SciELO - Scientific Electronic Library Online

 
vol.37Remediation of Soils Contaminated by Pesticides Using Physicochemical Processes: a Brief ReviewEffect of Organic Matter on the Behavior and Control Effectiveness of Herbicides in Soil author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Planta Daninha

Print version ISSN 0100-8358On-line version ISSN 1806-9681

Planta daninha vol.37  Viçosa  2019  Epub Aug 19, 2019

https://doi.org/10.1590/s0100-83582019370100065 

Literature Review

Responses of Plants to Pesticide Toxicity: an Overview

Respostas de Plantas à Toxicidade de Pesticidas: Uma Visão Geral

A. SHARMA1  * 
http://orcid.org/0000-0002-5251-9045

V. KUMAR1 

A.K. THUKRAL1 

R. BHARDWAJ1 

1 Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar-143005, India.


ABSTRACT:

Pesticides are applied all over the world to protect plants from pests. However, their application also causes toxicity to plants, which negatively affects the growth and development of plants. Pesticide toxicity results in reduction of chlorophyll and protein contents, accompanied by decreased photosynthetic efficiency of plants. Pesticide stress also generates reactive oxygen species which causes oxidative stress to plants. To attenuate the negative effects of oxidative stress, the antioxidative defense system of plants gets activated, and it includes enzymatic antioxidants as well as non-enzymatic antioxidants. The present review gives an overview of various physiological responses of plants under pesticide toxicity in tabulated form.

Keywords: physiological responses; antioxidative defense system; oxidative stress

RESUMO:

Os pesticidas são aplicados no mundo todo para proteger as plantas contra as pragas. No entanto, essa aplicação também causa toxicidade às plantas, o que afeta de forma negativa o crescimento e o desenvolvimento delas. A toxicidade dos pesticidas resulta na redução dos teores de clorofila e proteína, acompanhada de menor eficiência fotossintética das plantas. O estresse causado por pesticidas também gera espécies reativas de oxigênio, que causam estresse oxidativo às plantas. Para atenuar os efeitos negativos do estresse oxidativo, o sistema de defesa antioxidante das plantas é ativado, e isso inclui antioxidantes enzimáticos e não enzimáticos. A presente revisão fornece uma visão geral de várias respostas fisiológicas de plantas sob toxicidade de pesticidas, em forma de tabela.

Palavras-chave: respostas fisiológicas; sistema de defesa antioxidante; estresse oxidativo

INTRODUCTION

A pesticide is a compound which is utilized to repel, kill or prevent any pest. On the basis of the target killed, pesticides are mainly classified as herbicides, fungicides and insecticides. The increased demand of food on account of population explosion has compelled man to use pesticides for better crop production (Tomer, 2013). Pesticides are used to protect crops in the field as well as during post-harvest storage to minimize crop damage. Crop plants are attacked by a variety of pests which include soil insects, cut worms, leaf rollers, aphids etc., and pesticides are mostly used to control these pests (Goh et al., 2011). Nowadays, there are other alternatives to control these insect pests which include the use of bio-pesticides and development of pest resistant transgenic varieties. However, the use of chemical pesticides is still the best and most widely applied strategy to protect crops from pests and results in high yield production of crops. It has been reported that approximately two million tonnes of pesticides are consumed annually throughout the world (De et al., 2014). Global pesticide consumption includes 47.55% of herbicides, 29.5% of insecticides, 17.5% of fungicides and 5.5% of other pesticides.

Transpiration pull helps in the absorption of water soluble pesticides and their entry into the plant system. Volatile pesticides indirectly come into the atmosphere via leaves through stomata during transpiration. Plants absorb pesticides via roots, leaf surface or roots. A number of factors are involved in pesticide uptake and its metabolism in the plant system which include external environmental factors (temperature, humidity and precipitation) and physiochemical properties of soil and pesticides (Finlayson and MacCarthy, 1973). Uptake of pesticides via the root system and their metabolism in the plant system is affected by factors such as mode of application, amount of pesticide, physiochemical and biochemical properties of pesticides and their reaction with soil and stage of plant development (Führ, 1991). Absorption of pesticides by plants is also determined by their degree of water solubility. Pesticide uptake takes place either by active absorption via the root system, or by passive absorption. Absorbed pesticides are either metabolized by the plant system or accumulate in plants, causing bio-magnification in the ecosystem (Mwevura, 2000).

Pesticide application also causes toxicity to plants, which can be seen in the form of necrosis, chlorosis, stunting, burns and twisting of leaves (Sharma et al., 2018a). The excessive use of pesticides is one of the major causes of reduction of the diversity of structural vegetation (Donald, 2004). Sensitive or stressed plants may be extra vulnerable to phytotoxicity. Toxicity depends upon many factors such as use of pesticides, rate of application, spraying technique, climate conditions, organization of flora, humidity and properties of soil such as moisture, temperature, pH, texture and microbial activity. It has been found that pesticide application negatively affects plant growth and development (Sharma et al., 2015, 2016a, Shahzad et al., 2018). Pesticide application causes oxidative stress to plants as a result of the generation of reactive oxygen species (ROS) Sharma et al., 2018b). This oxidative stress results in degradation of chlorophyll pigments and proteins and it ultimately causes a reduction in the photosynthetic efficiency of plants (Xia et al., 2006; Sharma et al., 2015). To cope up with oxidative stress, the antioxidative defense system of plants is activated, which involves enzymatic and non-enzymatic antioxidants (Xia et al., 2009; Sharma et al., 2015; 2016b,c,d). Activation of the antioxidative defense system aids with ROS scavenging and reduces the oxidative stress in plants caused by pesticide toxicity (Sharma et al., 2015, 2017a,b). The present review has been planned to give a detailed overview of various physiological changes in plants subjected to pesticide treatment. Physiological responses of plants to pesticide application have been summarized in tabulated form.

PHYSIOLOGICAL RESPONSES OF PLANTS TO PESTICIDE TOXICITY

Table 1, 2 and 3 show oxidative stress markers, enzymatic antioxidants and non-enzymatic antioxidants, respectively, whereas supplementary Tables 1, 2 and 3 give a detailed overview for growth parameters, pigment system, photosynthetic parameters and protein content, respectively, in plants against pesticide toxicity.

