INTRODUCTION
A pesticide is a compound which is utilized to repel, kill or prevent any pest. On the basis of the target killed, pesticides are mainly classified as herbicides, fungicides and insecticides. The increased demand of food on account of population explosion has compelled man to use pesticides for better crop production (Tomer, 2013). Pesticides are used to protect crops in the field as well as during post-harvest storage to minimize crop damage. Crop plants are attacked by a variety of pests which include soil insects, cut worms, leaf rollers, aphids etc., and pesticides are mostly used to control these pests (Goh et al., 2011). Nowadays, there are other alternatives to control these insect pests which include the use of bio-pesticides and development of pest resistant transgenic varieties. However, the use of chemical pesticides is still the best and most widely applied strategy to protect crops from pests and results in high yield production of crops. It has been reported that approximately two million tonnes of pesticides are consumed annually throughout the world (De et al., 2014). Global pesticide consumption includes 47.55% of herbicides, 29.5% of insecticides, 17.5% of fungicides and 5.5% of other pesticides.
Transpiration pull helps in the absorption of water soluble pesticides and their entry into the plant system. Volatile pesticides indirectly come into the atmosphere via leaves through stomata during transpiration. Plants absorb pesticides via roots, leaf surface or roots. A number of factors are involved in pesticide uptake and its metabolism in the plant system which include external environmental factors (temperature, humidity and precipitation) and physiochemical properties of soil and pesticides (Finlayson and MacCarthy, 1973). Uptake of pesticides via the root system and their metabolism in the plant system is affected by factors such as mode of application, amount of pesticide, physiochemical and biochemical properties of pesticides and their reaction with soil and stage of plant development (Führ, 1991). Absorption of pesticides by plants is also determined by their degree of water solubility. Pesticide uptake takes place either by active absorption via the root system, or by passive absorption. Absorbed pesticides are either metabolized by the plant system or accumulate in plants, causing bio-magnification in the ecosystem (Mwevura, 2000).
Pesticide application also causes toxicity to plants, which can be seen in the form of necrosis, chlorosis, stunting, burns and twisting of leaves (Sharma et al., 2018a). The excessive use of pesticides is one of the major causes of reduction of the diversity of structural vegetation (Donald, 2004). Sensitive or stressed plants may be extra vulnerable to phytotoxicity. Toxicity depends upon many factors such as use of pesticides, rate of application, spraying technique, climate conditions, organization of flora, humidity and properties of soil such as moisture, temperature, pH, texture and microbial activity. It has been found that pesticide application negatively affects plant growth and development (Sharma et al., 2015, 2016a, Shahzad et al., 2018). Pesticide application causes oxidative stress to plants as a result of the generation of reactive oxygen species (ROS) Sharma et al., 2018b). This oxidative stress results in degradation of chlorophyll pigments and proteins and it ultimately causes a reduction in the photosynthetic efficiency of plants (Xia et al., 2006; Sharma et al., 2015). To cope up with oxidative stress, the antioxidative defense system of plants is activated, which involves enzymatic and non-enzymatic antioxidants (Xia et al., 2009; Sharma et al., 2015; 2016b,c,d). Activation of the antioxidative defense system aids with ROS scavenging and reduces the oxidative stress in plants caused by pesticide toxicity (Sharma et al., 2015, 2017a,b). The present review has been planned to give a detailed overview of various physiological changes in plants subjected to pesticide treatment. Physiological responses of plants to pesticide application have been summarized in tabulated form.
PHYSIOLOGICAL RESPONSES OF PLANTS TO PESTICIDE TOXICITY
Table 1, 2 and 3 show oxidative stress markers, enzymatic antioxidants and non-enzymatic antioxidants, respectively, whereas supplementary Tables 1, 2 and 3 give a detailed overview for growth parameters, pigment system, photosynthetic parameters and protein content, respectively, in plants against pesticide toxicity.
It has been concluded that pesticide application causes oxidative stress in plants by production of reactive oxygen species. This ultimately leads to retarded growth and photosynthetic efficiency of plants. Plants try to ameliorate pesticide toxicity by activation of their internal antioxidative defense system which includes antioxidative enzymes and non-enzymatic antioxidants.
