Acessibilidade / Reportar erro

How should dexmedetomidine and clonidine be prescribed in the critical care setting?

ABSTRACT

Cardiac, ventilatory and kidney management in the critical care setting has been optimized over the past decades. Cognition and sedation represent one of the last remaning challenges. As conventional sedation is suboptimal and as the sedation evoked by alpha-2 adrenergic agonists (“cooperative” sedation with dexmedetomidine, clonidine or guanfacine) represents a valuable alternative, this manuscript covers three practical topics for which evidence-based medicine is lacking: a) Switching from conventional to cooperative sedation (“switching”): the short answer is the abrupt withdrawal of conventional sedation, immediate implementation of alpha-2 agonist infusion and the use of “rescue sedation” (midazolam bolus[es]) or “breakthrough sedation” (haloperidol bolus[es]) to stabilize cooperative sedation. b) Switching from conventional to cooperative sedation in unstable patients (e.g., refractory delirium tremens, septic shock, acute respiratory distress syndrome, etc.): to avoid hypotension and bradycardia evoked by sympathetic deactivation, the short answer is to maintain the stroke volume through volume loading, vasopressors and inotropes. c) To avoid these switches and associated difficulties, alpha-2 agonists may be considered first-line sedatives. The short answer is to administer alpha-2 agonists slowly from admission or endotracheal intubation up to stabilized cooperative sedation. The “take home” message is as follows: a) alpha-2 agonists are jointly sympathetic deactivators and sedative agents; b) sympathetic deactivation implies maintaining the stroke volume and iterative assessment of volemia. Evidence-based medicine should document our propositions.

Keywords:
Critical care; Sedation; General anesthesia; Alpha-2 adrenergic agonists; Clonidine; Dexmedetomidine; Guanfacine

RESUMO

O manejo cardíaco, ventilatório e renal no ambiente de terapia intensiva tem melhorado nas últimas décadas. Cognição e sedação representam dois dos últimos desafios a vencer. Como a sedação convencional não é ideal, e a sedação evocada por agonistas adrenérgicos alfa-2 (sedação “cooperativa” com dexmedetomidina, clonidina ou guanfacina) representa uma alternativa valiosa, este artigo abrange três tópicos práticos para os quais há lacunas na medicina baseada em evidência. O primeiro deles é a mudança de sedação convencional para sedação cooperativa (“mudança”): a resposta curta consiste em retirada abrupta de sedação convencional, implantação imediata de infusão de um agonista alfa-2 e uso de “sedação de resgate” (bolos de midazolam) ou “sedação agressiva” (haloperidol em bolos) para estabilizar a sedação cooperativa. O segundo tópico é a mudança de sedação convencional para sedação cooperativa em pacientes instáveis (por exemplo: delirium tremens refratário, choque séptico, síndrome do desconforto respiratório agudo etc.), pois, para evitar a hipotensão e a bradicardia provocadas por desativadores simpáticos, a resposta curta é manter o volume sistólico por administração de volume, vasopressores e inotrópicos. Por fim, para evitar essas mudanças e dificuldades associadas, os agonistas alfa-2 podem ser sedativos de primeira linha. A resposta curta é administrar agonistas alfa-2 lentamente desde a admissão ou intubação endotraqueal, até estabilização da sedação cooperativa. Dessa forma, conclui-se que os agonistas alfa-2 são, ao mesmo tempo, agentes desativadores simpáticos e sedativos, bem como a desativação simpática implica na manutenção do volume sistólico e na avaliação persistente da volemia. A medicina baseada em evidência deve documentar esta proposta.

Descritores:
Cuidados críticos; Sedação; Anestesia geral; Agonistas de receptores adrenérgicos alfa 2; Clonidina; Dexmedetomidina; Guanfacina

INTRODUCTION

Circulatory, ventilatory, renal and metabolic management has progressed over the decades, but cognition and sedation are lagging behind. During this interval, the following reversals have occurred: from no sedation to general anesthesia (GA)/deep conventional sedation,(11 Petty TL. Suspended life or extending death? Chest. 1998;114(2):360-1.) to interrupted sedation and back(22 Brochard L. Less sedation in intensive care: the pendulum swings back. Lancet. 2010;375(9713):436-8.) to minimal sedation.(33 Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475-80.) Minimal sedation is possible, given repeated nursing reassurance (“reassurance”) and a provision for deeper sedation.(33 Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475-80.,44 Strom T, Stylsvig M, Toft P. Long-term psychological effects of a no-sedation protocol in critically ill patients. Crit Care. 2011;15(6):R293.)

Alpha-2 adrenergic agonists (“alpha-2 agonists”: clonidine, dexmedetomidine, guanfacine) evoke “cooperative”, rousable sedation#(55 Dollery CT, Davies DS, Draffan GH, Dargie HJ, Dean CR, Reid JL, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976;19(1):11-7.

6 Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230(4731):1273-6.
-77 Venn RM, Newman J, Grounds M. A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit. Intensive Care Med. 2003;29(2):201-7.) and offer an alternative between GA and no sedation. Cooperative sedation reduces the affective-motivational component of pain (indifference to pain, “analgognosia”)(88 Kauppila T, Kemppainen P, Tanila H, Pertovaara A. Effect of systemic medetomidine, an alpha-2 adrenoceptor agonist, on experimental pain in humans. Anesthesiology. 1991;74(1):3-8.) and evokes indifference to the environment (“ataraxia”) without respiratory depression.(99 Bailey PL, Sperry RJ, Johnson GK, Eldredge SJ, East KA, East TD, et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology. 1991;74(1):43-8.

