Acessibilidade / Reportar erro

Runs of homozygosity for autozygosity estimation and genomic analysis in production animals

Abstract:

Runs of homozygosity (ROHs) are long stretches of homozygous genomic segments, identifiable by molecular markers, which can provide genomic information for accurate estimates to characterize populations, determine evolutionary history and demographic information, estimate levels of consanguinity, and identify selection signatures in production animals. This review paper aims to perform a survey of the works on the efficiency of ROHs for these purposes. Factors such as genetic drift, natural or artificial selection, founder effect, and effective population size directly influence the size and distribution of ROHs along the genome. Individually, genome estimates of consanguinity based on ROHs can be obtained using the FROH index, which is generally considered more accurate than indexes based on other types of genomic or genealogical information. High frequencies of specific ROHs in a population can be used to identify selection signatures. The results of recent studies with ROHs in domestic animals have shown the efficiency of their use to characterize herds in a reliable and accessible way, using genomic information.

Index terms:
autozygosity; FROH; genotyping; selection signatures; single nucleotide polymorphism; SNPs

Resumo:

As corridas em homozigose (ROHs) são longos trechos genômicos em homozigose, identificáveis por meio de marcadores moleculares, que podem fornecer informações genômicas para estimativas precisas, utilizadas para caracterizar populações, determinar história evolutiva e informações demográficas, estimar níveis de consanguinidade e identificar assinaturas de seleção em animais de interesse zootécnico. Este artigo de revisão tem por objetivo fazer um levantamento dos trabalhos sobre a eficiência de ROHs para essas finalidades. Fatores como deriva genética, seleção natural ou artificial, efeito fundador e número efetivo da população influenciam diretamente o tamanho e a distribuição das ROHs pelo genoma. Individualmente, a estimativa genômica de consanguinidade baseada em ROHs pode ser realizada por meio do índice FROH, que, em geral, é considerado mais preciso do que índices baseados em outros tipos de informações genômicas ou genealógicas. Altas frequências de ROHs específicas em uma população podem ser utilizadas para identificar assinaturas de seleção. Os resultados de trabalhos recentes com ROHs em animais domésticos têm mostrado a eficiência de seu uso para caracterização de rebanhos, de forma confiável e acessível, a partir de informações genômicas.

Termos para indexação:
autozigose; FROH; genotipagem; assinaturas de seleção; polimorfismo de nucleotídeo único; SNPs

Introduction

The domestication process of production animals, followed, in the last decades, by intense directional selection using quantitative methods, has resulted in significant genetic increments in adaptation, type, and production (Randhawa et al., 2016 RANDHAWA, I.A.S.; KHATKAR, M.S.; THOMSON, P.C.; RAADSMA, H.W. A meta-assembly of selection signatures in cattle. PLoS ONE, v.11, e0153013, 2016. DOI: 10.1371/journal.pone.0153013.
https://doi.org/10.1371/journal.pone.015...
). Consequently, drastic reductions were observed in the effective population size (Falconer & Mackay, 1996 FALCONER, D.S.; MACKAY, T.F.C. Introduction to quantitative genetics. 4th ed. Essex: Longman, 1996. 464p.), as well as production losses due to high consanguinity rates (Reverter et al., 2017 REVERTER, A.; PORTO-NETO, L.R.; FORTES, M.R.S.; KASARAPU, P.; CARA, M.A.R. de; BURROW, H.M.; LEHNERT, S.A. Genomic inbreeding depression for climatic adaptation of tropical beef cattle. Journal of Animal Science, v.95, p.3809-3821, 2017. DOI: 10.2527/jas2017.1643.
https://doi.org/10.2527/jas2017.1643...
) in breeds under intense selection (Scraggs et al., 2014 SCRAGGS, E.; ZANELLA, R.; WOJTOWICZ, A.; TAYLOR, J.F.; GASKINS, C.T.; REEVES, J.J.; AVILA, J.M. de; NEIBERGS, H.L. Estimation of inbreeding and effective population size of full-blood wagyu cattle registered with the American Wagyu Cattle Association. Journal of Animal Breeding and Genetics, v.131, p.3-10, 2014. DOI: 10.1111/jbg.12066.
https://doi.org/10.1111/jbg.12066...
; Zavarez et al., 2015 ZAVAREZ, L.B.; UTSUNOMIYA, Y.T.; CARMO, A.S.; NEVES, H.H.R.; CARVALHEIRO, R.; FERENČAKOVIĆ, M.; PÉREZ O’BRIEN, A.M.; CURIK, I.; COLE, J.B.; VAN TASSELL, C.P.; SILVA, M.V.G.B. da; SONSTEGARD, T.S.; SÖLKNER, J.; GARCIA, J.F. Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes. Frontiers in Genetics, v.6, p.1-8, 2015. DOI: 10.3389/fgene.2015.00005.
https://doi.org/10.3389/fgene.2015.00005...
).

The balance between high rates of genetic gain and of diversity loss require breeding programs to take into account and control endogamous breeding rates in the studied populations (Peripolli et al., 2017 PERIPOLLI, E.; MUNARI, D.P.; SILVA, M.V.G.B.; LIMA, A.L.F.; IRGANG, R.; BALDI, F. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics, v.48, p.255-271, 2017. DOI: 10.1111/age.12526.
https://doi.org/10.1111/age.12526...
). Traditionally, these processes use pedigree information, but random errors in the steps necessary to collect, takes notes of, register, and store information on genetic relationships may have serious negative consequences and cause unintended increases in autozygosity levels (Curik, et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
; Hudson et al., 2015 HUDSON, N.J.; PORTO-NETO, L.; KIJAS, J.W.; REVERTER, A. Compression distance can discriminate animals by genetic profile, build relationship matrices and estimate breeding values. Genetics Selection Evolution, v.47, art.78, 2015. DOI: 10.1186/s12711-015-0158-9.
https://doi.org/10.1186/s12711-015-0158-...
; Zavarez et al., 2015 ZAVAREZ, L.B.; UTSUNOMIYA, Y.T.; CARMO, A.S.; NEVES, H.H.R.; CARVALHEIRO, R.; FERENČAKOVIĆ, M.; PÉREZ O’BRIEN, A.M.; CURIK, I.; COLE, J.B.; VAN TASSELL, C.P.; SILVA, M.V.G.B. da; SONSTEGARD, T.S.; SÖLKNER, J.; GARCIA, J.F. Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes. Frontiers in Genetics, v.6, p.1-8, 2015. DOI: 10.3389/fgene.2015.00005.
https://doi.org/10.3389/fgene.2015.00005...
). Therefore, the use of genomic data to complement or correct existing genealogical data may positively impact genetic gains obtained in the long run (Hudson et al., 2015; Marras et al., 2015 MARRAS, G.; GASPA, G.; SORBOLINI, S.; DIMAURO, C.; AJMONE-MARSAN, P.; VALENTINI, A.; WILLIAMS, J.L.; MACCIOTTA, N.P.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, v.46, p.110-121, 2015. DOI: 10.1111/age.12259.
https://doi.org/10.1111/age.12259...
; Zhang et al., 2015b ZHANG, Q.; GULDBRANDTSEN, B.; BOSSE, M.; LUND, M.S.; SAHANA, G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics, v.16, art.542, 2015b. DOI: 10.1186/s12864-015-1715-x
https://doi.org/10.1186/s12864-015-1715-...
).

The first studies with molecular markers to aid in animal breeding date from the end of the 1980s, and the obtained results, based on a few markers and high-cost techniques, were inconsistent regarding the efficiency and viability of using genomic data for animal production (Caetano, 2009 CAETANO, A.R. Marcadores SNP: conceitos básicos, aplicações no manejo e no melhoramento animal e perspectivas para o futuro. Revista Brasileira de Zootecnia, v.38, p.64-71, 2009. Número Especial. DOI: 10.1590/S1516-35982009001300008.
https://doi.org/10.1590/S1516-3598200900...
). However, the association of technologies to fabricate DNA microarrays with molecular methods developed to genotype single nucleotide polymorphisms (SNPs) lead to the development of panels with thousands of markers, allowing an extensive evaluation of the genome in a fraction of the time and cost required by previous methodologies (Caetano, 2009 CAETANO, A.R. Marcadores SNP: conceitos básicos, aplicações no manejo e no melhoramento animal e perspectivas para o futuro. Revista Brasileira de Zootecnia, v.38, p.64-71, 2009. Número Especial. DOI: 10.1590/S1516-35982009001300008.
https://doi.org/10.1590/S1516-3598200900...
; Silva et al., 2015 SILVA, J.M. da; GIACHETTO, P.F.; SILVA, L.O.C. da; CINTRA, L.C.; PAIVA, S.R.; CAETANO, A.R.; YAMAGISHI, M.E.B. Genomic variants revealed by invariably missing genotypes in Nelore cattle. PLoS ONE, v.10, e0136035, 2015. DOI: 10.1371/journal.pone.0136035.
https://doi.org/10.1371/journal.pone.013...
).

Defined as long and uninterrupted stretches of the genome with genotypes in homozygosis (Lencz et al., 2007 LENCZ, T.; LAMBERT, C.; DEROSSE, P.; BURDICK, K.E.; MORGAN, T.V.; KANE, J.M.; KUCHERLAPATI, R.; MALHOTRA, A.K. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, v.104, p.19942-19947, 2007. DOI: 10.1073/pnas.0710021104.
https://doi.org/10.1073/pnas.0710021104...
), the runs of homozygosity (ROHs) may be identified through the analysis of high-density SNP panels, preferentially with more than 50.000 SNPs. The directed analysis of data generated with these panels has allowed studies to identify and characterize ROHs in different species (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
). In addition, secondary analyses of ROHs may be used to: identify and monitor the consanguinity rate in production animals; map and identify recessive deleterious alleles; characterize the population demography, structure, and history; and estimate individual and population genomic relationships and autozygosity (Saura et al., 2015 SAURA, M.; FERNÁNDEZ, A.; VARONA, L.; FERNÁNDEZ, A.I.; CARA, M.Á.R. de; BARRAGÁN, C.; VILLANUEVA, B. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, v.47, art.1, 2015. DOI: 10.1186/s12711-014-0081-5.
https://doi.org/10.1186/s12711-014-0081-...
; Peripolli et al., 2017 PERIPOLLI, E.; MUNARI, D.P.; SILVA, M.V.G.B.; LIMA, A.L.F.; IRGANG, R.; BALDI, F. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics, v.48, p.255-271, 2017. DOI: 10.1111/age.12526.
https://doi.org/10.1111/age.12526...
).