Table 1 Effect of pesticides on oxidative stress markers in plants
Type of pesticide | Pesticide name | Plant name | Mode of application | Concentration of pesticide | Time after treatment | Plant part analyzed | Effect of pesticide on oxidative stress markers | Reference | |
Parameter | Effect | ||||||||
Amide | Acetochlor | Vitis vinifera L. × Vitis labrusca L. | Soil | 22460 g a.i. ha-1 | 30 d | Leaves (upper node) | O2·- MDA | Increase Increase | Tan et al. (2012) |
Napropamide | Brassica napus L. | Seedling | 8 mg L-1 | 5 d | Leaves | TBARS | Increase | Cui et al. (2010) | |
Root | TBARS | Increase | |||||||
Rac-metolachlor | Oryza sativa L. | Culture solution | 6.2 µM L-1 | 5 d | Root | MDA | Increase | Liu et al. (2012) | |
Zea mays L. | Culture solution | 74.4 µM L-1 | 5 d | Root | MDA | Increase | |||
S-metolachlor | O. sativa L. | Culture solution | 6.2 µM L-1 | 5 d | Root | MDA | Increase | ||
Z. mays L. | Culture solution | 74.4 µM L-1 | 5 d | Root | MDA | Increase | |||
Cyclohexene oxime | Clethodim | Z. mays L. | Soil | 200 ppm | 21 d | Leaves | H2O2 MDA | Increase Increase | Radwan (2012) |
Dinitroaniline | Pendimethalin | Vigna mungo L. var. Shekhar | Soil | 10 ppm | 15 d | Leaves | MDA | Decrease | Singh et al. (2012) |
Diphenyl ether | Fluoroglycofen | V. vinifera L. × V. labrusca L. | Soil | 375 g a.i. ha-1 | 30 d | Leaves (upper node) | O2·- MDA | Increase Increase | Tan et al. (2012) |
Imidazolinone | Imazapic | Nicotiana tabacum L. | Spray | 0.12 mM | 9 d | Leaves | MDA | Increase | Kaya and Doganlar (2016) |
R (-)-imazethapyr | Arabidopsis thaliana L. | Culture solution | 2.5 µg L-1 | 28 d | Plantlets | O2·- H2O2 MDA | Increase Increase Increase | Qian et al. (2011) | |
S (+)-imazethapyr | A. thaliana L. | Culture solution | 2.5 µg L-1 | 28 d | Plantlets | O2·- H2O2 MDA | Increase Increase No change | ||
Neonicotinoid | Imidacloprid | Oryza sativa L. | Sand | 0.015% | 12 d | Seedlings | O2·- H2O2 MDA | Increase Increase Increase | Sharma et al. (2015) |
0.02% | 12 d | Seedlings | MDA | Increase | Sharma et al. (2013) | ||||
Organophosphorus | Chlorpyrifos | O. sativa L. | Sand | 0.04% | 12 d | Seedlings | O2·- H2O2 MDA | Increase Increase Increase | Sharma et al. (2015) |
0.06% | 12 d | Seedlings | MDA | Increase | Sharma et al. (2012) | ||||
Vigna radiata L. | Spray | 15 mM | 10 d | Leaves | TBARS | Increase | Parween et al. (2012) | ||
Dimethoate | V. radiata L. | Culture soln. | 150 ppm | 4 d | Leaves | O2·- H2O2 MDA OH- | Increase Increase Increase Increase | Singh et al. (2014) | |
Glyphosate | Glycine max L. var. DM48 | Spray | 0.94 % | 24 h | Leaves | MDA | Increase | Moldes et al. (2008) | |
Root | MDA | Increase | |||||||
G. max L. var. DM4800RG | Spray | 0.94 % | 24 h | Leaves | MDA | Increase | |||
Root | MDA | Decrease | |||||||
G. max L. var. MSOY7501 | Spray | 0.94 % | 24 h | Leaves | MDA | Increase | |||
Root | MDA | Increase | |||||||
G. max L. var. MSOY7575RR | Spray | 0.94 % | 24 h | Leaves | MDA | Increase | |||
Root | MDA | Increase | |||||||
Z. mays L. var. Kneza-640 | Spray | 10 mM | 10 d | Leaves | H2O2 MDA Electrolyte leakage | Increase Increase Increase | Sergiev et al. (2006) | ||
Phenoxy | Clodinafop-propargyl | Secale cereale L. | Spray | 800 µg L-1 | 7 d | Leaves | O2·- | Increase | Lukatkin et al. 2013 |
Triticum aestivum L. | Spray | 800 µg L-1 | 7 d | Leaves | O2·- | Increase | |||
Z. mays L. | Spray | 800 µg L-1 | 7 d | Leaves | O2·- | Increase | |||