10 Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77(6):1125-33.
-1111 Voituron N, Hilaire G, Quintin L. Dexmedetomidine and clonidine induce long-lasting activation of the respiratory rhythm generator of neonatal mice: possible implication for critical care. Respir Physiol Neurobiol. 2012;180(1):132-40.) The same dose range(1212 Davies DS, Wing AM, Reid JL, Neill DM, Tipett P, Dollery CT. Pharmacokinetics and concentration-effect relationships of intravenous and oral clonidine. Clin Pharmacol Ther. 1977;21(5):593-601.

13 Ghignone M, Quintin L, Duke PC, Kehler CH, Calvillo O. Effects of clonidine on narcotic requirements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology. 1986;64(1):36-42.
-1414 Colin PJ, Hannivoort LN, Eleveld DJ, Reyntjens KM, Absalom AR, Vereecke HE, et al. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br J Anaesth. 2017;119(2):211-20.) of alpha-2 agonists that generates cooperative sedation leads to cardiac parasympathetic activation (“cardiac vagal” activation) and attenuation of excessive cardiac and vasomotor sympathetic activity observed in the critical care unit (CCU) back toward baseline (normalization toward baseline: “sympathetic deactivation”; suppressed noradrenaline overflow: “suppressed overflow”). Given the circulatory drawbacks in hypovolemic patients, only niche indications are to be considered (“personalized” medicine), which contradicts the “one size fits all” approach. Circulation is a major concern. In the setting of systolic(1515 Giles TD, Iteld BJ, Mautner RK, Rognoni PA, Dillenkoffer RL. Short-term effects of intravenous clonidine in congestive heart failure. Clin Pharmacol Ther. 1981;30(6):724-8.,1616 Hermiller JB, Magorien RD, Leithe ME, Unverferth DV, Leier CV. Clonidine in congestive heart failure: a vasodilator with negative inotropic effects. Am J Cardiol. 1983;51(5):791-5.) or diastolic(1717 Stefanadis C, Manolis A, Dernellis J, Tsioufis C, Tsiamis E, Gavras I, et al. Acute effect of clonidine on left ventricular pressure-volume relation in hypertensive patients with diastolic heart dysfunction. J Hum Hypertens. 2001;15(9):635-42.) failure or cardiogenic pulmonary edema and a low left ventricular (LV) ejection fraction,(1818 Schraub P, Vecchi M, Matthys M, Lecomte B, Ferrara N, Ghignone M, et al. A centrally acting antihypertensive, clonidine, combined to a venous dilator, nitroglycerin, to handle severe pulmonary edema. Am J Emerg Med. 2016;34(3):676.e5-7.) the sympathetic deactivation of capacitance (veins) and resistance vessels (arteries(1919 Aars H. Effects of clonidine on aortic diameter and aortic baroreceptor activity. Eur J Pharmacol. 1972;20(1):52-9.,2020 Motz W, Ippisch R, Strauer BE. The role of clonidine in hypertensive heart disease. Influence on myocardial contractility and left ventricular afterload. Chest. 1983;83(2 Suppl):433-5.)) is beneficial. Venous return is reduced, and ejection improves. In the hypovolemia scenario, alpha-2 agonists further reduce venous return (Figure 1(2121 Prys-Roberts C. Regulation of the circulation. In: Prys-Roberts C, editor. The circulation in anaesthesia: applied physiology and pharmacology. Oxford: Blackwell; 1980. p. 179-207.)) and stroke volume (SV) and worsen circulatory distress (bradycardia, hypotension, up to cardiac arrest).

Benefits include cognitive(66 Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230(4731):1273-6.,2222 Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644-53.

23 Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared with Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489-99.

24 Mirski MA, Lewin JJ 3rd, Ledroux S, Thompson C, Murakami P, Zink EK, et al. Cognitive improvement during continuous sedation in critically ill, awake and responsive patients: the Acute Neurological ICU Sedation Trial (ANIST). Intensive Care Med. 2010;36(9):1505-13.
-2525 Arnsten AF, Jin LE. Guanfacine for the treatment of cognitive disorders: a century of discoveries at Yale. Yale J Biol Med. 2012;85(1):45-58.) or sleep(2626 Alexopoulou C, Kondili E, Diamantaki E, Psarologakis C, Kokkini S, Bolaki M, et al. Effects of dexmedetomidine on sleep quality in critically ill patients: a pilot study. Anesthesiology. 2014;121(4):801-7.) improvements, spontaneous breathing,(99 Bailey PL, Sperry RJ, Johnson GK, Eldredge SJ, East KA, East TD, et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology. 1991;74(1):43-8.,1111 Voituron N, Hilaire G, Quintin L. Dexmedetomidine and clonidine induce long-lasting activation of the respiratory rhythm generator of neonatal mice: possible implication for critical care. Respir Physiol Neurobiol. 2012;180(1):132-40.,2727 Ruokonen E, Parviainen I, Jakob SM, Nunes S, Kaukonen M, Shepherd ST, Sarapohja T, Bratty JR, Takala J; “Dexmedetomidine for Continuous Sedation” Investigators. Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation. Intensive Care Med. 2009;35(2):282-90.) improved circulation,(1515 Giles TD, Iteld BJ, Mautner RK, Rognoni PA, Dillenkoffer RL. Short-term effects of intravenous clonidine in congestive heart failure. Clin Pharmacol Ther. 1981;30(6):724-8.,2828 De Kock M, Laterre PF, Van Obbergh L, Carlier M, Lerut J. The effects of intraoperative intravenous clonidine on fluid requirements, hemodynamic variables, and support during liver transplantation: a prospective, randomized study. Anesth Analg. 1998;86(3):468-76.) kidney function,(2929 Liepert DJ, Townsend GE. Improved hemodynamic and renal function with clonidine in coronary artery bypass grafting. Anesth Analg. 1990;70(2):S240.,3030 Kulka PJ, Tryba M, Zenz M. Preoperative alpha-2 adrenergic receptor agonists prevent the deterioration of renal function after cardiac surgery: results of a randomized, controlled trial. Crit Care Med. 1996;24(6):947-52.) anti-inflammation$(3131 von Dossow V, Baehr N, Moshirzadeh M, von Heymann C, Braun JP, Hein OV, et al. Clonidine attenuated early proinflammatory response in T-cell subsets after cardiac surgery. Anesth Analg. 2006;103(4):809-14.