Currently, SNP genotyping using DNA chips is the most consistent and low-cost solution to generate high-definition data (Silva et al., 2015 SILVA, J.M. da; GIACHETTO, P.F.; SILVA, L.O.C. da; CINTRA, L.C.; PAIVA, S.R.; CAETANO, A.R.; YAMAGISHI, M.E.B. Genomic variants revealed by invariably missing genotypes in Nelore cattle. PLoS ONE, v.10, e0136035, 2015. DOI: 10.1371/journal.pone.0136035.
https://doi.org/10.1371/journal.pone.013...
). This methodology is being used in experiments to identify and use of ROHs in production animal species, such as bovine (Zavarez et al., 2015 ZAVAREZ, L.B.; UTSUNOMIYA, Y.T.; CARMO, A.S.; NEVES, H.H.R.; CARVALHEIRO, R.; FERENČAKOVIĆ, M.; PÉREZ O’BRIEN, A.M.; CURIK, I.; COLE, J.B.; VAN TASSELL, C.P.; SILVA, M.V.G.B. da; SONSTEGARD, T.S.; SÖLKNER, J.; GARCIA, J.F. Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes. Frontiers in Genetics, v.6, p.1-8, 2015. DOI: 10.3389/fgene.2015.00005.
https://doi.org/10.3389/fgene.2015.00005...
; Zhang et al., 2015aZHANG, Q.; CALUS, M.P.L.; GULDBRANDTSEN, B.; LUND, M.S.; SAHANA, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, v.16, art.88, 2015a. DOI: 10.1186/s12863-015-0227-7.
https://doi.org/10.1186/s12863-015-0227-...
; Mastrangelo et al., 2016 MASTRANGELO, S.; TOLONE, M.; DI GERLANDO, R.; FONTANESI, L.; SARDINA, M.T.; PORTOLANO, B. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds. Animal, v.10, p.746-754, 2016. DOI: 10.1017/S1751731115002943.
https://doi.org/10.1017/S175173111500294...
; Szmatoła et al., 2016 SZMATOŁA, T.; GURGUL, A.; ROPKA-MOLIK, K.; JASIELCZUK, I.; ZĄBEK, T.; BUGNO-PONIEWIERSKA, M. Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livestock Science, v.188, p.72-80, 2016. DOI: 10.1016/j.livsci.2016.04.006.
https://doi.org/10.1016/j.livsci.2016.04...
; Reverter et al., 2017 REVERTER, A.; PORTO-NETO, L.R.; FORTES, M.R.S.; KASARAPU, P.; CARA, M.A.R. de; BURROW, H.M.; LEHNERT, S.A. Genomic inbreeding depression for climatic adaptation of tropical beef cattle. Journal of Animal Science, v.95, p.3809-3821, 2017. DOI: 10.2527/jas2017.1643.
https://doi.org/10.2527/jas2017.1643...
), ovine (Al-Mamun et al., 2015AL-MAMUN, H.A.; CLARK, S.A.; KWAN, P.; GONDRO, C. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genetics Selection Evolution, v.47, art.90, 2015. DOI: 10.1186/s12711-015-0169-6.
https://doi.org/10.1186/s12711-015-0169-...
; Beynon et al., 2015 BEYNON, S.E.; SLAVOV, G.T.; FARRÉ, M.; SUNDUIMIJID, B.; WADDAMS, K.; DAVIES, B.; HARESIGN, W.; KIJAS, J.; MACLEOD, I.M.; NEWBOLD, C.J.; DAVIES, L.; LARKIN, D.M. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genetics, v.16, art.65, 2015. DOI: 10.1186/s12863-015-0216-x.
https://doi.org/10.1186/s12863-015-0216-...
), equine (Metzger et al., 2015 METZGER, J.; KARWATH, M.; TONDA, R.; BELTRAN, S.; ÁGUEDA, L.; GUT, M.; GUT, I.G.; DISTL, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, v.16, art.764, 2015. DOI: 10.1186/s12864-015-1977-3.
https://doi.org/10.1186/s12864-015-1977-...
), swine (Gomez-Raya et al., 2015GOMEZ-RAYA, L.; RODRÍGUEZ, C.; BARRAGÁN, C.; SILIÓ, L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genetics Selection Evolution, v.47, art.81, 2015. DOI: 10.1186/s12711-015-0153-1.
https://doi.org/10.1186/s12711-015-0153-...
; Saura et al., 2015 SAURA, M.; FERNÁNDEZ, A.; VARONA, L.; FERNÁNDEZ, A.I.; CARA, M.Á.R. de; BARRAGÁN, C.; VILLANUEVA, B. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, v.47, art.1, 2015. DOI: 10.1186/s12711-014-0081-5.
https://doi.org/10.1186/s12711-014-0081-...
), poultry (Wolc et al., 2015 WOLC, A.; ZHAO, H.H.; ARANGO, J.; SETTAR, P.; FULTON, J.E.; O’SULLIVAN, N.P.; PREISINGER, R.; STRICKER, C.; HABIER, D.; FERNANDO, R.L.; GARRICK, D.J.; LAMONT, S.J.; DEKKERS, J.C.M. Response and inbreeding from a genomic selection experiment in layer chickens. Genetics Selection Evolution, v.47, art.59, 2015. DOI: 10.1186/s12711-015-0133-5.
https://doi.org/10.1186/s12711-015-0133-...
), feline (Bertolini et al., 2016BERTOLINI, F.; GANDOLFI, B.; KIM, E.S.; HAASE, B.; LYONS, L.A.; ROTHSCHILD, M.F. Evidence of selection signatures that shape the Persian cat breed. Mammalian Genome, v.27, p.144-155, 2016. DOI : 10.1007/s00335-016-9623-1.
https://doi.org/10.1007/s00335-016-9623-...
), and bees (Fuller et al., 2015 FULLER, Z.L.; NIÑO, E.L.; PATCH, H.M.; BEDOYA-REINA, O.C.; BAUMGARTEN, T.; MULI, E.; MUMOKI, F.; RATAN, A.; MCGRAW, J.; FRAZIER, M.; MASIGA, D.; SCHUSTER, S.; GROZINGER, C.M.; MILLER, W. Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools. BMC Genomics, v.16, art.518, 2015. DOI: 10.1186/s12864-015-1712-0.
https://doi.org/10.1186/s12864-015-1712-...
). Table 1 presents a summary of the objectives and conclusions of recent studies related to different uses of ROHs in production animals.

Table 1.
Recent studies with runs of homozygosity (ROHs) for the detection of autozygosity, identification of selection signatures, and characterization of populations of production animals.

This review paper presents information on ROHs, the methods used for their identification, and their different applications in studies that may positively impact animal production, mainly regarding genomic estimates for the characterization of a population in order to monitor autozygosity and its implications.

Runs of homozygosity

The term ROHs was used for the first time to denominate stretches with 100 or more consecutive SNPs, with absence of heterozygotes or missed calls, in one chromosome (Lencz et al., 2007 LENCZ, T.; LAMBERT, C.; DEROSSE, P.; BURDICK, K.E.; MORGAN, T.V.; KANE, J.M.; KUCHERLAPATI, R.; MALHOTRA, A.K. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, v.104, p.19942-19947, 2007. DOI: 10.1073/pnas.0710021104.
https://doi.org/10.1073/pnas.0710021104...
). ROHs were initially identified in human chromosomes (Broman & Weber, 1999 BROMAN, K.W.; WEBER, J.L. Long homozygous chromosomal segments in reference families from the Centre d’Étude du Polymorphisme Humain. American Journal of Human Genetics, v.65, p.1493-500, 1999. DOI: 10.1086/302661.
https://doi.org/10.1086/302661...
), because, at the time, this was the only species with a wide genome coverage, a requirement for the correct identification of ROHs (Purfield et al., 2012 PURFIELD, D.C.; BERRY, D.P.; MCPARLAND, S.; BRADLEY, D.G. Runs of homozygosity and population history in cattle. BMC genetics, v.13, art.70, 2012. DOI: 10.1186/1471-2156-13-70.
https://doi.org/10.1186/1471-2156-13-70...
). Studies on the size and distribution of ROHs in other animal species were only carried out approximately eight years later (Gibson et al., 2006GIBSON, J.; MORTON, N.E.; COLLINS, A. Extended tracts of homozygosity in outbred human populations. Human Molecular Genetics, v.15, p.789-795, 2006. DOI: 10.1093/hmg/ddi493.
https://doi.org/10.1093/hmg/ddi493...
), when the first high-density SNP panels for production animals were developed.

The formation process of ROHs is shown in Figure 1, where individual A represents the common ancestor of parents D and E of individual F. The ROH fragment of individual F, as well as the homologous chromosome of the common ancestor A, which originated this ROH, is represented by the green color. The other colors indicate chromosome fragments that did not originate from the homologous chromosome of individual A (Gomez-Raya et al., 2015GOMEZ-RAYA, L.; RODRÍGUEZ, C.; BARRAGÁN, C.; SILIÓ, L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genetics Selection Evolution, v.47, art.81, 2015. DOI: 10.1186/s12711-015-0153-1.
https://doi.org/10.1186/s12711-015-0153-...
).

Figure 1.
Representation of the formation of runs of homozygosity (ROHs). Individual F presents a ROH (in green) formed by the pairing of stretches in homozygosis of the homologous chromosome of a common ancestor A.

The correct identification of ROHs depends on the control of several factors, such as genotyping quality, minimum size of ROHs, and number of allowed heterozygotes, which may compromise estimates due to eventual genotyping errors (Ferenčakovićet al., 2013b FERENČAKOVIĆ, M.; SÖLKNER, J.; CURIK, I. Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. Genetics Selection Evolution, v.45, art.42, 2013b. DOI: 10.1186/1297-9686-45-42.
https://doi.org/10.1186/1297-9686-45-42...
). The type of chip used to obtain data also influences the identification of ROHs, since a wide genome coverage allows the identification of a greater number of runs. It should be noted that chips with densities greater than 50,000 SNPs are necessary to detect with precision ROHs shorter than 5.0 Mb (Purfield et al., 2012 PURFIELD, D.C.; BERRY, D.P.; MCPARLAND, S.; BRADLEY, D.G. Runs of homozygosity and population history in cattle. BMC genetics, v.13, art.70, 2012. DOI: 10.1186/1471-2156-13-70.
https://doi.org/10.1186/1471-2156-13-70...
; Zhang et al., 2015aZHANG, Q.; CALUS, M.P.L.; GULDBRANDTSEN, B.; LUND, M.S.; SAHANA, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, v.16, art.88, 2015a. DOI: 10.1186/s12863-015-0227-7.
https://doi.org/10.1186/s12863-015-0227-...
).