Fluazifop-P-butyl | Acanthospermum hispidum DC. | Shoot immersing | 10 µM | 24 h | Leaves | MDA | Increase | Luo et al. (2004) | |
Avena sativa L. | Shoot immersing | 10 µM | 24 h | Leaves | MDA | Increase | |||
Fusilade | Arachis hypogaea L. | Spray | 60 ppm | 14 d | Leaves | H2O2 MDA | Increase Increase | Fayez et al. (2014) | |
Quizalofop-p-ethyl | Helianthus. annuus L. | Spray | 0.8 mM | 15 d | Leaves | MDA | Increase | Bayram et al. (2015) | |
R-diclofop-methyl | A. thaliana L. | Culture medium | 1 mg L-1 | 28 d | Plantlets | MDA | Increase | Zhang et al. (2012) | |
S-diclofop-methyl | A. thaliana L. | Culture medium | 1 mg L-1 | 28 d | Plantlets | MDA | Increase | ||
Pyrethroid | Deltamethrin | G. max L. Merr. | Spray | 0.20 % | 10 d | Leaves | MDA | Increase | Bashir et al. (2007) |
Pyridine | Fluroxypyr | O. sativa L. | Culture soln. | 0.8 mg L-1 | 6 d | Leaves | O·̄2 H2O2 MDA | Increase Increase Increase | Wu et al. (2010) |
Quaternary ammonium | Paraquat | Papaver somniferum L. | Spray | 0.48 % | 24 h | Leaves | MDA Electrolyte leakage | Increase Increase | Zhao et al. (2010) |
Triazine | Atrazine | Acorus calamus L. | Culture soln. | 8 mg L-1 | 15 d | Leaves | MDA | Increase | Wang et al. (2015) |
Lythrum salicaria L. | Culture soln. | 8 mg L-1 | 15 d | Leaves | MDA | Increase | |||
O. sativa L. | Hoagland medium | 0.4 mg L-1 | 6 d | Leaves | O2·- H2O2 TBARS | Increase Increase Increase | Zhang et al. (2014) | ||
Pennisetum americanum L. | Soil | 10 mg kg-1 | 38 d | Shoot | MDA | Increase | Jiang et al. (2016) | ||
Root | MDA | Increase | |||||||
Scirpus tabernaemontani P. | Culture soln. | 8 mg L-1 | 15 d | Leaves | MDA | Increase | Wang et al. (2015) | ||
Vicia faba L. | Spray | 1.79 kg a.i. ha-1 | 12 d | Shoot | H2O2 MDA C=O | Increase Increase Increase | Hassan and Alla (2005) | ||
Z. mays L. | Spray | 1.79 kg a.i. ha-1 | 12 d | Shoot | H2O2 MDA C=O | Increase Increase Increase | |||
78 mM | 5 d | Leaves | MDA | Increase | Akbulut and Yigit (2010) | ||||
Hoagland medium | 10 mg L-1 | 3 d | Shoot | MDA | No change | Li et al. (2012) | |||
Root | MDA | Increase | |||||||
Z. mays L. Hybrid 351 | Soil | 1.79 kg ha-1 | 8 d | Shoot | H2O2 MDA C=O | Increase Increase Increase | Alla and Hassan (2006) | ||
Z. mays L. Giza 2 | Soil | 1.79 kg ha-1 | 8 d | Shoot | H2O2 MDA C=O | Increase Increase Increase | |||
Prometryne | T. aestivum L. | Soil | 12 mg kg-1 | 10 d | Leaves | TBARS | Increase | Jiang and Yang (2009) | |
Root | TBARS | Increase | |||||||
Urea | Chlorotoluron | T. aestivum L. | Soil | 25 mg kg-1 | 10 d | Leaves | O2·- H2O2 TBARS | Increase Increase Increase | Song et al. (2007) |
Chlorimuron-ethyl | T. aestivum L. | Soil | 300 µg kg-1 | 24 h | Leaves | MDA | Increase | Wang and Zhou (2006) | |
Root | MDA | Increase | |||||||
Fluometuron | V. faba L. | Spray | 2.98 kg a.i. ha-1 | 12 d | Shoot | H2O2 MDA C=O | Increase Increase Increase | Hassan and Alla (2005) | |
Z. mays L. | Spray | 2.98 kg a.i. ha-1 | 12 d | Shoot | H2O2 MDA C=O | Increase Increase Increase | |||
Granstar | Avena fatua L. | Spray | 300 µg L-1 | 3 d | Leaves | O2·- MDA | Increase Increase | Gar’kova et al. (2011) | |
Secale cereale L. | Spray | 300 µg L-1 | 3 d | Leaves | O2·- MDA | Increase Increase | |||
Leaf disk immersing | 300 µg L-1 | 3 h | Leaves | O2·- | Increase | ||||
T. aestivum L. | Leaf disk immersing | 300 µg L-1 | 3 h | Leaves | O2·- | Increase | |||