32 Li B, Li Y, Tian S, Wang H, Wu H, Zhang A, et al. Anti-inflammatory effects of perioperative dexmedetomidine administered as an adjunct to general anesthesia: a meta-analysis. Sci Rep. 2015;5:12342.

33 Ueki M, Kawasaki T, Habe K, Hamada K, Kawasaki C, Sata T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia. 2014;69(7):693-700.

34 Flanders CA, Rocke AS, Edwardson SA, Baillie JK, Walsh TS. The effect of dexmedetomidine and clonidine on the inflammatory response in critical illness: a systematic review of animal and human studies. Crit Care. 2019;23(1):402.
-3535 Ohta Y, Miyamoto K, Kawazoe Y, Yamamura H, Morimoto T. Effect of dexmedetomidine on inflammation in patients with sepsis requiring mechanical ventilation: a sub-analysis of a multicenter randomized clinical trial. Crit Care. 2020;24(1):493.) and a reduced CCU stay.(3636 Zhang Z, Chen K, Ni H, Zhang X, Fan H. Sedation of mechanically ventilated adults in intensive care unit: a network meta-analysis. Sci Rep. 2017;7:44979.) Outcomes are improved,(3737 Gregorakos L, Kerezoudi E, Dimopoulos G, Thomaides T. Management of blood pressure instability in severe tetanus: the use of clonidine. Intensive Care Med. 1997;23(8):893-5.

38 Moritz RD, Machado FO, Pinto EP, Cardoso GS, Nassar SM. [Evaluate the clonidine use for sedoanalgesia in intensive care unit patients under prolonged mechanical ventilation]. Rev Bras Ter Intensiva. 2008;20(1):24-30. Portuguese.

39 Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, Herr DL, Maze M, Ely EW; MENDS investigators. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14(2):R38.

40 Ji F, Li Z, Nguyen H, Young N, Shi P, Fleming N, et al. Perioperative dexmedetomidine improves outcomes of cardiac surgery. Circulation. 2013;127(15):1576-84.

41 Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, Koami H, Beppu S, Katayama Y, Itoh M, Ohta Y, Yamamura H; Dexmedetomidine for Sepsis in Intensive Care Unit Randomized Evaluation (DESIRE) Trial Investigators. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: a randomized clinical trial. JAMA. 2017;317(13):1321-8.

42 Aso S, Matsui H, Fushimi K, Yasunaga H. Dexmedetomidine and mortality from sepsis requiring mecanical ventilation: a Japanese nationwide retrospective cohort study. J Intensive Care Med. 2020 Jul 22:885066620942154.

43 Eker C, Asgeirsson B, Grande PO, Schalén W, Nordstrom CH. Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med. 1998;26(11):1881-6.

44 Dizdarevic K, Hamdan A, Omerhodzic I, Kominlija-Smajic E. Modified Lund concept versus cerebral perfusion pressure-targeted therapy: a randomised controlled study in patients with secondary brain ischaemia. Clin Neurol Neurosurg. 2012;114(2):142-8.
-4545 Naredi S, Edén E, Zall S, Stephensen H, Rydenhag B. A standardized neurosurgical neurointensive therapy directed toward vasogenic edema after severe traumatic brain injury: clinical results. Intensive Care Med. 1998;24(5):446-51.) although the quality of the data suggests waiting for better evidence.

As alpha-2 agonists interfere with the autonomic system and cognition (propofol, etc.), problems arise: a) how to switch from conventional sedation to alpha-2 agonists (“switching”), e.g., in agitated or unstable patients, refractory delirium tremens (DT), circulatory/ventilatory distress, etc.; and b) how can alpha-2 agonists be prescribed as first-line sedatives de novo upon admission? This manuscript addresses the parasympathetic vs. sympathetic systems, circulation, and ventilation.

Evidence-based medicine is scarce regarding the prescription of alpha-2 agonists. A balanced group of stakeholders with a rigorous approach to the development of consensus guidelines should be convened, which is beyond the reach of our group of lay practitioners: despite its biases, this manuscript is published to help physicians who are not familiar with alpha-2 agonists. Presumably, no formal detailed international guidelines may ever be set up with respect to refractory DT, acute cardioventilatory distress, etc. We reviewed the literature (PubMed search terms: alpha-2 agonist, cooperative sedation, critical care, clonidine, dexmedetomidine, guanfacine). Our clinical practice spanning the period of 1980 - 2020 in several countries (USA, Québec, Belgium, France) is summarized (Table 1). Physiological, pharmacological and clinical matters have been delineated earlier.(4646 Pichot C, Ghignone M, Quintin L. Dexmedetomidine and clonidine: from second- to first-line sedative agents in the critical care setting? J Intensive Care Med. 2012;27(4):219-37.

47 Pichot C, Longrois D, Ghignone M, Quintin L. Dexmédetomidine et clonidine: revue de leurs propriétés pharmacodynamiques en vue de définir la place des agonistes alpha-2 adrénergiques dans la sédation en réanimation. Ann Fr Anesth Reanim. 2012;31(11):876-96.
-4848 Longrois D, Petitjeans F, Simonet O, de Kock M, Belliveau M, Pichot C, et al. Clinical practice: should we radically alter our sedation of critical care patients, especially given the COVID-19 pandemics? Rom J Anaesth Intensive Care. 2020;27(2):43-76.)