High-density SNP panels for production animals were only developed starting in 2008 (Caetano, 2009 CAETANO, A.R. Marcadores SNP: conceitos básicos, aplicações no manejo e no melhoramento animal e perspectivas para o futuro. Revista Brasileira de Zootecnia, v.38, p.64-71, 2009. Número Especial. DOI: 10.1590/S1516-35982009001300008.
https://doi.org/10.1590/S1516-3598200900...
). Currently, there are high-density genotyping chips for several production species, which have allowed for studies to identify ROHs for these species (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
). The obtained results have shown the potential of this approach to identify genomic regions of interest. The characterization of ROHs in different populations, breeds or lines of a species is important to obtain information on evolutionary history (Metzger et al., 2015 METZGER, J.; KARWATH, M.; TONDA, R.; BELTRAN, S.; ÁGUEDA, L.; GUT, M.; GUT, I.G.; DISTL, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, v.16, art.764, 2015. DOI: 10.1186/s12864-015-1977-3.
https://doi.org/10.1186/s12864-015-1977-...
; Sorbolini et al., 2015 SORBOLINI, S.; MARRAS, G.; GASPA, G.; DIMAURO, C.; CELLESI, M.; VALENTINI, A.; MACCIOTTA, N.P.P. Detection of selection signatures in Piemontese and Marchigiana cattle, two breeds with similar production aptitudes but different selection histories. Genetics Selection Evolution, v.47, art.52, 2015. DOI: 10.1186/s12711-015-0128-2.
https://doi.org/10.1186/s12711-015-0128-...
; Zavarez et al., 2015 ZAVAREZ, L.B.; UTSUNOMIYA, Y.T.; CARMO, A.S.; NEVES, H.H.R.; CARVALHEIRO, R.; FERENČAKOVIĆ, M.; PÉREZ O’BRIEN, A.M.; CURIK, I.; COLE, J.B.; VAN TASSELL, C.P.; SILVA, M.V.G.B. da; SONSTEGARD, T.S.; SÖLKNER, J.; GARCIA, J.F. Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes. Frontiers in Genetics, v.6, p.1-8, 2015. DOI: 10.3389/fgene.2015.00005.
https://doi.org/10.3389/fgene.2015.00005...
), demographics (Bosse et al., 2012 BOSSE, M.; MEGENS, H.-J.; MADSEN, O.; PAUDEL, Y.; FRANTZ, L.A.F.; SCHOOK, L.B.; CROOIJMANS, R.P.M.A; GROENEN, M.A.M. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics, v.8, e1003100, 2012. DOI: 10.1371/journal.pgen.1003100.
https://doi.org/10.1371/journal.pgen.100...
), or related to consanguinity in a population (Marras et al., 2015 MARRAS, G.; GASPA, G.; SORBOLINI, S.; DIMAURO, C.; AJMONE-MARSAN, P.; VALENTINI, A.; WILLIAMS, J.L.; MACCIOTTA, N.P.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, v.46, p.110-121, 2015. DOI: 10.1111/age.12259.
https://doi.org/10.1111/age.12259...
).

Software used to identify ROHs

Currently, the software most used for the identification of ROHs are Plink v1.07 (Purcell et al., 2007PURCELL, S.; NEALE, B.; TODD-BROWN, K.; THOMAS, L.; FERREIRA, M.A.R.; BENDER, D.; MALLER, J.; SKLAR, P.; BAKKER, P.I.W. de; DALY, M.J.; SHAM, P.C. PLINK: a tool set for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, v.81, p.559-575, 2007. DOI: 10.1086/519795.
https://doi.org/10.1086/519795...
) and SNP & Variation Suite (SVS) of Golden Helix (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
). However, others cited in the literature, such as Beagle and Germline, were also used for this purpose (Howrigan et al., 2011 HOWRIGAN, D.P.; SIMONSON, M.A.; KELLER, M.C. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics, v.12, art.460, 2011. DOI: 10.1186/1471-2164-12-460.
https://doi.org/10.1186/1471-2164-12-460...
).

The Plink uses a sliding window to identify both ROHs and consecutive stretches that contain a minimum number of homozygous SNPs, at a minimum pre-specified distance. With this method, the software carries out basic detections of homozygous stretches identified by the sliding window, and the user only needs to define the parameter “minimum size” of segments to be identified (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
).

Plink is available for free download on the Linux, MS-DOS, Apple Mac, and C/C++ source platforms (Plink…, 2017PLINK…: whole genome association analysis toolset. Available at: <Available at: http://zzz.bwh.harvard.edu/plink/contact.shtml#cite >. Accessed on: July 4 2017.
http://zzz.bwh.harvard.edu/plink/contact...
). Being free is the great advantage of this software compared with SVS of Golden Helix, whose higher cost, over U$ 1,000 per year (Golden Helix, 2017GOLDEN HELIX. SNP & Variation Suite. Available at: <http://goldenhelix.com/forms/SNP_Variation/pricing.html>. Accessed on: July 4 2017.
http://goldenhelix.com/forms/SNP_Variati...
), is justified by its great capacity for data management, friendly design, quality of the produced material, and guaranteed support .

The SVS software does not use sliding windows, but considers all SNP in homozygosis as a possible starting point of a new ROH. Each SNP is classified as “in homozygosis”, “in heterozygosis” or “missed calls”, and provides a cluster of homozygous stretches with a number of SNPs in homozygosis greater than the one specified for each chromosome and individual. Then, a second algorithm groups all calculated stretches in clusters and provides a list with the minimum number of individuals that have these stretches in common. This more modern and complex method allows the user to define groups of parameters, such as minimum size of ROHs in base pairs and SNP numbers, minimum density, maximum gap, and maximum number of allowed heterozygotes and of missed calls (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
).

Factors affecting the formation of ROH patterns

The processes of natural and artificial selection may alter genotypic patterns and produce contrasting patterns in populations subjected to distinct selective pressures (Sorbolini et al., 2015 SORBOLINI, S.; MARRAS, G.; GASPA, G.; DIMAURO, C.; CELLESI, M.; VALENTINI, A.; MACCIOTTA, N.P.P. Detection of selection signatures in Piemontese and Marchigiana cattle, two breeds with similar production aptitudes but different selection histories. Genetics Selection Evolution, v.47, art.52, 2015. DOI: 10.1186/s12711-015-0128-2.
https://doi.org/10.1186/s12711-015-0128-...
). The selection of a small number of superior animals tends to reduce the observed phenotypic variability, besides leading to genome remodeling in production animals, generating ROH patterns (Kim et al., 2013 KIM, E.-S.; COLE, J.B.; HUSON, H.; WIGGANS, G.R.; VAN TASSELL, C.P.; CROOKER, B.A.; LIU, G.; DA, Y.; SONSTEGARD, T.S. Effect of artificial selection on runs of homozygosity in U.S. Holstein cattle. PLoS ONE, v.8, e80813, 2013. DOI: 10.1371/journal.pone.0080813.
https://doi.org/10.1371/journal.pone.008...
), due to increased homozygosity in genomic regions close to the locus that controls traits of interest (Zhang et al., 2015b ZHANG, Q.; GULDBRANDTSEN, B.; BOSSE, M.; LUND, M.S.; SAHANA, G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics, v.16, art.542, 2015b. DOI: 10.1186/s12864-015-1715-x
https://doi.org/10.1186/s12864-015-1715-...
). Genomic regions that contain loci subjected to artificial selection, in general, present, a greater concentration of ROHs (Metzger et al., 2015 METZGER, J.; KARWATH, M.; TONDA, R.; BELTRAN, S.; ÁGUEDA, L.; GUT, M.; GUT, I.G.; DISTL, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, v.16, art.764, 2015. DOI: 10.1186/s12864-015-1977-3.
https://doi.org/10.1186/s12864-015-1977-...
).

Demographic factors that lead to genetic drift and to natural or artificial selection pressures may also cause genomic modifications in a species (Ramey et al., 2013RAMEY, H.R.; DECKER, J.E.; MCKAY, S.D.; ROLF, M.M; SCHNABEL, R.D.; TAYLOR, J.F. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics, v.14, art.382, 2013. DOI: 10.1186/1471-2164-14-382.
https://doi.org/10.1186/1471-2164-14-382...
). The increase in selection intensity in breeding programs observed in the last decades, together with the use of a small number of animals as breeding stock, has contributed to reduce the effective size of populations of production animals. This contributes to an increase in consanguinity and genetic drift, as well as to a reduction in genetic variability (Peripolli et al., 2017 PERIPOLLI, E.; MUNARI, D.P.; SILVA, M.V.G.B.; LIMA, A.L.F.; IRGANG, R.; BALDI, F. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics, v.48, p.255-271, 2017. DOI: 10.1111/age.12526.
https://doi.org/10.1111/age.12526...
), creating a tendency of long ROHs in the populations of animals subjected to these conditions.

By definition, ROHs are long and uninterrupted stretches of genotypes in homozygosis, as previously mentioned. These stretches are generated by inbreeding events (Ferenčaković et al., 2013aFERENČAKOVIĆ, M.; HAMZIĆ, E.; GREDLER, B.; SOLBERG, T.R.; KLEMETSDAL, G.; CURIK, I.; SÖLKNER, J. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. Journal of Animal Breeding and Genetics, v.130, p.286-293, 2013a. DOI: 10.1111/jbg.12012.
https://doi.org/10.1111/jbg.12012...
) and, therefore, their size varies according to the number of generations during which inbreeding occurred. Consequently, the size of the ROHs in a herd tends to decrease with each generation. Long stretches in homozygosis, i.e., long ROHs, indicate high consanguinity between individuals (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
) due to recent inbreeding in the population.