It has been concluded that pesticide application causes oxidative stress in plants by production of reactive oxygen species. This ultimately leads to retarded growth and photosynthetic efficiency of plants. Plants try to ameliorate pesticide toxicity by activation of their internal antioxidative defense system which includes antioxidative enzymes and non-enzymatic antioxidants.

Table 1 Effect of pesticides on oxidative stress markers in plants 

Type of pesticide Pesticide name Plant name Mode of application Concentration of pesticide Time after treatment Plant part analyzed Effect of pesticide on oxidative stress markers Reference
Parameter Effect
Amide Acetochlor Vitis vinifera L. × Vitis labrusca L. Soil 22460 g a.i. ha-1 30 d Leaves (upper node) O2·- MDA Increase Increase Tan et al. (2012)
Napropamide Brassica napus L. Seedling 8 mg L-1 5 d Leaves TBARS Increase Cui et al. (2010)
Root TBARS Increase
Rac-metolachlor Oryza sativa L. Culture solution 6.2 µM L-1 5 d Root MDA Increase Liu et al. (2012)
Zea mays L. Culture solution 74.4 µM L-1 5 d Root MDA Increase
S-metolachlor O. sativa L. Culture solution 6.2 µM L-1 5 d Root MDA Increase
Z. mays L. Culture solution 74.4 µM L-1 5 d Root MDA Increase
Cyclohexene oxime Clethodim Z. mays L. Soil 200 ppm 21 d Leaves H2O2 MDA Increase Increase Radwan (2012)
Dinitroaniline Pendimethalin Vigna mungo L. var. Shekhar Soil 10 ppm 15 d Leaves MDA Decrease Singh et al. (2012)
Diphenyl ether Fluoroglycofen V. vinifera L. × V. labrusca L. Soil 375 g a.i. ha-1 30 d Leaves (upper node) O2·- MDA Increase Increase Tan et al. (2012)
Imidazolinone Imazapic Nicotiana tabacum L. Spray 0.12 mM 9 d Leaves MDA Increase Kaya and Doganlar (2016)
R (-)-imazethapyr Arabidopsis thaliana L. Culture solution 2.5 µg L-1 28 d Plantlets O2·- H2O2 MDA Increase Increase Increase Qian et al. (2011)
S (+)-imazethapyr A. thaliana L. Culture solution 2.5 µg L-1 28 d Plantlets O2·- H2O2 MDA Increase Increase No change
Neonicotinoid Imidacloprid Oryza sativa L. Sand 0.015% 12 d Seedlings O2·- H2O2 MDA Increase Increase Increase Sharma et al. (2015)
0.02% 12 d Seedlings MDA Increase Sharma et al. (2013)
Organophosphorus Chlorpyrifos O. sativa L. Sand 0.04% 12 d Seedlings O2·- H2O2 MDA Increase Increase Increase Sharma et al. (2015)
0.06% 12 d Seedlings MDA Increase Sharma et al. (2012)
Vigna radiata L. Spray 15 mM 10 d Leaves TBARS Increase Parween et al. (2012)
Dimethoate V. radiata L. Culture soln. 150 ppm 4 d Leaves O2·- H2O2 MDA OH- Increase Increase Increase Increase Singh et al. (2014)
Glyphosate Glycine max L. var. DM48 Spray 0.94 % 24 h Leaves MDA Increase Moldes et al. (2008)
Root MDA Increase
G. max L. var. DM4800RG Spray 0.94 % 24 h Leaves MDA Increase
Root MDA Decrease
G. max L. var. MSOY7501 Spray 0.94 % 24 h Leaves MDA Increase
Root MDA Increase
G. max L. var. MSOY7575RR Spray 0.94 % 24 h Leaves MDA Increase
Root MDA Increase
Z. mays L. var. Kneza-640 Spray 10 mM 10 d Leaves H2O2 MDA Electrolyte leakage Increase Increase Increase Sergiev et al. (2006)
Phenoxy Clodinafop-propargyl Secale cereale L. Spray 800 µg L-1 7 d Leaves O2·- Increase Lukatkin et al. 2013
Triticum aestivum L. Spray 800 µg L-1 7 d Leaves O2·- Increase
Z. mays L. Spray 800 µg L-1 7 d Leaves O2·- Increase
Fluazifop-P-butyl Acanthospermum hispidum DC. Shoot immersing 10 µM 24 h Leaves MDA Increase Luo et al. (2004)
Avena sativa L. Shoot immersing 10 µM 24 h Leaves MDA Increase
Fusilade Arachis hypogaea L. Spray 60 ppm 14 d Leaves H2O2 MDA Increase Increase Fayez et al. (2014)
Quizalofop-p-ethyl Helianthus. annuus L. Spray 0.8 mM 15 d Leaves MDA Increase Bayram et al. (2015)