Spray | 300 µg L-1 | 3 d | Leaves | O2·- MDA | Increase Increase | ||||
Z. mays L. | Leaf disk immersing | 300 µg L-1 | 3 h | Leaves | O2·- | Increase | |||
Spray | 300 µg L-1 | 3 d | Leaves | O2·- MDA | Increase Increase | ||||
Isoproturon | P. sativum L. | Sand | 10 mM | 15 d | Leaves | H2O2 MDA Electrolyte leakage | Increase Increase Increase | Singh et al. (2016) | |
T. aestivum L. | Soil | 2.5 L ha-1 | 15 d | Shoot | H2O2 MDA | Increase Increase | Alla and Hassan (2014) | ||
4 mg kg-1 | 10 d | Shoot | O2·- H2O2 TBARS | Increase Increase Increase | Liang et al. (2012) | ||||
Root | TBARS | Increase | |||||||
Leaves | H2O2 | Increase | |||||||
10 mg kg-1 | 10 d | Leaves | TBARS | Increase | Yin et al. (2008) | ||||
Root | TBARS | No change | |||||||
Rimsulfuron | V. faba L. | Spray | 0.015 kg a.i. ha-1 | 12 d | Shoot | H2O2 MDA C=O | Increase Increase Increase | Hassan and Alla (2005) | |
Z. mays L. | Spray | 0.015 kg a.i. ha-1 | 12 d | Shoot | H2O2 MDA C=O | Increase Increase No change | |||
Unclassified | Dichlorobenzene | Z. mays L. | Hoagland medium | 80 mg L-1 | 7 d | Root | H2O2 | Increase | San Miguel et al. (2012) |
Leaves | H2O2 | Decrease | |||||||
Flurochloridone | H. annuus L. | Spray | 11 mM | 15 d | Leaves | MDA | Increase | Kaya and Yigit (2014) | |
Monochlorobenzene | Z. mays L. | Hoagland medium | 80 mg L-1 | 7 d | Root | H2O2 | Increase | San Miguel et al. (2012) | |
Leaves | H2O2 | No change | |||||||
Trichlorobenzene | Z. mays L. | Hoagland medium | 40 mg L-1 | 7 d | Root | H2O2 | Increase | ||
Leaves | H2O2 | Increase |
Table 2 Effect of pesticides on enzymatic antioxidants in plants
Type of pesticide | Pesticide name | Plant name | Mode of application | Concentration of pesticide | Time after treatment | Plant part analyzed | Effect of pesticide on enzymatic antioxidants | Reference | |
Parameter | Effect | ||||||||
Amide | Acetochlor | Vitis vinifera L. × Vitis labrusca L. | Soil | 22460 g a.i.ha-1 | 30 d | Leaves (upper node) | APOX CAT POD SOD | Decrease Decrease Decrease Decrease | Tan et al. (2012) |
Alachlor | Lactuca sativa L. | Hoagland medium | 2 µM | 24 d | Leaves | CAT POD SOD | Increase Increase Increase | Stajner et al. (2003) | |
Phaseolus vulgaris L. | Hoagland medium | 2 µM | 24 d | Leaves | CAT POD SOD | Increase Increase Increase | |||
Pisum sativum L. | Hoagland medium | 2 µM | 24 d | Leaves | CAT POD SOD | Increase Increase Increase | |||
Fomesafen | Glycine max L. Merr. | Spray | 1000 g ha-1 | 2 d | Leaves | GST | Increase | Andrews et al. (2005) | |
Metolachlor | L. sativa L. | Hoagland medium | 2 µM | 24 d | Leaves | CAT POD SOD | No change Decrease Increase | Stajner et al. (2003) | |
P. vulgaris L. | Hoagland medium | 2 µM | 24 d | Leaves | CAT POD SOD | Increase Increase Increase | |||
P. sativum L. | Hoagland medium | 2 µM | 24 d | Leaves | CAT POD SOD | Decrease Increase Increase | |||
Metosulam | Vicia faba L. | Seedling’s root immersing | 10-4 % | 24 h | Leaves | APOX CAT POD | Increase Increase Decrease | Badr et al. (2013) | |
Napropamide | Brassica napus L. | Seedling | 8 mg L-1 | 5 d | Leaves | APOX CAT GST POD SOD | Increase Increase Increase Increase Increase | Cui et al. (2010) | |
Rac-metolachlor | Oryza. sativa L. | Culture solution | 6.2 µM L-1 | 5 d | Root | CAT POD | Decrease Decrease | Liu et al. (2012) | |
Zea mays L. | Culture solution | 74.4 µM L-1 | 5 d | Root | CAT POD SOD | Decrease Decrease Decrease | |||