The differences between patterns of ROHs suggest that artificial selection modifies autozygosity in the genome (Metzger et al., 2015 METZGER, J.; KARWATH, M.; TONDA, R.; BELTRAN, S.; ÁGUEDA, L.; GUT, M.; GUT, I.G.; DISTL, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, v.16, art.764, 2015. DOI: 10.1186/s12864-015-1977-3.
https://doi.org/10.1186/s12864-015-1977-...
; Szmatoła et al., 2016 SZMATOŁA, T.; GURGUL, A.; ROPKA-MOLIK, K.; JASIELCZUK, I.; ZĄBEK, T.; BUGNO-PONIEWIERSKA, M. Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livestock Science, v.188, p.72-80, 2016. DOI: 10.1016/j.livsci.2016.04.006.
https://doi.org/10.1016/j.livsci.2016.04...
; Peripolli et al., 2017 PERIPOLLI, E.; MUNARI, D.P.; SILVA, M.V.G.B.; LIMA, A.L.F.; IRGANG, R.; BALDI, F. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics, v.48, p.255-271, 2017. DOI: 10.1111/age.12526.
https://doi.org/10.1111/age.12526...
). Selection and/or drift events result in the formation of long ROHs (Pemberton et al., 2012 PEMBERTON, T.J.; ABSHER, D.; FELDMAN, M.W.; MYERS, R.M.; ROSENBERG, N.A.; LI, J.Z. Genomic patterns of homozygosity in worldwide human populations. American Journal of Human Genetics, v.91, p.275-292, 2012. DOI: 10.1016/j.ajhg.2012.06.014.
https://doi.org/10.1016/j.ajhg.2012.06.0...
; Howard et al., 2015 HOWARD, J.T.; HAILE-MARIAM, M.; PRYCE, J.E.; MALTECCA, C. Investigation of regions impacting inbreeding depression and their association with the additive genetic effect for United States and Australia Jersey dairy cattle. BMC Genomics, v.16, art.813, 2015. DOI: 10.1186/s12864-015-2001-7.
https://doi.org/10.1186/s12864-015-2001-...
), which, subsequently, suffer recombination and mutation effects, causing inherited ROHs to decrease in size in each successive generation (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
).

Characterization of populations through ROHs

The length and frequency of ROHs are used to provide information about the ascendency of an individual or about the structure and history of the population of origin (Howrigan et al., 2011 HOWRIGAN, D.P.; SIMONSON, M.A.; KELLER, M.C. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics, v.12, art.460, 2011. DOI: 10.1186/1471-2164-12-460.
https://doi.org/10.1186/1471-2164-12-460...
; Purfield et al., 2012 PURFIELD, D.C.; BERRY, D.P.; MCPARLAND, S.; BRADLEY, D.G. Runs of homozygosity and population history in cattle. BMC genetics, v.13, art.70, 2012. DOI: 10.1186/1471-2156-13-70.
https://doi.org/10.1186/1471-2156-13-70...
). The distribution of ROHs along the genome is not random or uniform, but strongly dependent on local recombination and mutation rates (Bosse et al., 2012 BOSSE, M.; MEGENS, H.-J.; MADSEN, O.; PAUDEL, Y.; FRANTZ, L.A.F.; SCHOOK, L.B.; CROOIJMANS, R.P.M.A; GROENEN, M.A.M. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics, v.8, e1003100, 2012. DOI: 10.1371/journal.pgen.1003100.
https://doi.org/10.1371/journal.pgen.100...
), as well as on other evolutionary forces (Ramey et al., 2013RAMEY, H.R.; DECKER, J.E.; MCKAY, S.D.; ROLF, M.M; SCHNABEL, R.D.; TAYLOR, J.F. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics, v.14, art.382, 2013. DOI: 10.1186/1471-2164-14-382.
https://doi.org/10.1186/1471-2164-14-382...
). Therefore, the formation and distribution of ROHs throughout the genome is a result of the combination of genomic variables, such as recombination rate, and of signs of recent directional selection (Pemberton et al., 2012 PEMBERTON, T.J.; ABSHER, D.; FELDMAN, M.W.; MYERS, R.M.; ROSENBERG, N.A.; LI, J.Z. Genomic patterns of homozygosity in worldwide human populations. American Journal of Human Genetics, v.91, p.275-292, 2012. DOI: 10.1016/j.ajhg.2012.06.014.
https://doi.org/10.1016/j.ajhg.2012.06.0...
).

In production animals, ROHs longer than those found in human populations are expected due to the processes of artificial selection and to the reduced effective population size (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
). Breeds and specialized lines of production animals are usually subjected to intense selection of allele clusters, which positively affects production, reproductive, and racial pattern characteristics. Therefore, it is common to observe high endogamy rates and, consequently, ROHs abundantly distributed along the genome and present in high frequencies in these populations (Zavarez et al., 2015 ZAVAREZ, L.B.; UTSUNOMIYA, Y.T.; CARMO, A.S.; NEVES, H.H.R.; CARVALHEIRO, R.; FERENČAKOVIĆ, M.; PÉREZ O’BRIEN, A.M.; CURIK, I.; COLE, J.B.; VAN TASSELL, C.P.; SILVA, M.V.G.B. da; SONSTEGARD, T.S.; SÖLKNER, J.; GARCIA, J.F. Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes. Frontiers in Genetics, v.6, p.1-8, 2015. DOI: 10.3389/fgene.2015.00005.
https://doi.org/10.3389/fgene.2015.00005...
; Zhang et al., 2015aZHANG, Q.; CALUS, M.P.L.; GULDBRANDTSEN, B.; LUND, M.S.; SAHANA, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, v.16, art.88, 2015a. DOI: 10.1186/s12863-015-0227-7.
https://doi.org/10.1186/s12863-015-0227-...
).

The analysis of the size, position, and frequency of ROHs throughout the genome may provide information about genomic characteristics, recombination rates, and direction of selection, besides evidencing the relationship between distinct populations (Bosse et al., 2012 BOSSE, M.; MEGENS, H.-J.; MADSEN, O.; PAUDEL, Y.; FRANTZ, L.A.F.; SCHOOK, L.B.; CROOIJMANS, R.P.M.A; GROENEN, M.A.M. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics, v.8, e1003100, 2012. DOI: 10.1371/journal.pgen.1003100.
https://doi.org/10.1371/journal.pgen.100...
; Metzger et al., 2015 METZGER, J.; KARWATH, M.; TONDA, R.; BELTRAN, S.; ÁGUEDA, L.; GUT, M.; GUT, I.G.; DISTL, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, v.16, art.764, 2015. DOI: 10.1186/s12864-015-1977-3.
https://doi.org/10.1186/s12864-015-1977-...
). Long ROHs usually indicate intensive selection pressures (Metzger et al., 2015 METZGER, J.; KARWATH, M.; TONDA, R.; BELTRAN, S.; ÁGUEDA, L.; GUT, M.; GUT, I.G.; DISTL, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, v.16, art.764, 2015. DOI: 10.1186/s12864-015-1977-3.
https://doi.org/10.1186/s12864-015-1977-...
) and recent consanguinity events (Al-Mamun et al., 2015AL-MAMUN, H.A.; CLARK, S.A.; KWAN, P.; GONDRO, C. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genetics Selection Evolution, v.47, art.90, 2015. DOI: 10.1186/s12711-015-0169-6.
https://doi.org/10.1186/s12711-015-0169-...
), whereas short ROHs suggest genetic diversity loss due to bottleneck or founder effects (Al-Mamun et al., 2015AL-MAMUN, H.A.; CLARK, S.A.; KWAN, P.; GONDRO, C. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genetics Selection Evolution, v.47, art.90, 2015. DOI: 10.1186/s12711-015-0169-6.
https://doi.org/10.1186/s12711-015-0169-...
) or to past consanguinity events in the population (Howrigan et al., 2011 HOWRIGAN, D.P.; SIMONSON, M.A.; KELLER, M.C. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics, v.12, art.460, 2011. DOI: 10.1186/1471-2164-12-460.
https://doi.org/10.1186/1471-2164-12-460...
).

Metzger et al. (2015) METZGER, J.; KARWATH, M.; TONDA, R.; BELTRAN, S.; ÁGUEDA, L.; GUT, M.; GUT, I.G.; DISTL, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, v.16, art.764, 2015. DOI: 10.1186/s12864-015-1977-3.
https://doi.org/10.1186/s12864-015-1977-...
, while studying ROH patterns in different horse populations, observed variations in the number and frequency of runs between purebred and and crossbred animals. According to these authors, there may be a relationship between specific ROH patterns and the history of natural or artificial selection pressures. Saura et al. (2015) SAURA, M.; FERNÁNDEZ, A.; VARONA, L.; FERNÁNDEZ, A.I.; CARA, M.Á.R. de; BARRAGÁN, C.; VILLANUEVA, B. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, v.47, art.1, 2015. DOI: 10.1186/s12711-014-0081-5.
https://doi.org/10.1186/s12711-014-0081-...
reported losses in genetic variability due to selective breeding by identifying the presence or not of ROHs in the genome of improved swine. Szmatoła et al. (2016) SZMATOŁA, T.; GURGUL, A.; ROPKA-MOLIK, K.; JASIELCZUK, I.; ZĄBEK, T.; BUGNO-PONIEWIERSKA, M. Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livestock Science, v.188, p.72-80, 2016. DOI: 10.1016/j.livsci.2016.04.006.
https://doi.org/10.1016/j.livsci.2016.04...
also identified distinct ROH patterns in three bovine populations: native, subjected to conservation processes, and commercial. The obtained results are indicative that, once the ROH pattern of the species, breeds, or populations is known, it is possible to determine the evolutionary history or the demographic information that characterize them.

Estimation of consanguinity through the analysis of the frequency of ROHs (FROH)

Autozygocity occurs when mated individuals, with common ancestors, transmit chromosomes identical by descent (IBD) to their progeny. The evaluation of these segments allows calculating the inbreeding coefficient (F) used to estimate the level of autozygosity in an individual with one or more common ancestors. From this coefficient, it is possible to determine the probability of the alleles in a random region of the genome being IBD (Wright, 1922 WRIGHT, S. Coefficients of Inbreeding and Relationship. The American Naturalist, v.56, p.330-338, 1922. DOI: 10.1086/279872.
https://doi.org/10.1086/279872...
).

Traditionally, pedigree data are used to compose the relationship matrix “A”, constructed with the expected proportion of IBD loci (VanRaden, 1992 VANRADEN, P.M. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. Journal of Dairy Science, v.11, p.3136-3144, 1992. DOI: 10.3168/jds.S0022-0302(92)78077-1.
https://doi.org/10.3168/jds.S0022-0302(9...
), calculated by the expression:

A i i = L 2 i j D i j

where Aii is the ith element of the diagonal of matrix A, which is equivalent to the inbreeding coefficient of the ith animal plus 1.