R-diclofop-methyl A. thaliana L. Culture medium 1 mg L-1 28 d Plantlets MDA Increase Zhang et al. (2012)
S-diclofop-methyl A. thaliana L. Culture medium 1 mg L-1 28 d Plantlets MDA Increase
Pyrethroid Deltamethrin G. max L. Merr. Spray 0.20 % 10 d Leaves MDA Increase Bashir et al. (2007)
Pyridine Fluroxypyr O. sativa L. Culture soln. 0.8 mg L-1 6 d Leaves O·̄2 H2O2 MDA Increase Increase Increase Wu et al. (2010)
Quaternary ammonium Paraquat Papaver somniferum L. Spray 0.48 % 24 h Leaves MDA Electrolyte leakage Increase Increase Zhao et al. (2010)
Triazine Atrazine Acorus calamus L. Culture soln. 8 mg L-1 15 d Leaves MDA Increase Wang et al. (2015)
Lythrum salicaria L. Culture soln. 8 mg L-1 15 d Leaves MDA Increase
O. sativa L. Hoagland medium 0.4 mg L-1 6 d Leaves O2·- H2O2 TBARS Increase Increase Increase Zhang et al. (2014)
Pennisetum americanum L. Soil 10 mg kg-1 38 d Shoot MDA Increase Jiang et al. (2016)
Root MDA Increase
Scirpus tabernaemontani P. Culture soln. 8 mg L-1 15 d Leaves MDA Increase Wang et al. (2015)
Vicia faba L. Spray 1.79 kg a.i. ha-1 12 d Shoot H2O2 MDA C=O Increase Increase Increase Hassan and Alla (2005)
Z. mays L. Spray 1.79 kg a.i. ha-1 12 d Shoot H2O2 MDA C=O Increase Increase Increase
78 mM 5 d Leaves MDA Increase Akbulut and Yigit (2010)
Hoagland medium 10 mg L-1 3 d Shoot MDA No change Li et al. (2012)
Root MDA Increase
Z. mays L. Hybrid 351 Soil 1.79 kg ha-1 8 d Shoot H2O2 MDA C=O Increase Increase Increase Alla and Hassan (2006)
Z. mays L. Giza 2 Soil 1.79 kg ha-1 8 d Shoot H2O2 MDA C=O Increase Increase Increase
Prometryne T. aestivum L. Soil 12 mg kg-1 10 d Leaves TBARS Increase Jiang and Yang (2009)
Root TBARS Increase
Urea Chlorotoluron T. aestivum L. Soil 25 mg kg-1 10 d Leaves O2·- H2O2 TBARS Increase Increase Increase Song et al. (2007)
Chlorimuron-ethyl T. aestivum L. Soil 300 µg kg-1 24 h Leaves MDA Increase Wang and Zhou (2006)
Root MDA Increase
Fluometuron V. faba L. Spray 2.98 kg a.i. ha-1 12 d Shoot H2O2 MDA C=O Increase Increase Increase Hassan and Alla (2005)
Z. mays L. Spray 2.98 kg a.i. ha-1 12 d Shoot H2O2 MDA C=O Increase Increase Increase
Granstar Avena fatua L. Spray 300 µg L-1 3 d Leaves O2·- MDA Increase Increase Gar’kova et al. (2011)
Secale cereale L. Spray 300 µg L-1 3 d Leaves O2·- MDA Increase Increase
Leaf disk immersing 300 µg L-1 3 h Leaves O2·- Increase
T. aestivum L. Leaf disk immersing 300 µg L-1 3 h Leaves O2·- Increase
Spray 300 µg L-1 3 d Leaves O2·- MDA Increase Increase
Z. mays L. Leaf disk immersing 300 µg L-1 3 h Leaves O2·- Increase
Spray 300 µg L-1 3 d Leaves O2·- MDA Increase Increase
Isoproturon P. sativum L. Sand 10 mM 15 d Leaves H2O2 MDA Electrolyte leakage Increase Increase Increase Singh et al. (2016)
T. aestivum L. Soil 2.5 L ha-1 15 d Shoot H2O2 MDA Increase Increase Alla and Hassan (2014)
4 mg kg-1 10 d Shoot O2·- H2O2 TBARS Increase Increase Increase Liang et al. (2012)
Root TBARS Increase
Leaves H2O2 Increase
10 mg kg-1 10 d Leaves TBARS Increase Yin et al. (2008)
Root TBARS No change
Rimsulfuron V. faba L. Spray 0.015 kg a.i. ha-1 12 d Shoot H2O2 MDA C=O Increase Increase Increase Hassan and Alla (2005)
Z. mays L. Spray 0.015 kg a.i. ha-1 12 d Shoot H2O2 MDA C=O Increase Increase No change
Unclassified Dichlorobenzene Z. mays L. Hoagland medium 80 mg L-1 7 d Root H2O2 Increase San Miguel et al. (2012)
Leaves H2O2 Decrease
Flurochloridone H. annuus L. Spray 11 mM 15 d Leaves MDA Increase Kaya and Yigit (2014)
Monochlorobenzene Z. mays L. Hoagland medium 80 mg L-1 7 d Root H2O2 Increase San Miguel et al. (2012)
Leaves H2O2 No change
Trichlorobenzene Z. mays L. Hoagland medium 40 mg L-1 7 d Root H2O2 Increase
Leaves H2O2 Increase