S-metolachlor | O. sativa L. | Culture solution | 6.2 µM L-1 | 5 d | Root | CAT POD | Decrease Decrease | ||
Z. mays L. | Culture solution | 74.4 µM L-1 | 5 d | Root | CAT POD SOD | Decrease Decrease Decrease | |||
Cyclohexene oxime | Clethodim | Z. mays L. | Soil | 200 ppm | 21 d | Leaves | APOX CAT POD SOD | Increase Decrease Increase Decrease | Radwan (2012) |
Diphenyl ether | Fluoroglycofen | V. vinifera L. × V. labrusca L. | Soil | 375 g ai ha-1 | 30 d | Leaves (upper node) | APOX CAT POD SOD | Decrease Decrease Decrease Decrease | Tan et al. (2012) |
Oxyfluorfen | G. max L. Merr. | Spray | 2500 g ha-1 | 2 d | Leaves | GST | Increase | Andrews et al. (2005) | |
Imidazolinone | Imazapic | Nicotiana tabacum L. | Spray | 0.12 mM | 9 d | Leaves | APOX CAT GR GST | Increase Increase Increase Increase | Kaya and Doganlar (2016) |
R (-)-imazethapyr | Arabidopsis thaliana L. | Culture solution | 2.5 µg L-1 | 28 d | Plantlets | APOX CAT GPOX SOD | Decrease Decrease Increase Decrease | Qian et al. (2011) | |
S (+)-imazethapyr | A. thaliana L. | Culture solution | 2.5 µg L-1 | 28 d | Plantlets | APOX CAT GPOX SOD | Increase Decrease Increase Decrease | ||
Neonicotinoid | Imidacloprid | Brassica juncea L. | Soil | 300 mg kg-1 | 65 d | Leaves | GR GST POD | Increase Increase Increase | Sharma et al. (2016b) |
80 d | Green pods | APOX GPOX GR GST POD | Increase Increase Increase Increase Increase | Sharma et al. (2017c) | |||||
O. sativa L. | Sand | 0.01% | 12 d | Seedlings | APOX CAT DHAR GR MDHAR POD SOD | Increase Decrease Increase Increase Increase Decrease Increase | Sharma et al. (2013) | ||
0.015% | 12 d | Seedlings | APOX CAT DHAR GR MDHAR POD SOD | Increase Increase Decrease Increase Increase Decrease Increase | Sharma et al. (2015) | ||||
Organochlorine | DDT | G. max L. | Soil | 63.5 ng g-1 | 60 d | Leaves Root | GST GST | Decrease Increase | Mitton et al. (2016) |
Medicago sativa L. | Soil | 63.5 ng g-1 | 60 d | Leaves Root | GST GST | Increase Increase | |||
Organophosphorus | Chlorpyrifos | Vigna radiata L. | Spray | 15 mM | 10 d | Leaves | APOX CAT GR SOD | Increase Decrease Increase Increase | Parween et al. (2012) |
Dimethoate | V. radiata L. | Culture soln. | 30 ppm | 4 d | Leaves | CAT DHAR GR SOD | Increase Increase Increase Increase | Singh et al. (2014) | |
150 ppm | 4 d | Leaves | CAT DHAR GR SOD | Decrease Decrease Decrease Increase | |||||
Glyphosate | G. max L. var. DM48 | Spray | 0.94 % | 24 h | Leaves | APOX CAT POD | Increase Increase Increase | Moldes et al. (2008) | |
Roots | APOX CAT POD | Increase Increase Decrease | |||||||
G. max L. var. DM4800RG | Spray | 0.94 % | 24 h | Leaves | APOX CAT POD | Increase Decrease Increase | |||
Root | APOX CAT POD | Increase Decrease Increase | |||||||
G. max L. var. MSOY7501 | Spray | 0.94 % | 24 h | Leaves | APOX CAT POD | Increase Decrease Increase | |||
Root | APOX CAT POD | Increase Decrease Increase | |||||||
G. max L. var. MSOY7575RR | Spray | 0.94 % | 24 h | Leaves | APOX CAT POD | Increase Increase Increase | |||
Roots | APOX CAT POD | Increase Increase Increase | |||||||
V. radiate L. var. PDM11 | Seed | 10 mM | 12 d | Root | CAT GST POD | Increase Increase Increase | Basantani et al. (2011) | ||
V. radiate L. var. PDM54 | Seed | 10 mM | 12 d | Root | CAT POD GST | Increase Increase Increase | |||
Z. mays L. var. Kneza-640 | Spray | 10 mM | 10 d | Leaves | CAT GST POD | Increase Increase Increase | Sergiev et al. (2006) | ||