Genomic information may be used to estimate the autozygosity of a population (McQuillan et al., 2008 MCQUILLAN, R.; LEUTENEGGER, A.-L.; ABDEL-RAHMAN, R.; FRANKLIN, C.S.; PERICIC, M.; BARAC-LAUC, L.; SMOLEJ-NARANCIC, N.; JANICIJEVIC, B.; POLASEK, O.; TENESA, A.; MACLEOD, A.K.; FARRINGTON, S.M.; RUDAN, P.; HAYWARD, C.; VITART, V.; RUDAN, I.; WILD, S.H.; DUNLOP, M.G.; WRIGHT, A.F.; CAMPBELL, H.; WILSON, J.F. Runs of homozygosity in European populations. American Journal of Human Genetics, v.83, p.359-372, 2008. DOI: 10.1016/j.ajhg.2008.08.007.
https://doi.org/10.1016/j.ajhg.2008.08.0...
) in a fast, reliable, and low-cost manner (Silva et al., 2015 SILVA, J.M. da; GIACHETTO, P.F.; SILVA, L.O.C. da; CINTRA, L.C.; PAIVA, S.R.; CAETANO, A.R.; YAMAGISHI, M.E.B. Genomic variants revealed by invariably missing genotypes in Nelore cattle. PLoS ONE, v.10, e0136035, 2015. DOI: 10.1371/journal.pone.0136035.
https://doi.org/10.1371/journal.pone.013...
). In this case, the inbreeding matrix A, based on pedigree information, is substituted by the inbreeding genomic matrix “G”, constructed from information from marker panels, usually high density ones. The inbreeding coefficients are obtained using the proportion of loci identical by state and carry more information than the traditional coefficient (Pértile et al., 2016 PÉRTILE, S.F.N.; SILVA, F.F. e; SALVIAN, M.; MOURÃO, G.B. Seleção e associação genômica ampla para o melhoramento genético animal com uso do método ssGBLUP. Pesquisa Agropecuaria Brasileira, v.51, p.1729-1736, 2016. DOI: 10.1590/s0100-204x2016001000004.
https://doi.org/10.1590/s0100-204x201600...
). Four inbreeding coefficients may be estimated from genomic information: FUNI, of united gametes; FHOM, of homozygosity; FGRM, of genomic inbreeding matrices; and FROH, of RHOs (Zhang et al., 2015aZHANG, Q.; CALUS, M.P.L.; GULDBRANDTSEN, B.; LUND, M.S.; SAHANA, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, v.16, art.88, 2015a. DOI: 10.1186/s12863-015-0227-7.
https://doi.org/10.1186/s12863-015-0227-...
), described subsequently.

According to Wright (1922) WRIGHT, S. Coefficients of Inbreeding and Relationship. The American Naturalist, v.56, p.330-338, 1922. DOI: 10.1086/279872.
https://doi.org/10.1086/279872...
, FUNI may be estimated from the correlation between united gametes, by the formula (Yang et al., 2011 YANG, J.; LEE, S.H.; GODDARD, M.E.; VISSCHER, P.M. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, v.88, p.76-82, 2011. DOI: 10.1016/j.ajhg.2010.11.011.
https://doi.org/10.1016/j.ajhg.2010.11.0...
):

F U N I = [ X i 2 ( 1 + 2 p i ) x i + 2 p i 2 ] / 2 p i ( 1 p i )

where pi is the observed fraction of the first allele on locus i, and xi is the number of copies of the reference allele.

FHOM is estimated based on excessive homozygosity according to Wright (1922) WRIGHT, S. Coefficients of Inbreeding and Relationship. The American Naturalist, v.56, p.330-338, 1922. DOI: 10.1086/279872.
https://doi.org/10.1086/279872...
, and is obtained by the following formula (Yang et al., 2011 YANG, J.; LEE, S.H.; GODDARD, M.E.; VISSCHER, P.M. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, v.88, p.76-82, 2011. DOI: 10.1016/j.ajhg.2010.11.011.
https://doi.org/10.1016/j.ajhg.2010.11.0...
):

F H O M = ( H O M O H O M E ) / ( 1 H O M E ) = 1 x i ( 2 x i ) / 2 p i ( 1 p i )

where HOMO and HOME are the number of observed and expected genotypes in homozygosis, respectively; pi is the observed fraction of the first allele on locus i; and xi is the number of copies of the reference allele.

FGRM is an estimate of the genetic relationship of an individual with itself, obtained from the main diagonal of the genomic relationship matrix (GRM), using genotyping data from the high-density SNP panels (VanRaden, 2008 VANRADEN, P.M. Efficient methods to compute genomic predictions. Journal of Dairy Science, v.91, p.4414-4423, 2008. DOI: 10.3168/jds.2007-0980.
https://doi.org/10.3168/jds.2007-0980...
), according to the expression:

F G R M = [ x i E ( x i ) ] 2 / [ 2 p i ( 1 p i ) 1 ] = ( x i 2 ^ p i ) 2 / [ 2 p i ( 1 p i ) 1 ]

where pi is the observed fraction of the first allele on locus i, and xi is the number of copies of the reference allele.

FROH is calculated from the addition of estimated ROHs, separated according to minimum run sizes. This coefficient may be defined as the proportion of the autosomal genome in ROHs in relation to the autosomal genome covered by SNPs (McQuillan et al., 2008 MCQUILLAN, R.; LEUTENEGGER, A.-L.; ABDEL-RAHMAN, R.; FRANKLIN, C.S.; PERICIC, M.; BARAC-LAUC, L.; SMOLEJ-NARANCIC, N.; JANICIJEVIC, B.; POLASEK, O.; TENESA, A.; MACLEOD, A.K.; FARRINGTON, S.M.; RUDAN, P.; HAYWARD, C.; VITART, V.; RUDAN, I.; WILD, S.H.; DUNLOP, M.G.; WRIGHT, A.F.; CAMPBELL, H.; WILSON, J.F. Runs of homozygosity in European populations. American Journal of Human Genetics, v.83, p.359-372, 2008. DOI: 10.1016/j.ajhg.2008.08.007.
https://doi.org/10.1016/j.ajhg.2008.08.0...
), as:

F R O H = L R O H / L a u t o

where ∑ LROH represents the total ROHs above a minimum specified size (LROH), identified in an individual; and Lauto is the total size of the autosomal genome covered by SNPs.

The autozygosity estimates obtained from the inbreeding coefficient (F), calculated using genomic information, are generally more precise than the one obtained from pedigree information (FPED), since the latter does not take into account inbreeding in the founders of the herd, for which there is no pedigree information (in this case, F=0 is assumed). FPED also does not consider sampling effects due to selection (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
; Zhang et al., 2015aZHANG, Q.; CALUS, M.P.L.; GULDBRANDTSEN, B.; LUND, M.S.; SAHANA, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, v.16, art.88, 2015a. DOI: 10.1186/s12863-015-0227-7.
https://doi.org/10.1186/s12863-015-0227-...
). The first studies with domestic animals in which FROH was used focused on comparing FROH, an estimate based on the length of ROHs, with FPED, based on pedigree information (Curik et al., 2014CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
https://doi.org/10.1016/j.livsci.2014.05...
; Sölkner et al., 2010 SÖLKNER, J.; FERENČAKOVIĆ, M.; GREDLER, B.; CURIK, I. Genomic metrics of individual autozygosity, applied to a cattle population. In: ANNUAL MEETING OF THE EUROPEAN ASSOCIATION OF ANIMAL PRODUCTION, 61., 2010, Heraklion, Greece. Book of Abstracts. Netherlands: Wageningen Academic, 2010. p.306. (Book of Abstracts nº 16).). In this comparison, FROH was shown to be more efficient than FPED and was recommended as an interesting alternative to correct pedigree errors (Hudson et al., 2015 HUDSON, N.J.; PORTO-NETO, L.; KIJAS, J.W.; REVERTER, A. Compression distance can discriminate animals by genetic profile, build relationship matrices and estimate breeding values. Genetics Selection Evolution, v.47, art.78, 2015. DOI: 10.1186/s12711-015-0158-9.
https://doi.org/10.1186/s12711-015-0158-...
).

The first research reports using FROH estimates for domestic animals were made after the 2010s. Ferenčaković et al. (2011)FERENČAKOVIĆ, M.; HAMZIC, E.; GREDLER, B.; CURIK, I.; SÖLKNER, J. Runs of homozygosity reveal genome-wide autozygosity in the Austrian Fleckvieh cattle. Agriculturae Conspectus Scientificus, v.76, p.325-328, 2011. , considering the good results obtained in studies with ROHs in humans, used data from genotyped bovine and their pedigree to establish a correlation between the estimates of FROH and FPED. The authors found a high correlation (0.68) between both estimates when using complete pedigree information (FPEDT). Positive correlations between these estimates were also reported by Marras et al. (2015) MARRAS, G.; GASPA, G.; SORBOLINI, S.; DIMAURO, C.; AJMONE-MARSAN, P.; VALENTINI, A.; WILLIAMS, J.L.; MACCIOTTA, N.P.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, v.46, p.110-121, 2015. DOI: 10.1111/age.12259.
https://doi.org/10.1111/age.12259...
, who found values between 0.66 and 0.70 according to breed, and by Mastrangelo et al. (2016) MASTRANGELO, S.; TOLONE, M.; DI GERLANDO, R.; FONTANESI, L.; SARDINA, M.T.; PORTOLANO, B. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds. Animal, v.10, p.746-754, 2016. DOI: 10.1017/S1751731115002943.
https://doi.org/10.1017/S175173111500294...
, who obtained even more expressive correlations between 0.83 and 0.95 using different dairy cattle breeds.

Kinship estimates based on ROHs (FROH) are usually superior to those identified by pedigree. Ferenčaković et al. (2011)FERENČAKOVIĆ, M.; HAMZIC, E.; GREDLER, B.; CURIK, I.; SÖLKNER, J. Runs of homozygosity reveal genome-wide autozygosity in the Austrian Fleckvieh cattle. Agriculturae Conspectus Scientificus, v.76, p.325-328, 2011. found that the advantage of the index originating from ROHs, when calculated for segments >1 Mb (FROH > 1 Mb), is identifying events of past consanguinity and that were not identified by the FPED estimates. Scraggs et al. (2014) SCRAGGS, E.; ZANELLA, R.; WOJTOWICZ, A.; TAYLOR, J.F.; GASKINS, C.T.; REEVES, J.J.; AVILA, J.M. de; NEIBERGS, H.L. Estimation of inbreeding and effective population size of full-blood wagyu cattle registered with the American Wagyu Cattle Association. Journal of Animal Breeding and Genetics, v.131, p.3-10, 2014. DOI: 10.1111/jbg.12066.
https://doi.org/10.1111/jbg.12066...
, while studying purebred cattle, observed a superior mean for the FROH genomic estimate than for FPED, corroborating the assumption that FROH provides additional information about recent consanguinity, compared with FPED (Gomez-Raya et al., 2015GOMEZ-RAYA, L.; RODRÍGUEZ, C.; BARRAGÁN, C.; SILIÓ, L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genetics Selection Evolution, v.47, art.81, 2015. DOI: 10.1186/s12711-015-0153-1.
https://doi.org/10.1186/s12711-015-0153-...
).