Table 2 Effect of pesticides on enzymatic antioxidants in plants 

Type of pesticide Pesticide name Plant name Mode of application Concentration of pesticide Time after treatment Plant part analyzed Effect of pesticide on enzymatic antioxidants Reference
Parameter Effect
Amide Acetochlor Vitis vinifera L. × Vitis labrusca L. Soil 22460 g a.i.ha-1 30 d Leaves (upper node) APOX CAT POD SOD Decrease Decrease Decrease Decrease Tan et al. (2012)
Alachlor Lactuca sativa L. Hoagland medium 2 µM 24 d Leaves CAT POD SOD Increase Increase Increase Stajner et al. (2003)
Phaseolus vulgaris L. Hoagland medium 2 µM 24 d Leaves CAT POD SOD Increase Increase Increase
Pisum sativum L. Hoagland medium 2 µM 24 d Leaves CAT POD SOD Increase Increase Increase
Fomesafen Glycine max L. Merr. Spray 1000 g ha-1 2 d Leaves GST Increase Andrews et al. (2005)
Metolachlor L. sativa L. Hoagland medium 2 µM 24 d Leaves CAT POD SOD No change Decrease Increase Stajner et al. (2003)
P. vulgaris L. Hoagland medium 2 µM 24 d Leaves CAT POD SOD Increase Increase Increase
P. sativum L. Hoagland medium 2 µM 24 d Leaves CAT POD SOD Decrease Increase Increase
Metosulam Vicia faba L. Seedling’s root immersing 10-4 % 24 h Leaves APOX CAT POD Increase Increase Decrease Badr et al. (2013)
Napropamide Brassica napus L. Seedling 8 mg L-1 5 d Leaves APOX CAT GST POD SOD Increase Increase Increase Increase Increase Cui et al. (2010)
Rac-metolachlor Oryza. sativa L. Culture solution 6.2 µM L-1 5 d Root CAT POD Decrease Decrease Liu et al. (2012)
Zea mays L. Culture solution 74.4 µM L-1 5 d Root CAT POD SOD Decrease Decrease Decrease
S-metolachlor O. sativa L. Culture solution 6.2 µM L-1 5 d Root CAT POD Decrease Decrease
Z. mays L. Culture solution 74.4 µM L-1 5 d Root CAT POD SOD Decrease Decrease Decrease
Cyclohexene oxime Clethodim Z. mays L. Soil 200 ppm 21 d Leaves APOX CAT POD SOD Increase Decrease Increase Decrease Radwan (2012)
Diphenyl ether Fluoroglycofen V. vinifera L. × V. labrusca L. Soil 375 g ai ha-1 30 d Leaves (upper node) APOX CAT POD SOD Decrease Decrease Decrease Decrease Tan et al. (2012)
Oxyfluorfen G. max L. Merr. Spray 2500 g ha-1 2 d Leaves GST Increase Andrews et al. (2005)
Imidazolinone Imazapic Nicotiana tabacum L. Spray 0.12 mM 9 d Leaves APOX CAT GR GST Increase Increase Increase Increase Kaya and Doganlar (2016)
R (-)-imazethapyr Arabidopsis thaliana L. Culture solution 2.5 µg L-1 28 d Plantlets APOX CAT GPOX SOD Decrease Decrease Increase Decrease Qian et al. (2011)
S (+)-imazethapyr A. thaliana L. Culture solution 2.5 µg L-1 28 d Plantlets APOX CAT GPOX SOD Increase Decrease Increase Decrease
Neonicotinoid Imidacloprid Brassica juncea L. Soil 300 mg kg-1 65 d Leaves GR GST POD Increase Increase Increase Sharma et al. (2016b)
80 d Green pods APOX GPOX GR GST POD Increase Increase Increase Increase Increase Sharma et al. (2017c)
O. sativa L. Sand 0.01% 12 d Seedlings APOX CAT DHAR GR MDHAR POD SOD Increase Decrease Increase Increase Increase Decrease Increase Sharma et al. (2013)
0.015% 12 d Seedlings APOX CAT DHAR GR MDHAR POD SOD Increase Increase Decrease Increase Increase Decrease Increase Sharma et al. (2015)
Organochlorine DDT G. max L. Soil 63.5 ng g-1 60 d Leaves Root GST GST Decrease Increase Mitton et al. (2016)
Medicago sativa L. Soil 63.5 ng g-1 60 d Leaves Root GST GST Increase Increase
Organophosphorus Chlorpyrifos Vigna radiata L. Spray 15 mM 10 d Leaves APOX CAT GR SOD Increase Decrease Increase Increase Parween et al. (2012)
Dimethoate V. radiata L. Culture soln. 30 ppm 4 d Leaves CAT DHAR GR SOD Increase Increase Increase Increase Singh et al. (2014)
150 ppm 4 d Leaves CAT DHAR GR SOD Decrease Decrease Decrease Increase
Glyphosate G. max L. var. DM48 Spray 0.94 % 24 h Leaves APOX CAT POD Increase Increase Increase Moldes et al. (2008)
Roots APOX CAT POD Increase Increase Decrease
G. max L. var. DM4800RG Spray 0.94 % 24 h Leaves APOX CAT POD Increase Decrease Increase
Root APOX CAT POD Increase Decrease Increase
G. max L. var. MSOY7501 Spray 0.94 % 24 h Leaves APOX CAT POD Increase Decrease Increase
Root APOX CAT POD Increase Decrease Increase
G. max L. var. MSOY7575RR Spray 0.94 % 24 h Leaves APOX CAT POD Increase Increase Increase
Roots APOX CAT POD Increase Increase Increase
V. radiate L. var. PDM11 Seed 10 mM 12 d Root CAT GST POD Increase Increase Increase Basantani et al. (2011)
V. radiate L. var. PDM54 Seed 10 mM 12 d Root CAT POD GST Increase Increase Increase
Z. mays L. var. Kneza-640 Spray 10 mM 10 d Leaves CAT GST POD Increase Increase Increase Sergiev et al. (2006)
Phenoxy Clodinafop-propargyl Secale cereale L. Spray 800 µg L-1 7 d Leaves CAT APOX Increase Increase Lukatkin et al. 2013
Triticum aestivum L. Spray 800 µg L-1 7 d Leaves CAT APOX Increase Increase
Z. mays L. Spray 800 µg L-1 7 d Leaves CAT APOX Increase Increase
Fenoxaprop-p-ethyl T. aestivum L. Spray 250 g ha-1 15 d Leaves CAT POD Increase Increase Sing et al. (2013)
Fusilade Arachis hypogaea L. Spray 60 ppm 14 d Leaves APOX CAT POD SOD Increase Decrease Increase Decrease Fayez et al. (2014)
