SciELO - Scientific Electronic Library Online

 
vol.28 issue5Cationic Micellar Precipitation for Simultaneous Preconcentration of Benzimidazole Anthelmintics in Milk Samples by High-Performance Liquid ChromatographyExploratory Analysis of Biodiesel by Combining Comprehensive Two-Dimensional Gas Chromatography and Multiway Principal Component Analysis author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Journal of the Brazilian Chemical Society

Print version ISSN 0103-5053On-line version ISSN 1678-4790

Abstract

SILVA, Gustavo B. da et al. Studies of the Colloidal Properties of Superparamagnetic Iron Oxide Nanoparticles Functionalized with Platinum Complexes in Aqueous and PBS Buffer Media. J. Braz. Chem. Soc. [online]. 2017, vol.28, n.5, pp.731-739. ISSN 0103-5053.  http://dx.doi.org/10.21577/0103-5053.20160221.

This work has focused on the synthesis of three nanosystems composed of superparamagnetic iron oxide nanoparticles (SPIONs) coated either with a carboxylate platinum(IV) complex (PD = cis,cis,trans-[Pt(NH3)2Cl2(HOOCCH2CH2COO)(OH)]) or with platinum(II) complex functionalized dextrans (DexPt1 = [Pt(Dex-NH2)Cl3] and DexPt2 = [Pt(Dex-NH2)(NH3)2(H2O)]). All nanosystems have shown superparamagnetic behavior. Powder X-ray diffraction (XRD) has confirmed that the SPIONs were iron oxide phase and transmission electron microscopy (TEM) has shown average size of 6 nm (M6). Characterization of the nanosystems by inductively coupled plasma atomic emission spectroscopy (ICP AES) has revealed the presence of platinum on their surface (M6@PD, 0.54 mmol g-1 of Fe and M6@CA@DexPt1-2, 0.32-1.20 mmol g-1 of Fe); infrared spectroscopy (IR) and thermogravimetric and differential thermal analyses (TG-DTA) have confirmed the presence of dextran. Furthermore, the colloidal properties of these nanosystems (M6@PD and M6@CA@DexPt1-2) have been evaluated in water and in PBS buffer. Although M6@PD has shown good colloidal dispersion in water in the pH range of 2.0-8.0, the system underwent rapid agglomeration in PBS buffer. The M6@CA@DexPt1-2 nanosystems have exhibited improved colloidal behavior both in water and in PBS, where hydrodynamic sizes were kept below 100 nm over a large pH range (2.0-12.0). Furthermore, the latter systems have displayed isoelectric points below pH 5.0 and low surface charges at pH 7.0 (ζ-potential = -10 mV) and therefore PBS did not affect their colloidal stability.

Keywords : colloidal stability; dextran; iron oxide; platinum complexes; superparamagnetism.

        · text in English     · English ( pdf )