Figure 1
Relationship between smooth muscle activity and the frequency of sympathetic nerve stimuli in capacitance and resistance vessels: frequency-response curve is deduced for resistance (dashed) and capacitance (continuous) in cat skin muscle.
Table 1
How to prescribe alpha-2 agonist in the critical care setting

SWITCHING FROM CONVENTIONAL SEDATION TO COOPERATIVE SEDATION

Conventional sedation combines benzodiazepine or short-acting general anesthetics with opioid analgesics. Muscle relaxants are mainly used in the setting of acute respiratory distress syndrome (ARDS), traumatic brain injury,(4949 Chanques G, Jaber S, Jung B, Payen JF. Sédation-analgésie en réanimation de l’adulte. EMC Anesth Reanim. 2013;10:1-12.) etc. Nevertheless, a) emergence delirium is encountered following deep sedation. However, is this delirium related to the pathology itself, the CCU environment, or conventional sedation? Moreover, b) deep sedation, bordering GA (1), is used in clinical practice for ARDS or increased intracranial pressure(4949 Chanques G, Jaber S, Jung B, Payen JF. Sédation-analgésie en réanimation de l’adulte. EMC Anesth Reanim. 2013;10:1-12.) without evidence.(5050 Wrigge H, Downs JB, Hedenstierna G, Putensen C. Paralysis during mechanical ventilation in acute respiratory distress syndrome: back to the future? Crit Care Med. 2004;32(7):1628-9; author reply 1629-30.) Indeed, mortality is reduced using controlled mechanical ventilation (CMV), paralysis and proning.(5151 Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16.,5252 Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-68.) Nevertheless, a comparison of deep sedation + CMV + paralysis versus adequate spontaneous breathing(5050 Wrigge H, Downs JB, Hedenstierna G, Putensen C. Paralysis during mechanical ventilation in acute respiratory distress syndrome: back to the future? Crit Care Med. 2004;32(7):1628-9; author reply 1629-30.,5353 Pichot C, Picoche A, Saboya-Steinbach MI, Rousseau R, de Guys J, Lahmar M, et al. Combination of clonidine sedation and spontaneous breathing-pressure support upon acute respiratory distress syndrome: a feasability study in four patients. Acta Anaesthesiol Belg. 2012;63(3):127-33.

54 Pichot C, Petitjeans F, Ghignone M, Quintin L. Is there a place for pressure-support ventilation and high end-expiratory pressure combined to alpha-2 agonists early in severe diffuse acute respiratory distress syndrome? Med Hypotheses. 2013;80(6):732-7.

55 Petitjeans F, Pichot C, Ghignone M, Quintin L. Early severe acute respiratory distress syndrome: what’s going on? Part II: controlled vs. spontaneous ventilation? Anaesthesiol Intensive Ther. 2016;48(5):339-51. Table 1, An alternative strategy in early severe diffuse ARDS; p.341.
-5656 Petitjeans F, Pichot C, Ghignone M, Quintin L. Building on the shoulders of giants: is the use of early spontaneous ventilation in the setting of severe diffuse acute respiratory distress syndrome actually heretical? Turk J Anaesthesiol Reanim. 2018;46(5):339-47.) is missing.(5050 Wrigge H, Downs JB, Hedenstierna G, Putensen C. Paralysis during mechanical ventilation in acute respiratory distress syndrome: back to the future? Crit Care Med. 2004;32(7):1628-9; author reply 1629-30.) Therefore, these advances(5151 Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16.,5252 Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-68.) fall short methodologically, given a) the absence of a control group under adequate spontaneous breathing(5050 Wrigge H, Downs JB, Hedenstierna G, Putensen C. Paralysis during mechanical ventilation in acute respiratory distress syndrome: back to the future? Crit Care Med. 2004;32(7):1628-9; author reply 1629-30.) and b) the tendency to shorten(5757 Yoshida T, Papazian L. When to promote spontaneous respiratory activity in acute respiratory distress patients? Anesthesiology. 2014;120(6):1313-5.,5858 Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197(1):132-6.) GA + CMV + paralysis. An established practice(5151 Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16.,5252 Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-68.) without strong evidence(5050 Wrigge H, Downs JB, Hedenstierna G, Putensen C. Paralysis during mechanical ventilation in acute respiratory distress syndrome: back to the future? Crit Care Med. 2004;32(7):1628-9; author reply 1629-30.) faces unorthodox practice(5959 Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241-8.,6060 Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151(8):566-76.) or recent proof of concept.(5353 Pichot C, Picoche A, Saboya-Steinbach MI, Rousseau R, de Guys J, Lahmar M, et al. Combination of clonidine sedation and spontaneous breathing-pressure support upon acute respiratory distress syndrome: a feasability study in four patients. Acta Anaesthesiol Belg. 2012;63(3):127-33.,6161 Petitjeans F, Martinez J, Danguy des Deserts M, Leroy S, Quintin L, Escarment J. A centrally acting antihypertensive, clonidine, sedates patients presenting with acute res-piratory distress syndrome evoked by Severe acute respiratory syndrome-coronavirus 2. Crit Care Med. 2020;48(10):e991-e993.)

As most groups use cooperative sedation after conventional sedation, i.e., only when the patient is recovering and ready for tracheal extubation (“extubation”), switching from conventional to cooperative sedation is examined first.

Contraindications

Dexmedetomidine and clonidine are sympathetic inhibitors in healthy resting supine volunteers. In the CCU, given the increased sympathetic activity, they normalize sympathetic hyperactivity back toward baseline, i.e., sympathetic deactivators, with the following contraindications:
  • - Hypovolemia: See below.

