7-1671” — 2023/6/22 — 18:49 — page 499 — #13 i
i

i
i

i
i

J. C. MARQUES ET AL. 499

0

5000

10000

15000

20000

1 8 15 22 29 36

In
fe
ct
ed
	p
op
ul
at
io
n

Time(days)

Cluster	A1	Santa	Maria

Milder	scenario	t0=24/03
Average	scenario	t0=24/03
Severe	scenario	t0=24/03
Milder	scenario	t0=07/04
Average	scenario	t0=07/04
Severe	scenario	t0=07/04
Reported

(a)

0

5000

10000

15000

20000

25000

1 8 15 22 29 36

In
fe
ct
ed
	p
op
ul
at
io
n

Time(days)

Cluster	A2	Uruguaiana

Milder	scenario	t0=24/03
Average	scenario	t0=24/03
Severe	scenario	t0=24/03
Milder	scenario	t0=07/04
Average	scenario	t0=07/04
Severe	scenario	t0=07/04
Reported

(b)

0

5000

10000

15000

20000

25000

1 8 15 22 29 36

In
fe
ct
ed
	p
op
ul
at
io
n

Time(days)

Cluster	A8	Porto	Alegre

Milder	scenario	t0=24/03
Average	scenario	t0=24/03
Severe	scenario	t0=24/03
Milder	scenario	t0=07/04
Average	scenario	t0=07/04
Severe	scenario	t0=07/04
Reported

(c)

Figure 2: Infected forecast scenarios at each databased for the corresponding health clusters. The
average scenario corresponds to the calibrated parameters presented in Table 2.
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Figure 3: Infected forecast scenarios at each databased for the corresponding health clusters. The
average scenario corresponds to the calibrated parameters presented in Table 2.
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the week of the day t0 = 07/04/21. The predictions corresponding to the 3 scenarios (with re-
calibrated parameters as in Table 2 corresponding to t0 = 07/04/21) are presented as the dashed
curves in Figures 2- 3. It corresponds to predicted infected cases of COVID-19, for the dates
21/04, 28/04 and 5/05. The relative error ER j%, for the first two weeks after calibration, is
presented in the Table 2.

Note that when the first prediction completes 14 days (continuous lines in 07/04), the errors of
the results of the first base start to increase and the curves of the three scenarios deviate from
the reported data. However, with the strategy of re-calibrating the parameters and setting new
predictions every two weeks, when the “old” predictions start to be less reliable, we already have
them replaced with the predictions based on the new database. Despite the many external factors
that are not taken into account in the proposed COVID-19 modeling, the presented scenarios
show a significant agreement with the reported cases for short time periods (around 15 days) -
see the errors in Table 2). In particular, COVID-19 reported cases are enclosed by the forecasted
scenarios envelope, in the time horizon of 15 days.

One final observation regarding the results presented in Figures 2-3 is that, for some clusters, the
milder scenario describes the data for the long time horizon better than the one predicted by the
average scenario (the one corresponding to the calibrated parameters - see last column in Table
2). It is because data reported from the end of March/21 to the beginning of May/21 corresponds
to the period in which RS went through the most severe restriction (black flag) of economic
activity since the beginning of the COVID-19 pandemic.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this contribution we present the results of the development of a predictive tool with the ca-
pability to help manage the evolution of the COVID-19 pandemic in the state of RS, whose
interactive form can be found on the EXACTUM website. This tool is the result of the analysis
of georeferenced data supported by the mathematical modeling dynamics of the SIR-type model
with a spatial structure and interaction of multiple populations (model 3.1), corresponding to the
controlled distance clusters, thus encompassing a forecast for the state as a whole.

We propose an augmented Lagrangian maximum a posteriori estimation method for calibrating
the model parameters, based on data from people infected with COVID-19 reported by health
authorities. The obtained forecasts provide a good description of the evolution of the reported
cases of newly infected (see Table 2 and Figures 2-3) for a short time horizon (15 days). There-
fore, we suggest calibrating the parameters in a time window that corresponds to a maximum
of two weeks. With this strategy, we verify that the number of infected for future dates remains
enveloped by the predictions obtained by the three proposed scenarios.

Future developments of this approach include the possibility of extending the results to all Brazil-
ian states. The difficulties of this extension lie in the need for a higher computing capacity than
that used by the team in this project, where the computation was done on a personal computer.
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Moreover, there is an urgent need for standardization in the way the reported data is handled by
the health authorities of each state or by the federal ministry of health.

Finally, it is important to point out that the inclusion of other relevant information in the model-
ing, such as ICU bed occupancy forecast and, more recently, vaccination, is easily incorporated
into the dynamics 3.1. In this way, extensions in this sense are also possible.
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