Phenoxy | Clodinafop-propargyl | Secale cereale L. | Spray | 800 µg L-1 | 7 d | Leaves | CAT APOX | Increase Increase | Lukatkin et al. 2013 |
Triticum aestivum L. | Spray | 800 µg L-1 | 7 d | Leaves | CAT APOX | Increase Increase | |||
Z. mays L. | Spray | 800 µg L-1 | 7 d | Leaves | CAT APOX | Increase Increase | |||
Fenoxaprop-p-ethyl | T. aestivum L. | Spray | 250 g ha-1 | 15 d | Leaves | CAT POD | Increase Increase | Sing et al. (2013) | |
Fusilade | Arachis hypogaea L. | Spray | 60 ppm | 14 d | Leaves | APOX CAT POD SOD | Increase Decrease Increase Decrease | Fayez et al. (2014) | |
Haloxyfop-ethoxyethyl | Triticum vulgare L. | Drop on leaf | 50 µM | 12 h | Leaves | APOX CAT POD SOD | Increase Increase Increase Decrease | Janicka et al. (2008) | |
Quizalofop-p-ethyl | Helianthus annuus L. | Spray | 0.8 mM | 15 d | Leaves | APOX POD | Increase Increase | Bayram et al. (2015) | |
R-diclofop-methyl | A. thaliana L. | Culture medium | 1 mg L-1 | 28 d | Plantlets | CAT POD SOD | Decrease Increase Increase | Zhang et al. (2012) | |
S-diclofop-methyl | A. thaliana L. | Culture medium | 1 mg L-1 | 28 d | Plantlets | CAT POD SOD | Increase Increase Decrease | ||
Pyrethroid | Deltamethrin | G. max L. Merr. | Spray | 0.20 % | 10 d | Leaves | APOX CAT GR SOD | Increase Decrease Increase Increase | Bashir et al. (2007) |
Pyridine | Fluroxypyr | O. sativa L. | Culture soln. | 0.8 mg L-1 | 6 d | Leaves | APOX CAT POD SOD | No change Decrease Increase Increase | Wu et al. (2010) |
Quaternary ammonium | Paraquat | Papaver somniferum L. | Spray | 0.48 % | 24 h | Leaves | CAT POD SOD | Increase Decrease Increase | Zhao et al. (2010) |
Triazine | Atrazine | Acorus calamus L. | Culture soln. | 8 mg L-1 | 15 d | Leaves | POD | Increase | Wang et al. (2015) |
Lythrum salicaria L. | Culture soln. | 8 mg L-1 | 15 d | Leaves | POD | Decrease | |||
O. sativa L. | Hoagland medium | 0.4 mg L-1 | 6 d | Leaves | APOX CAT GR GST POD SOD | Increase Increase Increase Increase Increase Increase | Zhang et al. (2014) | ||
Root | APOX CAT GR GST POD SOD | Increase Increase Increase Decrease Increase Increase | |||||||
Pennisetum americanum L. | Soil | 10 mg kg-1 | 38 d | Shoot | APOX CAT POD SOD | Increase Increase Increase Increase | Jiang et al. (2016) | ||
Root | APOX CAT POD SOD | Increase Increase Increase Increase | |||||||
Scirpus tabernaemontani P. | Culture soln. | 8 mg L-1 | 15 d | Leaves | POD | Decrease | Wang et al. (2015) | ||
V. faba L. | Spray | 1.79 kg a.i. ha-1 | 12 d | Shoot | APOX CAT POD SOD | Decrease Decrease Decrease Decrease | Hassan and Alla (2005) | ||
Z. mays L. | Spray | 1.79 kg a.i. ha-1 | 12 d | Shoot | APOX CAT POD SOD | Decrease Decrease Decrease Increase | |||
78 mM | 5 d | Leaves | APOX POD | Increase Increase | Akbulut and Yigit (2010) | ||||
Hoagland medium | 10 mg L-1 | 3 d | Shoot | CAT POD SOD | Increase Increase Increase | Li et al. (2012) | |||
Root | CAT POD SOD | Increase Increase Increase | |||||||
Z. mays L. Hybrid 351 | Soil | 1.79 kg ha-1 | 8 d | Shoot | APOX CAT POD GST SOD | Increase Decrease Decrease Increase Increase | Alla and Hassan (2006) | ||
Z. mays L. Giza 2 | Soil | 1.79 kg ha-1 | 8 d | Shoot | APOX CAT POD GST SOD | Decrease Decrease Decrease Decrease Decrease | |||
Prometryn | T. aestivum L. | Soil | 12 mg kg-1 | 10 d | Leaves | APOX CAT GST POD SOD | Increase Increase Increase Increase Increase | Jiang and Yang (2009) | |
Root | APOX CAT GST POD SOD | Increase Increase Increase Increase Increase | |||||||