  • - Bradycardia (spontaneous or drug-induced, e.g., by beta-blockers&), sick sinus syndrome, atrioventricular block II or III without a pacemaker.

  • - Liver failure (Child-Pugh C): Clonidine and dexmedetomidine are excreted through the kidney and liver, respectively. Moreover, clonidine and dexmedetomidine are useful in the scenarios of liver and kidney failure, respectively. Nevertheless, a) clonidine can be administered in the setting of acute renal failure if renal replacement therapy (RRT) is used, and b) dexmedetomidine can be used in the setting of liver cirrhosis.(6262 Wang L, Zhang A, Liu W, Liu H, Su F, Qi L. Effects of dexmedetomidine on perioperative stress response, inflammation and immune function in patients with different degrees of liver cirrhosis. Exp Ther Med. 2018;16(5):3869-74.)

Clonidine versus dexmedetomidine

The higher alpha-2/alpha-1 receptor selectivity of dexmedetomidine is of no clinical relevance but is only an in vitro finding.(6363 Virtanen R, Savola JM, Saano V, Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur J Pharmacol. 1988;150(1-2):9-14.) Rather, dexmedetomidine, also available p.o.,(6464 Chamadia S, Pedemonte JC, Hobbs LE, Deng H, Nguyen S, Cortinez LI, et al. A pharmacokinetic and pharmacodynamic study of oral dexmedetomidine. Anesthesiology. 2020;133(6):1223-33.) is implemented more easily by nurses than clonidine is (Simonet and de Kock, personal communication). In contrast, clonidine p.o. allows for convenient oral administration (nonintubated patient with DT), transitioning alpha-2 agonists from i.v. dexmedetomidine to p.o. clonidine to avoid alpha-2 agonist withdrawal, etc. Sedation is achieved within 30 - 60 minutes in healthy volunteers after clonidine 300µg p.o.(55 Dollery CT, Davies DS, Draffan GH, Dargie HJ, Dean CR, Reid JL, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976;19(1):11-7.,1212 Davies DS, Wing AM, Reid JL, Neill DM, Tipett P, Dollery CT. Pharmacokinetics and concentration-effect relationships of intravenous and oral clonidine. Clin Pharmacol Ther. 1977;21(5):593-601.)

Progressive versus abrupt switching

Abrupt withdrawal: Abrupt withdrawal of conventional sedation to achieve-2 < Richmond Agitation Sedation Scale (RASS) < +1 occurs immediately before initiation of dexmedetomidine infusion(2323 Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared with Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489-99.) (0.8μg.kg-1.h-1; loading bolus =1μg.kg-1 if necessary; infusion range: 0.15 - 1.5μg.kg-1.h-1(2222 Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644-53.)). Rescue sedation is used to achieve-2 < RASS < +1(2323 Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared with Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489-99.) using either a) fentanyl infusion, followed by a propofol bolus (25 - 50mg)(2222 Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644-53.) or b) midazolam (0.01 - 0.05mg.kg-1 per 10-minute intervals to a total of 4mg/8h) and fentanyl.(2323 Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared with Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489-99.)

Progressive switching: Withdrawal of conventional sedation is set over 2 hours. Meanwhile, the introduction of cooperative sedation was implemented over the same time interval (dexmedetomidine 0.4μg.kg-1.h-1, increased progressively to effect; [Figure 2(6565 Shehabi Y, Botha JA, Ernest D, Freebairn RC, Reade MC, Roberts BL, et al. Clinical application, the use of dexmedetomidine in intensive care sedation. Crit Care Shock. 2010;13(2):40-50.)]; a do not bolus” sticker was placed on the electric syringe and infusion line(6565 Shehabi Y, Botha JA, Ernest D, Freebairn RC, Reade MC, Roberts BL, et al. Clinical application, the use of dexmedetomidine in intensive care sedation. Crit Care Shock. 2010;13(2):40-50.)). A “ceiling” effect is reported with dexmedetomidine >1.5μg.kg-1.h-1.(77 Venn RM, Newman J, Grounds M. A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit. Intensive Care Med. 2003;29(2):201-7.) High-dose clonidine is 2μg.kg-1.h-1;(6666 Sauder P, Andreoletti M, Cambonie G, Capellier G, Feissel M, Gall O, et al. [Sedation and analgesia in intensive care (with the exception of new-born babies). French Society of Anesthesia and Resuscitation. French-speaking Resuscitation Society]. Ann Fr Anesth Reanim. 2008;27(7-9):541-51.) there is no reported ceiling effect. During the switch, before achieving steady-state cooperative sedation, rescue sedation is administered with boluses of midazolam (1mg) or propofol (25mg) to be repeated if necessary.(6565 Shehabi Y, Botha JA, Ernest D, Freebairn RC, Reade MC, Roberts BL, et al. Clinical application, the use of dexmedetomidine in intensive care sedation. Crit Care Shock. 2010;13(2):40-50.) Progressive switching requires experienced intensivists and critical care nurses.(6565 Shehabi Y, Botha JA, Ernest D, Freebairn RC, Reade MC, Roberts BL, et al. Clinical application, the use of dexmedetomidine in intensive care sedation. Crit Care Shock. 2010;13(2):40-50.) The drawbacks of progressive switching or of combined administration of dexmedetomidine with conventional sedation are as follows:
  1. Progressive switching and circulation: Simultaneous administration of conventional sedation and cooperative sedation combines the sympathetic deactivation evoked by alpha-2 agonists,(6767 Sun MK, Guyenet P. Effect of clonidine and gamma-aminobutyric acid on the discharges of medullo-spinal sympathoexcitatory neurons in the rat. Brain Res. 1986;368(1):1-17.) the sympathetic inhibition evoked by propofol(6868 Krassioukov AV, Gelb AW, Weaver LC. Action of propofol on central sympathetic mechanisms controlling blood pressure. Can J Anaesth. 1993;40(8):761-9.) and the parasympathetic activation evoked by opioids; this leads to a low heart rate (HR), blood pressure (BP) and cardiac output (CO).(6969 Bernard JM, Bourélli B, Homméril JL, Pinaud M. Effects of oral clonidine premedication and postoperative i.v. infusion on haemodynamic and adrenergic responses during recovery from anesthesia. Acta Anaesthesiol Scand. 1991;35(1):54-9.) If the patient under alpha-2 agonist infusion becomes agitated or restless, he may inappropriately receive an additional bolus of high-dose propofol (50 - 100mg) or a bolus of clonidine/dexmedetomidine. Consequently, severe bradycardia and hypotension may occur. To avoid such side effects, we used abrupt withdrawal. Abrupt withdrawal is performed during the day shift only, starting in the early morning£. The prescription specifies the target (-2 < RASS < 0), the range of dose of dexmedetomidine (≤ 1.5μg.kg-1.h-1), the rescue versus breakthrough sedation (rescue: midazolam 3 - 5mg repeated every 5 - 10 minutes up to-2 < RASS < 0; no propofol or thiopentone bolus except for brisk agitation and a “stat order” with the intensivist by the bedside; breakthrough: haloperidol bolus 5-10mg), and the supplementation (neuroleptics: see refractory DT).