Haloxyfop-ethoxyethyl Triticum vulgare L. Drop on leaf 50 µM 12 h Leaves APOX CAT POD SOD Increase Increase Increase Decrease Janicka et al. (2008)
Quizalofop-p-ethyl Helianthus annuus L. Spray 0.8 mM 15 d Leaves APOX POD Increase Increase Bayram et al. (2015)
R-diclofop-methyl A. thaliana L. Culture medium 1 mg L-1 28 d Plantlets CAT POD SOD Decrease Increase Increase Zhang et al. (2012)
S-diclofop-methyl A. thaliana L. Culture medium 1 mg L-1 28 d Plantlets CAT POD SOD Increase Increase Decrease
Pyrethroid Deltamethrin G. max L. Merr. Spray 0.20 % 10 d Leaves APOX CAT GR SOD Increase Decrease Increase Increase Bashir et al. (2007)
Pyridine Fluroxypyr O. sativa L. Culture soln. 0.8 mg L-1 6 d Leaves APOX CAT POD SOD No change Decrease Increase Increase Wu et al. (2010)
Quaternary ammonium Paraquat Papaver somniferum L. Spray 0.48 % 24 h Leaves CAT POD SOD Increase Decrease Increase Zhao et al. (2010)
Triazine Atrazine Acorus calamus L. Culture soln. 8 mg L-1 15 d Leaves POD Increase Wang et al. (2015)
Lythrum salicaria L. Culture soln. 8 mg L-1 15 d Leaves POD Decrease
O. sativa L. Hoagland medium 0.4 mg L-1 6 d Leaves APOX CAT GR GST POD SOD Increase Increase Increase Increase Increase Increase Zhang et al. (2014)
Root APOX CAT GR GST POD SOD Increase Increase Increase Decrease Increase Increase
Pennisetum americanum L. Soil 10 mg kg-1 38 d Shoot APOX CAT POD SOD Increase Increase Increase Increase Jiang et al. (2016)
Root APOX CAT POD SOD Increase Increase Increase Increase
Scirpus tabernaemontani P. Culture soln. 8 mg L-1 15 d Leaves POD Decrease Wang et al. (2015)
V. faba L. Spray 1.79 kg a.i. ha-1 12 d Shoot APOX CAT POD SOD Decrease Decrease Decrease Decrease Hassan and Alla (2005)
Z. mays L. Spray 1.79 kg a.i. ha-1 12 d Shoot APOX CAT POD SOD Decrease Decrease Decrease Increase
78 mM 5 d Leaves APOX POD Increase Increase Akbulut and Yigit (2010)
Hoagland medium 10 mg L-1 3 d Shoot CAT POD SOD Increase Increase Increase Li et al. (2012)
Root CAT POD SOD Increase Increase Increase
Z. mays L. Hybrid 351 Soil 1.79 kg ha-1 8 d Shoot APOX CAT POD GST SOD Increase Decrease Decrease Increase Increase Alla and Hassan (2006)
Z. mays L. Giza 2 Soil 1.79 kg ha-1 8 d Shoot APOX CAT POD GST SOD Decrease Decrease Decrease Decrease Decrease
Prometryn T. aestivum L. Soil 12 mg kg-1 10 d Leaves APOX CAT GST POD SOD Increase Increase Increase Increase Increase Jiang and Yang (2009)
Root APOX CAT GST POD SOD Increase Increase Increase Increase Increase
Urea Chlorotoluron T. aestivum L. Soil 25 mg kg-1 10 d Root APOX CAT POD SOD Increase Decrease Increase Increase Song et al. (2007)
Chlorimuron-ethyl T. aestivum L. Soil 300 µg kg-1 24 h Leaves POD Increase Wang and Zhou (2006)
Root POD Increase
Fluometuron Z. mays L. Spray 2.98 kg a.i. ha-1 12 d Shoot APOX CAT POD SOD Decrease Decrease Decrease Decrease Hassan and Alla (2005)
V. faba L. Spray 2.98 kg a.i. ha-1 12 d Shoot APOX CAT POD SOD Decrease Decrease Decrease Decrease
Granstar S. cereale L. Leaf disk immersing 300 µg L-1 3 h Leaves APOX CAT SOD Increase Increase Increase Gar’kova et al. (2011)
T. aestivum L. Leaf disk immersing 300 µg L-1 3 h Leaves APOX CAT SOD Increase Increase Increase
Z. mays L. Leaf disk immersing 300 µg L-1 3 h Leaves APOX CAT SOD Increase Increase Increase
Isoproturon P. sativum L. Sand 10 mM 15 d Leaves APOX CAT GPOX SOD Increase Increase Decrease Increase Singh et al. (2016)
T. aestivum L. . Soil 2.5 L ha-1 15 d Shoot APOX CAT SOD Decrease Decrease Decrease Alla and Hassan, (2014)
4 mg kg-1 10 d Shoot APOX CAT GR GST POD SOD Increase Decrease Increase Increase Increase Increase Liang et al. (2012)
4 mg kg-1 10 d Root APOX CAT GR GST POD SOD Increase Decrease Increase Increase Increase Increase
10 mg kg-1 10 d Leaves APOX CAT GST POD SOD Increase Decrease Increase Increase Increase Yin et al. (2008)
10 mg kg-1 10 d Root APOX CAT GST POD SOD Increase Increase Increase Increase Increase
Spray 1 kg ha-1 15 d Leaves CAT POD Increase Increase Sing et al. (2013)
Rimsulfuron V. faba L. Spray 0.015 kg a.i. ha-1 12 d Shoot APOX CAT POD SOD Increase Increase Increase Increase Hassan and Alla (2005)
Z. mays L. Spray 0.015 kg a.i. ha-1 12 d Shoot APOX CAT POD SOD Increase Increase Increase Increase
Sulfosulfuron T. aestivum L. Spray 800 g ha-1 15 d Leaves CAT POD Increase Increase Sing et al. (2013)
Unclassified Dichlorobenzene Z. mays L. Hoagland medium 80 mg L-1 7 d Root GR POD Increase Decrease San Miguel et al. (2012)
Leaves GR POD Decrease Decrease
Flurochloridone H. annuus L. Spray 11 mM 15 d Leaves APOX CAT GR GST SOD Decrease Decrease Increase Increase Increase Kaya and Yigit (2014)
V. sativa L. Spray 32 mM 15 d Leaves GR GST Increase Increase Kaya and Yigit (2012)
Monochlorobenzene Z. mays L. Hoagland medium 80 mg L-1 7 d Roots GR POD Increase Increase San Miguel et al. (2012)
Leaves GR POD Decrease Increase
Trichlorobenzene Z. mays L. Hoagland medium 40 mg L-1 7 d Root GR POD Increase No change
Leaves GR POD Decrease No change