Considering different estimates obtained from genomic information (FUNI, FHOM, FGRM, and FROH), individual consanguinity based on ROHs (FROH) is the most precise (Marras et al., 2015 MARRAS, G.; GASPA, G.; SORBOLINI, S.; DIMAURO, C.; AJMONE-MARSAN, P.; VALENTINI, A.; WILLIAMS, J.L.; MACCIOTTA, N.P.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, v.46, p.110-121, 2015. DOI: 10.1111/age.12259.
https://doi.org/10.1111/age.12259...
; Zhang et al., 2015b ZHANG, Q.; GULDBRANDTSEN, B.; BOSSE, M.; LUND, M.S.; SAHANA, G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics, v.16, art.542, 2015b. DOI: 10.1186/s12864-015-1715-x
https://doi.org/10.1186/s12864-015-1715-...
; Gurgul et al., 2016 GURGUL, A.; SZMATOLA, T.; TOPOLSKI, P.; JASIELCZUK, I.; ŻUKOWSKI, K.; BUGNO-PONIEWIERSKA, M. The use of runs of homozygosity for estimation of recent inbreeding in Holstein cattle. Journal of Applied Genetics, v.57, p.527-530, 2016. DOI: 10.1007/s13353-016-0337-6.
https://doi.org/10.1007/s13353-016-0337-...
). This is because it is a direct homozygosity measure, calculated from molecular information, and is less susceptible to selection effects and errors caused by sample variations in the gamete-generating phase (Marras et al., 2015 MARRAS, G.; GASPA, G.; SORBOLINI, S.; DIMAURO, C.; AJMONE-MARSAN, P.; VALENTINI, A.; WILLIAMS, J.L.; MACCIOTTA, N.P.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, v.46, p.110-121, 2015. DOI: 10.1111/age.12259.
https://doi.org/10.1111/age.12259...
), which is not observed in other genomic estimates, influenced by allele frequency. Therefore, the FROH index is a more precise estimate than other consanguinity estimates obtained from pedigree information or even than other genomic estimates; therefore, it is a viable option for the correction of pedigree errors (Ferenčaković et al., 2011FERENČAKOVIĆ, M.; HAMZIC, E.; GREDLER, B.; CURIK, I.; SÖLKNER, J. Runs of homozygosity reveal genome-wide autozygosity in the Austrian Fleckvieh cattle. Agriculturae Conspectus Scientificus, v.76, p.325-328, 2011. ; Marras et al., 2015 MARRAS, G.; GASPA, G.; SORBOLINI, S.; DIMAURO, C.; AJMONE-MARSAN, P.; VALENTINI, A.; WILLIAMS, J.L.; MACCIOTTA, N.P.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, v.46, p.110-121, 2015. DOI: 10.1111/age.12259.
https://doi.org/10.1111/age.12259...
), and, according to Zhang et al. (2015a)ZHANG, Q.; CALUS, M.P.L.; GULDBRANDTSEN, B.; LUND, M.S.; SAHANA, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, v.16, art.88, 2015a. DOI: 10.1186/s12863-015-0227-7.
https://doi.org/10.1186/s12863-015-0227-...
, is the most recommended to determine IBD.

ROHs and selection signatures

Selection signatures are a result of genotypic alterations in populations subjected to some form of selection pressure (Ramey et al., 2013RAMEY, H.R.; DECKER, J.E.; MCKAY, S.D.; ROLF, M.M; SCHNABEL, R.D.; TAYLOR, J.F. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics, v.14, art.382, 2013. DOI: 10.1186/1471-2164-14-382.
https://doi.org/10.1186/1471-2164-14-382...
; Sorbolini et al., 2015 SORBOLINI, S.; MARRAS, G.; GASPA, G.; DIMAURO, C.; CELLESI, M.; VALENTINI, A.; MACCIOTTA, N.P.P. Detection of selection signatures in Piemontese and Marchigiana cattle, two breeds with similar production aptitudes but different selection histories. Genetics Selection Evolution, v.47, art.52, 2015. DOI: 10.1186/s12711-015-0128-2.
https://doi.org/10.1186/s12711-015-0128-...
), and are characterized by an increase in allele frequency in one or more genes, or gene clusters, involved in the processes of adaption of a population to specific conditions - such as resistance to diseases, tolerance to cold/heat, or maternal ability - or of improvement for specific purposes - such as meat, milk, and wool production, among others. Therefore, methods that allow identifying these signatures may lead to the identification of the genes involved in the processes related to the productivity of production animals.

ROHs usually cover genomic regions large enough to contain genes or gene clusters, which may be under selection for generations. Therefore, the identification of ROHs may aid in visualizing and identifying haplotype patterns characteristic of breeds or species, fixed due to selection pressures. Starting in 2007, the first reports for the identification of common ROHs in humans affected by Alzheimer and schizophrenia were carried out, aiming to identify genes associated to the development of these diseases (Lencz et al., 2007 LENCZ, T.; LAMBERT, C.; DEROSSE, P.; BURDICK, K.E.; MORGAN, T.V.; KANE, J.M.; KUCHERLAPATI, R.; MALHOTRA, A.K. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, v.104, p.19942-19947, 2007. DOI: 10.1073/pnas.0710021104.
https://doi.org/10.1073/pnas.0710021104...
; Nalls et al., 2009 NALLS, M.A.; GUERREIRO, R.J.; SIMON-SANCHEZ, J.; BRAS, J.T.; TRAYNOR, B.J.; GIBBS, J.R.; LAUNER, L.; HARDY, J.; SINGLETON, A.B. Extended tracts of homozygosity identify novel candidate genes associated with late-onset Alzheimer’s disease. Neurogenetics, v.10, p.183-190, 2009. DOI: 10.1007/s10048-009-0182-4.
https://doi.org/10.1007/s10048-009-0182-...
). In the following years, studies with production animals were performed, also identifying ROHs but for the identification of genes or gene clusters related to the productivity of the population and to the characterization of the animal breed or line (Metzger et al., 2015 METZGER, J.; KARWATH, M.; TONDA, R.; BELTRAN, S.; ÁGUEDA, L.; GUT, M.; GUT, I.G.; DISTL, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, v.16, art.764, 2015. DOI: 10.1186/s12864-015-1977-3.
https://doi.org/10.1186/s12864-015-1977-...
; Sorbolini et al., 2015 SORBOLINI, S.; MARRAS, G.; GASPA, G.; DIMAURO, C.; CELLESI, M.; VALENTINI, A.; MACCIOTTA, N.P.P. Detection of selection signatures in Piemontese and Marchigiana cattle, two breeds with similar production aptitudes but different selection histories. Genetics Selection Evolution, v.47, art.52, 2015. DOI: 10.1186/s12711-015-0128-2.
https://doi.org/10.1186/s12711-015-0128-...
; Zavarez et al., 2015 ZAVAREZ, L.B.; UTSUNOMIYA, Y.T.; CARMO, A.S.; NEVES, H.H.R.; CARVALHEIRO, R.; FERENČAKOVIĆ, M.; PÉREZ O’BRIEN, A.M.; CURIK, I.; COLE, J.B.; VAN TASSELL, C.P.; SILVA, M.V.G.B. da; SONSTEGARD, T.S.; SÖLKNER, J.; GARCIA, J.F. Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes. Frontiers in Genetics, v.6, p.1-8, 2015. DOI: 10.3389/fgene.2015.00005.
https://doi.org/10.3389/fgene.2015.00005...
).

More recently, research activities to identify selection signatures, based on the analysis of the frequency of ROHs, have been carried out for several species of production animals. Fuller et al. (2015) FULLER, Z.L.; NIÑO, E.L.; PATCH, H.M.; BEDOYA-REINA, O.C.; BAUMGARTEN, T.; MULI, E.; MUMOKI, F.; RATAN, A.; MCGRAW, J.; FRAZIER, M.; MASIGA, D.; SCHUSTER, S.; GROZINGER, C.M.; MILLER, W. Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools. BMC Genomics, v.16, art.518, 2015. DOI: 10.1186/s12864-015-1712-0.
https://doi.org/10.1186/s12864-015-1712-...
identified ROHs related to adaptive characteristics of commercial bee species, observing the effect of environmental temperature on honey production. In bovine, O’Brien et al. (2014) O’BRIEN, A.M.P.; UTSUNOMIYA, Y.T.; MÉSZÁROS, G.; BICKHART, D.M.; LIU, G.E.; VAN TASSELL, C.P.; SONSTEGARD, T.S.; DA SILVA, M.V.; GARCIA, J.F.; SÖLKNER, J. Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle. Genetics Selection Evolution, v.46, art.19, 2014. DOI: 10.1186/1297-9686-46-19.
https://doi.org/10.1186/1297-9686-46-19...
, Somavilla et al. (2014)SOMAVILLA, A.L.; SONSTEGARD, T.S.; HIGA, R.H.; ROSA, A.N.; SIQUEIRA, F.; SILVA, L.O.C.; TORRES JÚNIOR, R.A.A.; COUTINHO, L.L.; MUDADU, M.A.; ALENCAR, M.M.; REGITANO, L.C.A. A genome-wide scan for selection signatures in Nellore cattle. Animal Genetics, v.45, p.771-781, 2014. DOI: 10.1111/age.12210.
https://doi.org/10.1111/age.12210...
, and Zavarez et al. (2015) ZAVAREZ, L.B.; UTSUNOMIYA, Y.T.; CARMO, A.S.; NEVES, H.H.R.; CARVALHEIRO, R.; FERENČAKOVIĆ, M.; PÉREZ O’BRIEN, A.M.; CURIK, I.; COLE, J.B.; VAN TASSELL, C.P.; SILVA, M.V.G.B. da; SONSTEGARD, T.S.; SÖLKNER, J.; GARCIA, J.F. Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes. Frontiers in Genetics, v.6, p.1-8, 2015. DOI: 10.3389/fgene.2015.00005.
https://doi.org/10.3389/fgene.2015.00005...
identified ROHs associated to the adaptive potential and reproductive and productive characteristics of zebu breeds, whereas Kim et al. (2015a) KIM, E.-S.; SONSTEGARD, T.S.; ROTHSCHILD, M.F. Recent artificial selection in U.S. Jersey cattle impacts autozygosity levels of specific genomic regions. BMC Genomics, v.16, art.302, 2015a. DOI: 10.1186/s12864-015-1500-x.
https://doi.org/10.1186/s12864-015-1500-...
identified more than 15 regions related to milk production in Jersey herds.