  2. Combined cooperative and conventional sedation: An additive effect between opioids and alpha-2 agonists was delineated, with bradycardia and lowered CO.(6969 Bernard JM, Bourélli B, Homméril JL, Pinaud M. Effects of oral clonidine premedication and postoperative i.v. infusion on haemodynamic and adrenergic responses during recovery from anesthesia. Acta Anaesthesiol Scand. 1991;35(1):54-9.) Indeed, administration of clonidine pre- and postoperatively to patients administered the same dose of conventional GA led to bradycardia, hypotension and cardiac arrest(7070 Devereaux PJ, Sessler DI, Leslie K, Kurz A, Mrkobrada M, Alonso-Coello P, Villar JC, Sigamani A, Biccard BM, Meyhoff CS, Parlow JL, Guyatt G, Robinson A, Garg AX, Rodseth RN, Botto F, Lurati Buse G, Xavier D, Chan MT, Tiboni M, Cook D, Kumar PA, Forget P, Malaga G, Fleischmann E, Amir M, Eikelboom J, Mizera R, Torres D, Wang CY, Vanhelder T, Paniagua P, Berwanger O, Srinathan S, Graham M, Pasin L, Le Manach Y, Gao P, Pogue J, Whitlock R, Lamy A, Kearon C, Chow C, Pettit S, Chrolavicius S, Yusuf S; POISE-2 Investigators. Clonidine in patients undergoing noncardiac surgery. N Engl J Med. 2014;370(16):1504-13.) without sequelae.(7171 Sessler DI, Conen D, Leslie K, Yusuf S, Popova E, Graham M, Kurz A, Villar JC, Mrkobrada M, Sigamani A, Biccard BM, Meyhoff CS, Parlow JL, Guyatt G, Xavier D, Chan MTV, Kumar PA, Forget P, Malaga G, Fleischmann E, Amir M, Torres D, Wang CY, Paniagua P, Berwanger O, Srinathan S, Landoni G, Manach YL, Whitlock R, Lamy A, Balasubramanian K, Gilron I, Turan A, Pettit S, Devereaux PJ; Perioperative Ischemic Evaluation-2 Trial (POISE-2) Investigators. One-year results of a factorial randomized trial of aspirin versus placebo and clonidine versus placebo in patients having noncardiac surgery. Anesthesiology. 2020;132(4):692-701.) In the CCU, dexmedetomidine (1 - 1.5µg.kg-1.h-1, up to-2 < RASS < +1) led to no change in mortality (SPICE III).(7272 Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA; ANZICS Clinical Trials Group and the SPICE III Investigators. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506-17.) Greater bradycardia and hypotension were observed with combined cooperative and conventional sedation than with conventional sedation alone.(7272 Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA; ANZICS Clinical Trials Group and the SPICE III Investigators. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506-17.) However, deep sedation was used in 60% of conventional sedation patients (Day 1), while 75% of dexmedetomidine patients received propofol, midazolam or both.(7272 Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA; ANZICS Clinical Trials Group and the SPICE III Investigators. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506-17.,7373 Constantin JM, Godet T, James A, Monsel A. A small step for sedation that may become a giant leap for critical care medicine. Anaesth Crit Care Pain Med. 2019;38(5):425-7.) Therefore, any difference is obscured, and this trial(7272 Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA; ANZICS Clinical Trials Group and the SPICE III Investigators. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506-17.) is useless.(7373 Constantin JM, Godet T, James A, Monsel A. A small step for sedation that may become a giant leap for critical care medicine. Anaesth Crit Care Pain Med. 2019;38(5):425-7.) A post hoc analysis comparing dexmedetomidine alone to conventional sedation alone is needed(7373 Constantin JM, Godet T, James A, Monsel A. A small step for sedation that may become a giant leap for critical care medicine. Anaesth Crit Care Pain Med. 2019;38(5):425-7.,7474 Longrois D, Quintin L. Dexmedetomidine: superiority trials needed? Anaesth Crit Care Pain Med. 2016;35(3):237-8.) to reassess the outcome and make this large series(7272 Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA; ANZICS Clinical Trials Group and the SPICE III Investigators. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506-17.) useful.

Figure 2
Iterative passive leg raising (PLR) to address hypovolemia before administration of an alpha-2 agonist in patients presenting with circulatory instability.