Table 3 Effect of pesticides on non-enzymatic antioxidants in plants 

Type of pesticide Pesticide name Plant name Mode of application Concentration of pesticide Time after treatment Plant part analyzed Effect of pesticide on non-enzymatic antioxidants Reference
Parameter Effect
Amide Fomesafen Glycine max L. Merr. Spray 1000 g ha-1 2 d Leaves HGSH Increase Andrews et al. (2005)
Metosulam Vicia faba L. Seedling’s root immersing 10-4 % 24 h Leaves Proline Increase Badr et al. (2013)
Stems Proline Increase
Root Proline Increase
Cyclohexene oxime Clethodim Zea mays L. Soil 200 ppm 21 d Leaves Total phenolics Increase Radwan (2012)
Diamide Chlorantraniliprole Z. mays L. Seed 0.5 ppm 7 d Leaves Proline Increase Kilic et al. (2015)
Dinitroaniline Pendimethalin Foeniculum vulgare L. Soil 8.5 mg L-1 84 d Leaves Total phenolics Increase El-Awadi and Hassan et al. 2011
Diphenyl ether Oxyfluorfen G. max L. Merr. Spray 2500 g ha-1 2 d Leaves HGSH Increase Andrews et al. (2005)
Imidazolinone Imazapic Nicotiana tabacum L. Spray 0.12 mM 9 d Leaves GSH Increase Kaya and Doganlar (2016)
Neonicotinoid Imidacloprid Brassica juncea L. Soil 300 mg kg-1 60 d Leaves Ascorbate GSH Tocopherol Polyphenols Total phenolics Increase Increase Increase Increase Increase Sharma et al. (2016c)
65 d Leaves GSH Increase Sharma et al. (2016b)
80 d Green pods GSH Increase Sharma et al. (2017c)
Oryza sativa L. Sand 0.02% 12 d Seedling Proline Increase Sharma et al. (2013)
0.015% 12 d Seedling Proline Increase Sharma et al. (2015)
Organophosphorus Chlorpyrifos O. sativa L. Sand 0.06% 12 d Seedling Proline Increase Sharma et al. (2012)
0.04% 12 d Seedling Proline Increase Sharma et al. (2015)
Vigna radiata L. Spray 15 mM 10 d Leaves Proline Ascorbate GSH Increase Decrease Increase Parween et al. (2012)
Dimethoate V. radiata L. Culture soln. 30 ppm 4 d Leaves GSH Ascorbate Increase Increase Singh et al. (2014)
150 ppm 4 d Leaves GSH Ascorbate Decrease Decrease
Glyphosate Z. mays L. var. Kneza-640 Spray 10 mM 10 d Leaves Proline GSH Increase Increase Sergiev et al. (2006)
Phenoxy Fluzifop-p-butyl Arachis hypogaea L. var. Giza 5 Spray 0.156 g L-1 14 d Leaves Proline Increase Fayez et al. (2011)
Quizalofop-p-ethyl Helianthus annuus L. Spray 0.8 mM 15 d Leaves Total phenolics Increase Bayram et al. (2015)
Pyrethroid Deltamethrin G. max L. Merr. Spray 0.20 % 10 d Leaves Proline Ascorbate GSH Increase Increase Increase Bashir et al. (2007)
Pyridine Fluroxypyr O. sativa L. Culture soln. 0.8 mg L-1 6 d Leaves Proline Increase Wu et al. (2010)
Triazine Atrazine Z. mays L. Hybrid 351 Soil 1.79 kg ha-1 8 d Shoot GSH Ascorbate Increase Increase Alla and Hassan (2006)
Z. mays L. Giza 2 Soil 1.79 kg ha-1 8 d Shoot GSH Ascorbate Decrease Decrease
Urea Chlorotoluron Triticum aestivum L. Soil 25 mg kg-1 10 d Leaves Proline Increase Song et al. (2007)
Diuron G. max L. var. Clark Soil 2 ppm 7 d Leaves Proline Increase Fayez (2000)
G. max L. var. Crawford Soil 2 ppm 7 d Leaves Proline Increase
Isoproturon T. aestivum Soil 2.5 L ha-1 15 d Shoot GSH Decrease Alla and Hassan (2014)
Unclassified Bentazon A. hypogaea L. var. Giza 6 Spray 1.6 g L-1 14 d Leaves Proline Increase Fayez et al. (2011)
Flurochloridone Vicia sativa L. Spray 32 mM 15d Leaves GSH Increase Kaya and Yigit (2012)

REFERENCES

Akbulut GB, Yigit E. The changes in some biochemical parameters in Zea mays cv. “Martha F1” treated with atrazine. Ecotox Environ Safe. 2010;73(6):1429-32. [ Links ]

Alla MMN, Hassan NM. Alleviation of isoproturon toxicity to wheat by exogenous application of glutathione. Pest Biochem Physiol. 2014;112:56-62. [ Links ]

Alla MMN, Hassan NM. Changes of antioxidants levels in two maize lines following atrazine treatments. Pest Biochem Physiol. 2006;44:202-10. [ Links ]

Andrews CJ, Cummins I, Skipsey M, Grundy NM, Jepson I, Townson Jane et al. Purification and characterisation of a family of glutathione transferases with roles in herbicide detoxification in soybean (Glycine max L.); selective enhancement by herbicides and herbicide safeners. Pest Biochem Physiol. 2005;82:205-19. [ Links ]

Badr A, Zaki H, Germoush MO, Tawfeek AQ, El-Tayeb MA. Cytophysiological impacts of metosulam herbicide on Vicia faba plants. Acta Physiol Plant. 2013;35(6):1933-41. [ Links ]

Basantani M, Srivastava A, Sen S. Elevated antioxidant response and induction of tau-class glutathione S-transferase after glyphosate treatment in Vigna radiata (L.)Wilczek. Pest Biochem Physiol. 2011;99:111-7. [ Links ]

Bashir F, Mahmooduzzafar, Siddiqi TO, Iqbal M. The antioxidative response system in Glycine max (L.)Merr.exposed to deltamethrin, a synthetic pyrethroid insecticide. Environ Poll. 2007;147:94-100. [ Links ]

Bayram DD, Yigit E, Akbulut GB. The effects of salicylic acid on Helianthus annuus L. exposed to quizalofop-p-ethyl. Am J Plant Sci. 2015;6:2412-25. [ Links ]

Cui J, Zhang R, Wu GL, Zhu HM, Yang H. Salicylic acid reduces napropamide toxicity by preventing its accumulationin rapeseed (Brassica napus L.). Arch Environ Contam Toxicol. 2010;59(1):100-8. [ Links ]