Urea | Chlorotoluron | T. aestivum L. | Soil | 25 mg kg-1 | 10 d | Root | APOX CAT POD SOD | Increase Decrease Increase Increase | Song et al. (2007) |
Chlorimuron-ethyl | T. aestivum L. | Soil | 300 µg kg-1 | 24 h | Leaves | POD | Increase | Wang and Zhou (2006) | |
Root | POD | Increase | |||||||
Fluometuron | Z. mays L. | Spray | 2.98 kg a.i. ha-1 | 12 d | Shoot | APOX CAT POD SOD | Decrease Decrease Decrease Decrease | Hassan and Alla (2005) | |
V. faba L. | Spray | 2.98 kg a.i. ha-1 | 12 d | Shoot | APOX CAT POD SOD | Decrease Decrease Decrease Decrease | |||
Granstar | S. cereale L. | Leaf disk immersing | 300 µg L-1 | 3 h | Leaves | APOX CAT SOD | Increase Increase Increase | Gar’kova et al. (2011) | |
T. aestivum L. | Leaf disk immersing | 300 µg L-1 | 3 h | Leaves | APOX CAT SOD | Increase Increase Increase | |||
Z. mays L. | Leaf disk immersing | 300 µg L-1 | 3 h | Leaves | APOX CAT SOD | Increase Increase Increase | |||
Isoproturon | P. sativum L. | Sand | 10 mM | 15 d | Leaves | APOX CAT GPOX SOD | Increase Increase Decrease Increase | Singh et al. (2016) | |
T. aestivum L. . | Soil | 2.5 L ha-1 | 15 d | Shoot | APOX CAT SOD | Decrease Decrease Decrease | Alla and Hassan, (2014) | ||
4 mg kg-1 | 10 d | Shoot | APOX CAT GR GST POD SOD | Increase Decrease Increase Increase Increase Increase | Liang et al. (2012) | ||||
4 mg kg-1 | 10 d | Root | APOX CAT GR GST POD SOD | Increase Decrease Increase Increase Increase Increase | |||||
10 mg kg-1 | 10 d | Leaves | APOX CAT GST POD SOD | Increase Decrease Increase Increase Increase | Yin et al. (2008) | ||||
10 mg kg-1 | 10 d | Root | APOX CAT GST POD SOD | Increase Increase Increase Increase Increase | |||||
Spray | 1 kg ha-1 | 15 d | Leaves | CAT POD | Increase Increase | Sing et al. (2013) | |||
Rimsulfuron | V. faba L. | Spray | 0.015 kg a.i. ha-1 | 12 d | Shoot | APOX CAT POD SOD | Increase Increase Increase Increase | Hassan and Alla (2005) | |
Z. mays L. | Spray | 0.015 kg a.i. ha-1 | 12 d | Shoot | APOX CAT POD SOD | Increase Increase Increase Increase | |||
Sulfosulfuron | T. aestivum L. | Spray | 800 g ha-1 | 15 d | Leaves | CAT POD | Increase Increase | Sing et al. (2013) | |
Unclassified | Dichlorobenzene | Z. mays L. | Hoagland medium | 80 mg L-1 | 7 d | Root | GR POD | Increase Decrease | San Miguel et al. (2012) |
Leaves | GR POD | Decrease Decrease | |||||||
Flurochloridone | H. annuus L. | Spray | 11 mM | 15 d | Leaves | APOX CAT GR GST SOD | Decrease Decrease Increase Increase Increase | Kaya and Yigit (2014) | |
V. sativa L. | Spray | 32 mM | 15 d | Leaves | GR GST | Increase Increase | Kaya and Yigit (2012) | ||
Monochlorobenzene | Z. mays L. | Hoagland medium | 80 mg L-1 | 7 d | Roots | GR POD | Increase Increase | San Miguel et al. (2012) | |
Leaves | GR POD | Decrease Increase | |||||||
Trichlorobenzene | Z. mays L. | Hoagland medium | 40 mg L-1 | 7 d | Root | GR POD | Increase No change | ||
Leaves | GR POD | Decrease No change |
Table 3 Effect of pesticides on non-enzymatic antioxidants in plants
Type of pesticide | Pesticide name | Plant name | Mode of application | Concentration of pesticide | Time after treatment | Plant part analyzed | Effect of pesticide on non-enzymatic antioxidants | Reference | |
Parameter | Effect | ||||||||
Amide | Fomesafen | Glycine max L. Merr. | Spray | 1000 g ha-1 | 2 d | Leaves | HGSH | Increase | Andrews et al. (2005) |