In summary, mixing conventional sedation with cooperative sedation in the operating room(6969 Bernard JM, Bourélli B, Homméril JL, Pinaud M. Effects of oral clonidine premedication and postoperative i.v. infusion on haemodynamic and adrenergic responses during recovery from anesthesia. Acta Anaesthesiol Scand. 1991;35(1):54-9.,7070 Devereaux PJ, Sessler DI, Leslie K, Kurz A, Mrkobrada M, Alonso-Coello P, Villar JC, Sigamani A, Biccard BM, Meyhoff CS, Parlow JL, Guyatt G, Robinson A, Garg AX, Rodseth RN, Botto F, Lurati Buse G, Xavier D, Chan MT, Tiboni M, Cook D, Kumar PA, Forget P, Malaga G, Fleischmann E, Amir M, Eikelboom J, Mizera R, Torres D, Wang CY, Vanhelder T, Paniagua P, Berwanger O, Srinathan S, Graham M, Pasin L, Le Manach Y, Gao P, Pogue J, Whitlock R, Lamy A, Kearon C, Chow C, Pettit S, Chrolavicius S, Yusuf S; POISE-2 Investigators. Clonidine in patients undergoing noncardiac surgery. N Engl J Med. 2014;370(16):1504-13.,7575 Abi-Jaoude F, Brusset A, Ceddaha A, Schlumberger S, Raffin L, Dubois C, et al. Clonidine premedication for coronary artery bypass grafting under high-dose alfentanil anesthesia: intraoperative and postoperative hemodynamic study. J Cardiothorac Vasc Anesth. 1993;7(1):35-40.) or CCU(7272 Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA; ANZICS Clinical Trials Group and the SPICE III Investigators. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506-17.) leads to severe circulatory side effects.

Switching in the setting of preoperative, intraoperative and postoperative administration of alpha-2 agonists

Two situations may be considered:

Intraoperative opioid-free anesthesia was administered:(7676 De Kock M, Wiederkher P, Laghmiche A, Scholtes JL. Epidural clonidine used as the sole analgesic agent during and after abdominal surgery. A dose-response study. Anesthesiology. 1997;86(2):285-92.) the alpha-2 agonist was administered (see below).

Intraoperative conventional GA has been administered: given premedication with an alpha-2 agonist(1313 Ghignone M, Quintin L, Duke PC, Kehler CH, Calvillo O. Effects of clonidine on narcotic requirements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology. 1986;64(1):36-42.) or intraoperative administration of an alpha-2 agonist,(7676 De Kock M, Wiederkher P, Laghmiche A, Scholtes JL. Epidural clonidine used as the sole analgesic agent during and after abdominal surgery. A dose-response study. Anesthesiology. 1997;86(2):285-92.) if intraoperative opioids and general anesthetic administration have been reduced by 50-75%,(1313 Ghignone M, Quintin L, Duke PC, Kehler CH, Calvillo O. Effects of clonidine on narcotic requirements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology. 1986;64(1):36-42.,7777 Ghignone M, Calvillo O, Quintin L. Anesthesia and hypertension: the effect of clonidine on perioperative hemodynamics and isoflurane requirements. Anesthesiology. 1987;67(1):3-10.

78 Ghignone M, Noe C, Calvillo O, Quintin L. Anesthesia for ophthalmic surgery in the elderly: the effects of clonidine on intraocular pressure, perioperative hemodynamics, and anesthetic requirements. Anesthesiology. 1988;68(5):707-16.
-7979 Flacke JW, Bloor BC, Flacke WE, Wong D, Dazza S, Stead SW, et al. Reduced narcotic requirement by clonidine with improved hemodynamic and adrenergic stability in patients undergoing coronary bypass surgery. Anesthesiology. 1987;67(1):11-9.) then cooperative sedation is administered when reaching the CCU if the expected CCU length of stay is > 2 days. The dose of alpha-2 agonists (e.g., clonidine 900µg pre- and intraoperatively for aortic surgery;(8080 Quintin L, Bouilloc X, Butin E, Bayon MC, Brudon JR, Levron JC, et al. Clonidine for major vascular surgery in hypertensive patients: a double-blind, controlled, randomized study. Anesth Analg. 1996;83(4):687-95.) 4µg.kg-1/15 minutes during the induction of anesthesia for liver transplant(2828 De Kock M, Laterre PF, Van Obbergh L, Carlier M, Lerut J. The effects of intraoperative intravenous clonidine on fluid requirements, hemodynamic variables, and support during liver transplantation: a prospective, randomized study. Anesth Analg. 1998;86(3):468-76.)) is usually sufficient to cover the first postoperative day, with provision for opioid-free analgo-sedation and nicardipine (0.5mg to be repeated if needed). Technology addresses volume (pleth variability index, passive leg raising [PLR], echocardiography) or perfusion (ST monitoring, cerebral oxygenation). If, after volume adjustment, the perfusion pressure is a concern, adjuncts (very low dose noradrenaline 0.01 - 0.03µg.kg-1.min-1,(8181 Shehabi Y, Ruettimann U, Adamson H, Innes R, Ickeringill M. Dexmedetomidine infusion for more than 24 hours in critically ill patients: sedative and cardiovascular effects. Intensive Care Med. 2004;30(12):2188-96.) compression stockings, lower limb elevation) are used to counteract sympathetic deactivation. An additive effect between the incoming alpha-2 agonist and the opioid(6969 Bernard JM, Bourélli B, Homméril JL, Pinaud M. Effects of oral clonidine premedication and postoperative i.v. infusion on haemodynamic and adrenergic responses during recovery from anesthesia. Acta Anaesthesiol Scand. 1991;35(1):54-9.) should be eliminated. ii) If conventional GA has been administered, low-dose alpha-2 agonists will be introduced slowly (e.g., dexmedetomidine 0.4 - 0.7µg.kg-1.h-1) to effect.