De A, Bose R, Kumar A, Mozumdar S. Worldwide pesticide use. In: De A, Bose R, Kumar A, Mozumdar S. editors. Targeted delivery of pesticides using biodegradable polymeric nanoparticles New Delhi: Springer; 2014. p.5-6. [ Links ]

Donald PF. Biodiversity impacts of some agricultural commodity production systems. Cons Biol. 2004;18:17-37. [ Links ]

El-Awadi ME, Hassan EA. Improving growth and productivity of fennel plant exposed to pendimethalin herbicide: stress-recovery treatments. Nature Sci. 2011;9:97-108. [ Links ]

Fayez KA. Action of photosynthetic diuron herbicide on cell organelles and biochemical constituents of the leaves of two soybean cultivars. Pest Biochem Physiol. 2000;66:105-15. [ Links ]

Fayez KA, Radwan DEM, Mohamed AK, Abdelrahman AM. Fusilade herbicide causes alterations in chloroplast ultrastructure, pigment content and physiological activities of peanut leaves. Photosynthetica. 2014;52(4):548-54. [ Links ]

Fayez KA, Radwan DEM, Mohamed AK, Abdelrahman AM. Herbicides and salicylic acid applications caused alterations in total amino acids and proline contents of peanut cultivars. J Environ Stud. 2011;6:55-61. [ Links ]

Finlayson DG, MacCarthy HR. Pesticides residues in plants. In: Edwards CA. editor. Environmental pollution by pesticides. London: Plenum Press; 1973. p.57-86. [ Links ]

Führ F. Radiotracers in pesticide studies-advantages and limitations. Cienc Cult. 1991;43:211-6. [ Links ]

Gar’kova AN, Rusyaeva MM, Nushtaeva OV, Aroslankina YN, Lukatkin AS. Treatment with the herbicide granstar induces oxidative stress in cereal leaves. Russ J Plant Physiol. 2011;58:1074-81. [ Links ]

Goh WL, Yiu P-H, Wong S-C, Rajan A. Safe use of chlorpyrifos for insect pest management in leaf mustard (Brassica juncea L. Coss.). J Food Agric Environ. 2011;9(3/4):1064-6. [ Links ]

Hassan NM, Alla MMN. Oxidative stress in herbicide-treated broad bean and maize plants. Acta Physiol Plant. 2005;27(4):429-38. [ Links ]

Janicka U, Mioduszewska, Kielak E, Klocek J, Horbowic M The effect of haloxyfop-ethoxyethyl on antioxidant enzyme activities and growth of wheat leaves (Triticum vulgare L.). Pol J Environ Stud. 2008;17(4):485-90. [ Links ]

Jiang L, Yang H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol Environ Saf. 2009;72(6):1687-93. [ Links ]

Jiang Z, Ma B, Erinle KO, Cao B, Liu X, Ye S, Zhang Y. Enzymatic antioxidant defense in resistant plant: Pennisetum americanum (L.) K. Schum during long-term atrazine exposure. Pestic Biochem Physiol. 2016;133:59-66. [ Links ]

Kaya A, Doganlar ZB. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicol Environ Saf. 2016;124:470-9. [ Links ]

Kaya A, Yigit E. Interactions among glutathione s-transferase, glutathione reductase activity and glutathione contents in leaves of Vicia faba L. subjected to flurochloridone. Fresenius Environ Bull. 2012;21(6):1635-40. [ Links ]

Kaya A, Yigit E. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone. Ecotoxicol Environ Safe. 2014;106:232-8. [ Links ]

Kilic S, Duran RE, Coskun Y. Morphological and physiological responses of maize (Zea mays L.) seeds grown under increasing concentrations of chlorantraniliprole insecticide. Polish J Environ Stud. 2015;24(3):1069-75. [ Links ]

Li X, Wu T, Huang H, Zhang S. Atrazine accumulation and toxic responses in maize Zea mays. J Environ Sci. 2012;24(2):203-8. [ Links ]

Liang L, Lu YL, Yang H. Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environ Sci Pollut Res. 2012;19(6):2044-54. [ Links ]

Liu H, Huang R, Xie F, Zhang S, Shi J. Enantioselective phytotoxicity of metolachlor against maize and rice roots. J Hazard Mater. 2012;217:330-7. [ Links ]

Lukatkin AS, Gar’kova AN, Bochkarjova AS, Nushtaeva OV, Silva TJA. Treatment with the herbicide TOPIK induces oxidative stress in cereal leaves. Pest Biochem Physiol. 2013;105:44-9. [ Links ]

Luo XY, Sunohara Y, Matsumoto H. Fluazifop-butyl causes membrane peroxidation in the herbicide-susceptible broad leaf weed bristly starbur (Acanthospermumhispidum). Pestic Biochem Physiol. 2004;78(2):93-102. [ Links ]

Mitton FM, Ferreira JLR, Gonzalez M, Miglioranza KSB, Monserrat JM. Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: Useful variables for selecting plants for soil phytoremediation? Pestic Biochem Physiol. 2016;130:17-21. [ Links ]

Moldes CA, Medici LO, Abrahão OS, Tsai SM, Azevedo RA. Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiol Plant. 2008;30(4):469-79. [ Links ]

Mwevura H. Study on the levels of organochlorine pesticide residues from selected aquatic bodies of Tanzania [thesis]. Tanzania: University of Dar es Salaam; 2000. [ Links ]

Parween T, Jan S, Fatma MT. Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int J Environ Sci Technol. 2012;9(4):605-12. [ Links ]

Qian HF, Lu T, Peng XF, Han X, Fu ZW, Liu WP. Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana. PLoSOne. 2011;6(5):e19451. [ Links ]

Radwan DEM. Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pest Biochem Physiol. 2012;102:182-8. [ Links ]

San Miguel, Faure M, Ravanel P, Raveton M. Biological responses of maize (Zea mays) plants exposed to chlorobenzenes. Case study of monochloro-, 1, 4-dichloro-and 1, 2, 4-trichloro-benzenes. Ecotoxicology. 2012;21(2):315-24. [ Links ]