Concluding remarks

The identification and characterization of ROHs may aid in identifying genomic regions that affect traits of interest for the productivity of commercial herds of production animals. Due to the dependency on high-density SNP panels for the correct identification of ROHs, studies with production animals are recent, starting in 2008. However, with the development of DNA chips specific for production species, researches with ROHs have grown exponentially. ROHs may be used for the genomic characterization of herds and have been shown to be efficient for obtaining inbreeding estimates via the FROH index or for the identification of patterns characteristic of genomically studied breeds or species, known as selection signatures. The potential of ROHs for aiding conventional production techniques is immense and, with the exponential increase of available genomic data due to new or developing genotyping technology, the tendency is that ROHs will also have other applications

References

  • AL-MAMUN, H.A.; CLARK, S.A.; KWAN, P.; GONDRO, C. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep. Genetics Selection Evolution, v.47, art.90, 2015. DOI: 10.1186/s12711-015-0169-6.
    » https://doi.org/10.1186/s12711-015-0169-6
  • BERTOLINI, F.; GANDOLFI, B.; KIM, E.S.; HAASE, B.; LYONS, L.A.; ROTHSCHILD, M.F. Evidence of selection signatures that shape the Persian cat breed. Mammalian Genome, v.27, p.144-155, 2016. DOI : 10.1007/s00335-016-9623-1.
    » https://doi.org/10.1007/s00335-016-9623-1
  • BEYNON, S.E.; SLAVOV, G.T.; FARRÉ, M.; SUNDUIMIJID, B.; WADDAMS, K.; DAVIES, B.; HARESIGN, W.; KIJAS, J.; MACLEOD, I.M.; NEWBOLD, C.J.; DAVIES, L.; LARKIN, D.M. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genetics, v.16, art.65, 2015. DOI: 10.1186/s12863-015-0216-x.
    » https://doi.org/10.1186/s12863-015-0216-x
  • BOSSE, M.; MEGENS, H.-J.; MADSEN, O.; PAUDEL, Y.; FRANTZ, L.A.F.; SCHOOK, L.B.; CROOIJMANS, R.P.M.A; GROENEN, M.A.M. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics, v.8, e1003100, 2012. DOI: 10.1371/journal.pgen.1003100.
    » https://doi.org/10.1371/journal.pgen.1003100
  • BROMAN, K.W.; WEBER, J.L. Long homozygous chromosomal segments in reference families from the Centre d’Étude du Polymorphisme Humain. American Journal of Human Genetics, v.65, p.1493-500, 1999. DOI: 10.1086/302661.
    » https://doi.org/10.1086/302661
  • CAETANO, A.R. Marcadores SNP: conceitos básicos, aplicações no manejo e no melhoramento animal e perspectivas para o futuro. Revista Brasileira de Zootecnia, v.38, p.64-71, 2009. Número Especial. DOI: 10.1590/S1516-35982009001300008.
    » https://doi.org/10.1590/S1516-35982009001300008
  • CURIK, I.; FERENČAKOVIĆ, M.; SÖLKNER, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livestock Science, v.166, p.26-34, 2014. DOI: 10.1016/j.livsci.2014.05.034.
    » https://doi.org/10.1016/j.livsci.2014.05.034
  • FALCONER, D.S.; MACKAY, T.F.C. Introduction to quantitative genetics. 4th ed. Essex: Longman, 1996. 464p.
  • FERENČAKOVIĆ, M.; HAMZIC, E.; GREDLER, B.; CURIK, I.; SÖLKNER, J. Runs of homozygosity reveal genome-wide autozygosity in the Austrian Fleckvieh cattle. Agriculturae Conspectus Scientificus, v.76, p.325-328, 2011.
  • FERENČAKOVIĆ, M.; HAMZIĆ, E.; GREDLER, B.; SOLBERG, T.R.; KLEMETSDAL, G.; CURIK, I.; SÖLKNER, J. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. Journal of Animal Breeding and Genetics, v.130, p.286-293, 2013a. DOI: 10.1111/jbg.12012.
    » https://doi.org/10.1111/jbg.12012
  • FERENČAKOVIĆ, M.; SÖLKNER, J.; CURIK, I. Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. Genetics Selection Evolution, v.45, art.42, 2013b. DOI: 10.1186/1297-9686-45-42.
    » https://doi.org/10.1186/1297-9686-45-42
  • FULLER, Z.L.; NIÑO, E.L.; PATCH, H.M.; BEDOYA-REINA, O.C.; BAUMGARTEN, T.; MULI, E.; MUMOKI, F.; RATAN, A.; MCGRAW, J.; FRAZIER, M.; MASIGA, D.; SCHUSTER, S.; GROZINGER, C.M.; MILLER, W. Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools. BMC Genomics, v.16, art.518, 2015. DOI: 10.1186/s12864-015-1712-0.
    » https://doi.org/10.1186/s12864-015-1712-0
  • GIBSON, J.; MORTON, N.E.; COLLINS, A. Extended tracts of homozygosity in outbred human populations. Human Molecular Genetics, v.15, p.789-795, 2006. DOI: 10.1093/hmg/ddi493.
    » https://doi.org/10.1093/hmg/ddi493
  • GOLDEN HELIX. SNP & Variation Suite. Available at: <http://goldenhelix.com/forms/SNP_Variation/pricing.html>. Accessed on: July 4 2017.
    » http://goldenhelix.com/forms/SNP_Variation/pricing.html
  • GOMEZ-RAYA, L.; RODRÍGUEZ, C.; BARRAGÁN, C.; SILIÓ, L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genetics Selection Evolution, v.47, art.81, 2015. DOI: 10.1186/s12711-015-0153-1.
    » https://doi.org/10.1186/s12711-015-0153-1
  • GURGUL, A.; SZMATOLA, T.; TOPOLSKI, P.; JASIELCZUK, I.; ŻUKOWSKI, K.; BUGNO-PONIEWIERSKA, M. The use of runs of homozygosity for estimation of recent inbreeding in Holstein cattle. Journal of Applied Genetics, v.57, p.527-530, 2016. DOI: 10.1007/s13353-016-0337-6.
    » https://doi.org/10.1007/s13353-016-0337-6
  • HOWARD, J.T.; HAILE-MARIAM, M.; PRYCE, J.E.; MALTECCA, C. Investigation of regions impacting inbreeding depression and their association with the additive genetic effect for United States and Australia Jersey dairy cattle. BMC Genomics, v.16, art.813, 2015. DOI: 10.1186/s12864-015-2001-7.
    » https://doi.org/10.1186/s12864-015-2001-7
  • HOWRIGAN, D.P.; SIMONSON, M.A.; KELLER, M.C. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genomics, v.12, art.460, 2011. DOI: 10.1186/1471-2164-12-460.
    » https://doi.org/10.1186/1471-2164-12-460
  • HUDSON, N.J.; PORTO-NETO, L.; KIJAS, J.W.; REVERTER, A. Compression distance can discriminate animals by genetic profile, build relationship matrices and estimate breeding values. Genetics Selection Evolution, v.47, art.78, 2015. DOI: 10.1186/s12711-015-0158-9.
    » https://doi.org/10.1186/s12711-015-0158-9
  • KIM, E.-S.; COLE, J.B.; HUSON, H.; WIGGANS, G.R.; VAN TASSELL, C.P.; CROOKER, B.A.; LIU, G.; DA, Y.; SONSTEGARD, T.S. Effect of artificial selection on runs of homozygosity in U.S. Holstein cattle. PLoS ONE, v.8, e80813, 2013. DOI: 10.1371/journal.pone.0080813.
    » https://doi.org/10.1371/journal.pone.0080813
  • KIM, E.-S.; SONSTEGARD, T.S.; ROTHSCHILD, M.F. Recent artificial selection in U.S. Jersey cattle impacts autozygosity levels of specific genomic regions. BMC Genomics, v.16, art.302, 2015a. DOI: 10.1186/s12864-015-1500-x.
    » https://doi.org/10.1186/s12864-015-1500-x
  • KIM, E.-S.; SONSTEGARD, T.S.; VAN TASSELL, C.P.; WIGGANS, G.; ROTHSCHILD, M.F. The relationship between runs of homozygosity and inbreeding in Jersey cattle under selection. PLoS ONE, v.10, e0129967, 2015b. DOI: 10.1371/journal.pone.0129967.
    » https://doi.org/10.1371/journal.pone.0129967
  • LENCZ, T.; LAMBERT, C.; DEROSSE, P.; BURDICK, K.E.; MORGAN, T.V.; KANE, J.M.; KUCHERLAPATI, R.; MALHOTRA, A.K. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, v.104, p.19942-19947, 2007. DOI: 10.1073/pnas.0710021104.
    » https://doi.org/10.1073/pnas.0710021104
  • MARRAS, G.; GASPA, G.; SORBOLINI, S.; DIMAURO, C.; AJMONE-MARSAN, P.; VALENTINI, A.; WILLIAMS, J.L.; MACCIOTTA, N.P.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Animal Genetics, v.46, p.110-121, 2015. DOI: 10.1111/age.12259.
    » https://doi.org/10.1111/age.12259
  • MASTRANGELO, S.; TOLONE, M.; DI GERLANDO, R.; FONTANESI, L.; SARDINA, M.T.; PORTOLANO, B. Genomic inbreeding estimation in small populations: evaluation of runs of homozygosity in three local dairy cattle breeds. Animal, v.10, p.746-754, 2016. DOI: 10.1017/S1751731115002943.
    » https://doi.org/10.1017/S1751731115002943
  • MCQUILLAN, R.; LEUTENEGGER, A.-L.; ABDEL-RAHMAN, R.; FRANKLIN, C.S.; PERICIC, M.; BARAC-LAUC, L.; SMOLEJ-NARANCIC, N.; JANICIJEVIC, B.; POLASEK, O.; TENESA, A.; MACLEOD, A.K.; FARRINGTON, S.M.; RUDAN, P.; HAYWARD, C.; VITART, V.; RUDAN, I.; WILD, S.H.; DUNLOP, M.G.; WRIGHT, A.F.; CAMPBELL, H.; WILSON, J.F. Runs of homozygosity in European populations. American Journal of Human Genetics, v.83, p.359-372, 2008. DOI: 10.1016/j.ajhg.2008.08.007.
    » https://doi.org/10.1016/j.ajhg.2008.08.007