Metosulam | Vicia faba L. | Seedling’s root immersing | 10-4 % | 24 h | Leaves | Proline | Increase | Badr et al. (2013) | |
Stems | Proline | Increase | |||||||
Root | Proline | Increase | |||||||
Cyclohexene oxime | Clethodim | Zea mays L. | Soil | 200 ppm | 21 d | Leaves | Total phenolics | Increase | Radwan (2012) |
Diamide | Chlorantraniliprole | Z. mays L. | Seed | 0.5 ppm | 7 d | Leaves | Proline | Increase | Kilic et al. (2015) |
Dinitroaniline | Pendimethalin | Foeniculum vulgare L. | Soil | 8.5 mg L-1 | 84 d | Leaves | Total phenolics | Increase | El-Awadi and Hassan et al. 2011 |
Diphenyl ether | Oxyfluorfen | G. max L. Merr. | Spray | 2500 g ha-1 | 2 d | Leaves | HGSH | Increase | Andrews et al. (2005) |
Imidazolinone | Imazapic | Nicotiana tabacum L. | Spray | 0.12 mM | 9 d | Leaves | GSH | Increase | Kaya and Doganlar (2016) |
Neonicotinoid | Imidacloprid | Brassica juncea L. | Soil | 300 mg kg-1 | 60 d | Leaves | Ascorbate GSH Tocopherol Polyphenols Total phenolics | Increase Increase Increase Increase Increase | Sharma et al. (2016c) |
65 d | Leaves | GSH | Increase | Sharma et al. (2016b) | |||||
80 d | Green pods | GSH | Increase | Sharma et al. (2017c) | |||||
Oryza sativa L. | Sand | 0.02% | 12 d | Seedling | Proline | Increase | Sharma et al. (2013) | ||
0.015% | 12 d | Seedling | Proline | Increase | Sharma et al. (2015) | ||||
Organophosphorus | Chlorpyrifos | O. sativa L. | Sand | 0.06% | 12 d | Seedling | Proline | Increase | Sharma et al. (2012) |
0.04% | 12 d | Seedling | Proline | Increase | Sharma et al. (2015) | ||||
Vigna radiata L. | Spray | 15 mM | 10 d | Leaves | Proline Ascorbate GSH | Increase Decrease Increase | Parween et al. (2012) | ||
Dimethoate | V. radiata L. | Culture soln. | 30 ppm | 4 d | Leaves | GSH Ascorbate | Increase Increase | Singh et al. (2014) | |
150 ppm | 4 d | Leaves | GSH Ascorbate | Decrease Decrease | |||||
Glyphosate | Z. mays L. var. Kneza-640 | Spray | 10 mM | 10 d | Leaves | Proline GSH | Increase Increase | Sergiev et al. (2006) | |
Phenoxy | Fluzifop-p-butyl | Arachis hypogaea L. var. Giza 5 | Spray | 0.156 g L-1 | 14 d | Leaves | Proline | Increase | Fayez et al. (2011) |
Quizalofop-p-ethyl | Helianthus annuus L. | Spray | 0.8 mM | 15 d | Leaves | Total phenolics | Increase | Bayram et al. (2015) | |
Pyrethroid | Deltamethrin | G. max L. Merr. | Spray | 0.20 % | 10 d | Leaves | Proline Ascorbate GSH | Increase Increase Increase | Bashir et al. (2007) |
Pyridine | Fluroxypyr | O. sativa L. | Culture soln. | 0.8 mg L-1 | 6 d | Leaves | Proline | Increase | Wu et al. (2010) |
Triazine | Atrazine | Z. mays L. Hybrid 351 | Soil | 1.79 kg ha-1 | 8 d | Shoot | GSH Ascorbate | Increase Increase | Alla and Hassan (2006) |
Z. mays L. Giza 2 | Soil | 1.79 kg ha-1 | 8 d | Shoot | GSH Ascorbate | Decrease Decrease | |||
Urea | Chlorotoluron | Triticum aestivum L. | Soil | 25 mg kg-1 | 10 d | Leaves | Proline | Increase | Song et al. (2007) |
Diuron | G. max L. var. Clark | Soil | 2 ppm | 7 d | Leaves | Proline | Increase | Fayez (2000) | |
G. max L. var. Crawford | Soil | 2 ppm | 7 d | Leaves | Proline | Increase | |||
Isoproturon | T. aestivum | Soil | 2.5 L ha-1 | 15 d | Shoot | GSH | Decrease | Alla and Hassan (2014) | |
Unclassified | Bentazon | A. hypogaea L. var. Giza 6 | Spray | 1.6 g L-1 | 14 d | Leaves | Proline | Increase | Fayez et al. (2011) |
Flurochloridone | Vicia sativa L. | Spray | 32 mM | 15d | Leaves | GSH | Increase | Kaya and Yigit (2012) |