Sergiev IG, Alexieva VS, Ivanov SV, Moskova II, Karanov EN. The phenylureacytokinin 4PU-30 protects maize plants against glyphosate action. Pest Biochem Physiol. 2006;8(3)5:139-46. [ Links ]

Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R. Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicol Environ Safe. 2016a;133:195-201. [ Links ]

Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral A. Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci. 2016d;7:1569. Doi: 10.3389/fpls.2016.01569. [ Links ]

Sharma A,Kumar V, Thukral AK, Bhardwaj R. Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L. Indian J Plant Physiol. 2016c;21:70-5. [ Links ]

Sharma A, Bhardwaj R, Kumar V, Thukral AK. GC-MS studies reveal stimulated pesticide detoxification by brassinolide application in Brassica juncea L. plants. Environ Sci Pollut Res. 2016b;23(14):14518-25. [ Links ]

Sharma A, Kumar V, Kanwar MK, Thukral AK, Bhardwaj R. Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L. Russ J Plant Physiol. 2017a;64(4):509-17. [ Links ]

Sharma A, Kumar V, Bhardwaj R, Thukral AK. Seed pre-soaking with 24-epibrassinolide reduces the imidacloprid pesticide residues in green pods of Brassica juncea L. Toxicol Environ Chem. 2017c;99:95-103. [ Links ]

Sharma A, Thakur S, Kumar V, Kesavan AK, Thukral AK, Bhardwaj R. 24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biol. 2017b;17:56. Doi:10.1186/s12870-017-1003-9 [ Links ]

Sharma A, Kumar V, Kumar R, Shahzad B, Thukral AK, Bhardwaj R. Brassinosteroid-mediated pesticide detoxification in plants: A mini-review. Cog Food Agric. 2018a; 4: doi.org/10.1080/23311932.2018.1436212 [ Links ]

Sharma A, Kumar V, Yuan H, Kanwar MK, Bhardwaj R, Thukral AK, Zheng B. Jasmonic acid seed treatment stimulates insecticide detoxification in Brassica juncea L. Fron Plant Sci. 2018b; 9:1609. doi: 10.3389/fpls.2018.01609 [ Links ]

Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A, Song H, Rehman S, Zhaorong D. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxicol Environ Saf. 2018; 147: 935-44. [ Links ]

Sharma I, Bhardwaj R, Pati PK. Mitigation of adverse effects of chlorpyrifos by 24-epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotoxicol Environ Safe. 2012;85:72-81. [ Links ]

Sharma I, Bhardwaj R, Pati PK. Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pestic Biochem Physiol. 2013;105:144-53. [ Links ]

Sharma I, Bhardwaj R, Pati PK. Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. J Plant Growth Regul. 2015;34:509-18. [ Links ]

Singh H, Singh NB, Singh A, Hussain I, Yadav V. Physiological and biochemical effects of salicylic acid on Pisum sativum exposed to isoproturon. Arch Agron Soil Sci. 2016;62(10):1425-1436. [ Links ]

Singh NB, Yadav K, Amist N. Mitigating effects of salicylic acid against herbicidal stress. J Stress Physiol Biochem. 2012;8:27-35 [ Links ]

Singh VP, Kumar J, Singh S, Prasad SM. Dimethoate modifies enhanced UV-B effects on growth, photosynthesis and oxidative stress in mung bean (Vigna radiata L.) seedlings: implication of salicylic acid. Pestic Biochem Physiol. 2014;116:13-23. [ Links ]

Song NH, Yin XL, Chen GF, Yang H. Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere. 2007;68(9):1779-87. [ Links ]

Štajner D, Popoviæ M, Štajner M. Herbicide induced oxidative stress in lettuce, beans, pea seeds and leaves. Biol Plant. 2003;47(4):575-9. [ Links ]

Tan W, Li Q, Zhai H. Photosynthesis and growth responses of grapevine to acetochlor and fluoroglycofen. Pestic Biochem Physiol. 2012;103:210-8. [ Links ]

Tomer N. Determination of chlorinated pesticide in vegetables, cereals and pulses by gas chromatography in east national capital region, Delhi, India. Res J Agric For Sci. 2013;1:27-8. [ Links ]

Wang M, Zhou Q. Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum). Ecotox Environ Safe. 2006;64:190-7. [ Links ]

Wang Q, Que X, Zheng R, Pang Z, Li C, Xiao B. Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants. Environ Sci Pollut Res. 2015;22(13):9646-57. [ Links ]

Wu GL, Cui J, Tao L, Yang H. Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa). Ecotoxicology. 2010;19:124-32. [ Links ]

Xia XJ, Huang YY, Wang L, Huang LF, Yu WL, Zhou YH, Yu JQ. Pesticides induced depression of photosynthesis was alleviated by 24-epi-brassinolide pre-treatment in Cucumis sativus L. Pestic Biochem Physiol. 2006;86:42-8. [ Links ]

Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K. et al. Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem. 2009;57(18):8406-13. [ Links ]

Yin XL, Jiang L, Song NH, Yang H. Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem. 2008;56(12):4825-31. [ Links ]

Zhang JJ, Lu YC, Zhang JJ, Tan LR, Yang H Accumulation and toxicological response of atrazine in rice crops. Ecotoxicol Environ Safe. 2014;102:105-12. [ Links ]

Zhang Q, Zhao M, Qian H, Lu T, Zhang Q, Liu W. Enantioselective damage of diclofop acid mediated by oxidative stress and acetyl-CoA carboxylase in nontarget plant Arabidopsis thaliana. Environ Sci Technol. 2012;46(15):8405-12. [ Links ]

Zhao RG, P-Y, Yuan X-Y, Wang J-Y, Han M-Q. Effect of paraquat on the antioxidative enzyme activities and lipid peroxidation in opium poppy (Papaver somniferum L.). J Plant Dis Prot. 2010;117(2):55-9. [ Links ]

Received: August 21, 2017; Accepted: September 18, 2017

* Corresponding author: <anketsharma@gmail.com>

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License