  • METZGER, J.; KARWATH, M.; TONDA, R.; BELTRAN, S.; ÁGUEDA, L.; GUT, M.; GUT, I.G.; DISTL, O. Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. BMC Genomics, v.16, art.764, 2015. DOI: 10.1186/s12864-015-1977-3.
    » https://doi.org/10.1186/s12864-015-1977-3
  • NALLS, M.A.; GUERREIRO, R.J.; SIMON-SANCHEZ, J.; BRAS, J.T.; TRAYNOR, B.J.; GIBBS, J.R.; LAUNER, L.; HARDY, J.; SINGLETON, A.B. Extended tracts of homozygosity identify novel candidate genes associated with late-onset Alzheimer’s disease. Neurogenetics, v.10, p.183-190, 2009. DOI: 10.1007/s10048-009-0182-4.
    » https://doi.org/10.1007/s10048-009-0182-4
  • O’BRIEN, A.M.P.; UTSUNOMIYA, Y.T.; MÉSZÁROS, G.; BICKHART, D.M.; LIU, G.E.; VAN TASSELL, C.P.; SONSTEGARD, T.S.; DA SILVA, M.V.; GARCIA, J.F.; SÖLKNER, J. Assessing signatures of selection through variation in linkage disequilibrium between taurine and indicine cattle. Genetics Selection Evolution, v.46, art.19, 2014. DOI: 10.1186/1297-9686-46-19.
    » https://doi.org/10.1186/1297-9686-46-19
  • PEMBERTON, T.J.; ABSHER, D.; FELDMAN, M.W.; MYERS, R.M.; ROSENBERG, N.A.; LI, J.Z. Genomic patterns of homozygosity in worldwide human populations. American Journal of Human Genetics, v.91, p.275-292, 2012. DOI: 10.1016/j.ajhg.2012.06.014.
    » https://doi.org/10.1016/j.ajhg.2012.06.014
  • PERIPOLLI, E.; MUNARI, D.P.; SILVA, M.V.G.B.; LIMA, A.L.F.; IRGANG, R.; BALDI, F. Runs of homozygosity: current knowledge and applications in livestock. Animal Genetics, v.48, p.255-271, 2017. DOI: 10.1111/age.12526.
    » https://doi.org/10.1111/age.12526
  • PÉRTILE, S.F.N.; SILVA, F.F. e; SALVIAN, M.; MOURÃO, G.B. Seleção e associação genômica ampla para o melhoramento genético animal com uso do método ssGBLUP. Pesquisa Agropecuaria Brasileira, v.51, p.1729-1736, 2016. DOI: 10.1590/s0100-204x2016001000004.
    » https://doi.org/10.1590/s0100-204x2016001000004
  • PLINK…: whole genome association analysis toolset. Available at: <Available at: http://zzz.bwh.harvard.edu/plink/contact.shtml#cite >. Accessed on: July 4 2017.
    » http://zzz.bwh.harvard.edu/plink/contact.shtml#cite
  • PURCELL, S.; NEALE, B.; TODD-BROWN, K.; THOMAS, L.; FERREIRA, M.A.R.; BENDER, D.; MALLER, J.; SKLAR, P.; BAKKER, P.I.W. de; DALY, M.J.; SHAM, P.C. PLINK: a tool set for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, v.81, p.559-575, 2007. DOI: 10.1086/519795.
    » https://doi.org/10.1086/519795
  • PURFIELD, D.C.; BERRY, D.P.; MCPARLAND, S.; BRADLEY, D.G. Runs of homozygosity and population history in cattle. BMC genetics, v.13, art.70, 2012. DOI: 10.1186/1471-2156-13-70.
    » https://doi.org/10.1186/1471-2156-13-70
  • RAMEY, H.R.; DECKER, J.E.; MCKAY, S.D.; ROLF, M.M; SCHNABEL, R.D.; TAYLOR, J.F. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics, v.14, art.382, 2013. DOI: 10.1186/1471-2164-14-382.
    » https://doi.org/10.1186/1471-2164-14-382
  • RANDHAWA, I.A.S.; KHATKAR, M.S.; THOMSON, P.C.; RAADSMA, H.W. A meta-assembly of selection signatures in cattle. PLoS ONE, v.11, e0153013, 2016. DOI: 10.1371/journal.pone.0153013.
    » https://doi.org/10.1371/journal.pone.0153013
  • REVERTER, A.; PORTO-NETO, L.R.; FORTES, M.R.S.; KASARAPU, P.; CARA, M.A.R. de; BURROW, H.M.; LEHNERT, S.A. Genomic inbreeding depression for climatic adaptation of tropical beef cattle. Journal of Animal Science, v.95, p.3809-3821, 2017. DOI: 10.2527/jas2017.1643.
    » https://doi.org/10.2527/jas2017.1643
  • SAURA, M.; FERNÁNDEZ, A.; VARONA, L.; FERNÁNDEZ, A.I.; CARA, M.Á.R. de; BARRAGÁN, C.; VILLANUEVA, B. Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Selection Evolution, v.47, art.1, 2015. DOI: 10.1186/s12711-014-0081-5.
    » https://doi.org/10.1186/s12711-014-0081-5
  • SCRAGGS, E.; ZANELLA, R.; WOJTOWICZ, A.; TAYLOR, J.F.; GASKINS, C.T.; REEVES, J.J.; AVILA, J.M. de; NEIBERGS, H.L. Estimation of inbreeding and effective population size of full-blood wagyu cattle registered with the American Wagyu Cattle Association. Journal of Animal Breeding and Genetics, v.131, p.3-10, 2014. DOI: 10.1111/jbg.12066.
    » https://doi.org/10.1111/jbg.12066
  • SILVA, J.M. da; GIACHETTO, P.F.; SILVA, L.O.C. da; CINTRA, L.C.; PAIVA, S.R.; CAETANO, A.R.; YAMAGISHI, M.E.B. Genomic variants revealed by invariably missing genotypes in Nelore cattle. PLoS ONE, v.10, e0136035, 2015. DOI: 10.1371/journal.pone.0136035.
    » https://doi.org/10.1371/journal.pone.0136035
  • SÖLKNER, J.; FERENČAKOVIĆ, M.; GREDLER, B.; CURIK, I. Genomic metrics of individual autozygosity, applied to a cattle population. In: ANNUAL MEETING OF THE EUROPEAN ASSOCIATION OF ANIMAL PRODUCTION, 61., 2010, Heraklion, Greece. Book of Abstracts. Netherlands: Wageningen Academic, 2010. p.306. (Book of Abstracts nº 16).
  • SOMAVILLA, A.L.; SONSTEGARD, T.S.; HIGA, R.H.; ROSA, A.N.; SIQUEIRA, F.; SILVA, L.O.C.; TORRES JÚNIOR, R.A.A.; COUTINHO, L.L.; MUDADU, M.A.; ALENCAR, M.M.; REGITANO, L.C.A. A genome-wide scan for selection signatures in Nellore cattle. Animal Genetics, v.45, p.771-781, 2014. DOI: 10.1111/age.12210.
    » https://doi.org/10.1111/age.12210
  • SORBOLINI, S.; MARRAS, G.; GASPA, G.; DIMAURO, C.; CELLESI, M.; VALENTINI, A.; MACCIOTTA, N.P.P. Detection of selection signatures in Piemontese and Marchigiana cattle, two breeds with similar production aptitudes but different selection histories. Genetics Selection Evolution, v.47, art.52, 2015. DOI: 10.1186/s12711-015-0128-2.
    » https://doi.org/10.1186/s12711-015-0128-2
  • SZMATOŁA, T.; GURGUL, A.; ROPKA-MOLIK, K.; JASIELCZUK, I.; ZĄBEK, T.; BUGNO-PONIEWIERSKA, M. Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livestock Science, v.188, p.72-80, 2016. DOI: 10.1016/j.livsci.2016.04.006.
    » https://doi.org/10.1016/j.livsci.2016.04.006
  • VANRADEN, P.M. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. Journal of Dairy Science, v.11, p.3136-3144, 1992. DOI: 10.3168/jds.S0022-0302(92)78077-1.
    » https://doi.org/10.3168/jds.S0022-0302(92)78077-1
  • VANRADEN, P.M. Efficient methods to compute genomic predictions. Journal of Dairy Science, v.91, p.4414-4423, 2008. DOI: 10.3168/jds.2007-0980.
    » https://doi.org/10.3168/jds.2007-0980
  • WOLC, A.; ZHAO, H.H.; ARANGO, J.; SETTAR, P.; FULTON, J.E.; O’SULLIVAN, N.P.; PREISINGER, R.; STRICKER, C.; HABIER, D.; FERNANDO, R.L.; GARRICK, D.J.; LAMONT, S.J.; DEKKERS, J.C.M. Response and inbreeding from a genomic selection experiment in layer chickens. Genetics Selection Evolution, v.47, art.59, 2015. DOI: 10.1186/s12711-015-0133-5.
    » https://doi.org/10.1186/s12711-015-0133-5
  • WRIGHT, S. Coefficients of Inbreeding and Relationship. The American Naturalist, v.56, p.330-338, 1922. DOI: 10.1086/279872.
    » https://doi.org/10.1086/279872
  • YANG, J.; LEE, S.H.; GODDARD, M.E.; VISSCHER, P.M. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, v.88, p.76-82, 2011. DOI: 10.1016/j.ajhg.2010.11.011.
    » https://doi.org/10.1016/j.ajhg.2010.11.011
  • ZAVAREZ, L.B.; UTSUNOMIYA, Y.T.; CARMO, A.S.; NEVES, H.H.R.; CARVALHEIRO, R.; FERENČAKOVIĆ, M.; PÉREZ O’BRIEN, A.M.; CURIK, I.; COLE, J.B.; VAN TASSELL, C.P.; SILVA, M.V.G.B. da; SONSTEGARD, T.S.; SÖLKNER, J.; GARCIA, J.F. Assessment of autozygosity in Nellore cows (Bos indicus) through high-density SNP genotypes. Frontiers in Genetics, v.6, p.1-8, 2015. DOI: 10.3389/fgene.2015.00005.
    » https://doi.org/10.3389/fgene.2015.00005
  • ZHANG, Q.; CALUS, M.P.L.; GULDBRANDTSEN, B.; LUND, M.S.; SAHANA, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genetics, v.16, art.88, 2015a. DOI: 10.1186/s12863-015-0227-7.
    » https://doi.org/10.1186/s12863-015-0227-7
  • ZHANG, Q.; GULDBRANDTSEN, B.; BOSSE, M.; LUND, M.S.; SAHANA, G. Runs of homozygosity and distribution of functional variants in the cattle genome. BMC Genomics, v.16, art.542, 2015b. DOI: 10.1186/s12864-015-1715-x
    » https://doi.org/10.1186/s12864-015-1715-x

Publication Dates

  • Publication in this collection
    Sept 2018

History

  • Received
    04 July 2017
  • Accepted
    29 Nov 2017
Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira Caixa Postal 040315, 70770-901 Brasília DF Brazil, Tel. +55 61 3448-1813, Fax +55 61 3340-5483 - Brasília - DF - Brazil
E-mail: pab@embrapa.br