Titration to effect

The required RASS (-2 < RASS < 0) deserves comments:
  1. We do not use-2 < RASS < +1 as others do:(2323 Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared with Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489-99.) Stringent absence of restlessness without any regular, repeated, brisk limb movements is required. In our practice, a patient presenting with the rare occurrence of brisk limb movements may present sudden agitation, assume an erect position and withdraw catheters and tubing in the middle of the night. First, to achieve stringent restlessness, alpha-2 agonists are administered up to the ceiling(77 Venn RM, Newman J, Grounds M. A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit. Intensive Care Med. 2003;29(2):201-7.) effect (dexmedetomidine 1.5μg.kg-1.h-1 for ≥ 3 hours; clonidine: 2μg.kg-1.h-1 for ≥ 6 hours). Second, if needed after this interval, neuroleptics are administered. This avoids the cognitive side effects of benzodiazepines (below: refractory DT). Midazolam is used only as rescue sedation during the switch, e.g., to facilitate nursing.

  2. Elderly patients appear less sensitive to the sedation evoked by alpha-2 agonists than young, muscular, combative, and addicted(8282 Gold MS, Pottash AL, Extein I, Kleber HD. Clonidine and opiate withdrawal. Lancet. 1980;2(8203):1078-9.) patients. Sleep is induced by carotid massage in young individuals,(8383 Schlager E, Meier T. A strange Balinese method of inducing sleep with some notes about balyans. Acta Trop. 1947;4(2):127-34.) i.e., possibly via cholinergic activation. In contrast, aging and a loss of forebrain cholinergic receptors are compatible with reduced sedative effects in elderly patients. Adequate sedation in elderly patients requires either very high doses of alpha-2 agonists (clonidine 4μg.kg-1.h-1; dexmedetomidine 2.5μg.kg-1.h-1) or low-dose neuroleptics added to high-dose alpha-2 agonists (clonidine 2μg.kg-1.h-1; dexmedetomidine 1.5μg.kg-1.h-1).

Antinociception

Once steady-state cooperative sedation is achieved, antinociception is considered. Patients presenting with medical conditions require little antinociception(77 Venn RM, Newman J, Grounds M. A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit. Intensive Care Med. 2003;29(2):201-7.) but only analgognosia(88 Kauppila T, Kemppainen P, Tanila H, Pertovaara A. Effect of systemic medetomidine, an alpha-2 adrenoceptor agonist, on experimental pain in humans. Anesthesiology. 1991;74(1):3-8.) and ataraxia, addressed by the alpha-2 agonist. In contrast, surgical patients present higher antinociceptive requirements.(77 Venn RM, Newman J, Grounds M. A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit. Intensive Care Med. 2003;29(2):201-7.) After assessment of the Visual Analog Scale (VAS) or Behavioral Pain Scale (BPS) score, opioids(2222 Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644-53.,2323 Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared with Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489-99.) (fentanyl 0.5 - 1μg.kg-1 every 15 minutes) or nonopioid analgesics can be selected. However, a) alpha-2 agonists evoke analgognosia(88 Kauppila T, Kemppainen P, Tanila H, Pertovaara A. Effect of systemic medetomidine, an alpha-2 adrenoceptor agonist, on experimental pain in humans. Anesthesiology. 1991;74(1):3-8.) and preserve respiratory genesis.(99 Bailey PL, Sperry RJ, Johnson GK, Eldredge SJ, East KA, East TD, et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology. 1991;74(1):43-8.

10 Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77(6):1125-33.
-1111 Voituron N, Hilaire G, Quintin L. Dexmedetomidine and clonidine induce long-lasting activation of the respiratory rhythm generator of neonatal mice: possible implication for critical care. Respir Physiol Neurobiol. 2012;180(1):132-40.) Nonopioid analgesics provide antinociception and preserve spontaneous breathing. Therefore, our protocol is as follows:
  1. Nefopam (100mg.d-1), low-dose ketamine (50mg.d-1) and tramadol (“weak” opioid: 400mg.d-1). These doses are reduced by 50 - 75% after 24 - 72 hours. This may be a consequence of accumulation or the indifference to pain evoked by the alpha-2 agonist following steady-state cooperative sedation.

  2. or lidocaine 0.5mg.kg-1.h-1 infusion (loading dose: 1mg.kg-1.h-1) or ketamine (0.25mgkg-1.h-1) infusion or gabapentin (Neurontin®, 100 - 900mg.day-1 [d-1]) or pregabalin (Lyrica®, 150 - 600mg.d-1) or carbamazepine (Tegretol®, 200 - 400mg.d-1) or amitriptyline (Laroxyl®, 12.5 - 25mg i.v. especially in the postoperative setting). Low-dose opioids are employed as rescue analgesics, if needed.

Overdose of alpha-2 agonists

In the setting of ambulatory cardiology, very high-dose alpha-2 agonists lead to resistant hypertension (clonidine 5400 - 6000µg.d-1).(8484 Wing LM, Reid JL, Davies DS, Dargie HJ, Dollery CT. Apparent resistance to hypotensive effect of clonidine. Br Med J. 1977;1(6054):136-8.,8585 Frisk-Holmberg M, Paalzow L, Wibell L. Relationship between the cardiovascular effects and steady-state kinetics of clonidine in hypertension. Demonstration of a therapeutic window in man. Eur J Clin Pharmacol. 1984;26(3):309-13.) High-dose dexmedetomidine (4µg.kg-1.h-1 for several hours) leads to hypertension and low HR (60 - 70 beats per min in a 2-year-old child) without sequelae upon reduced dexmedetomidine administration.(8686 Erkonen G, Lamb F, Tobias JD. High-dose dexmedetomidine-induced hypertension in a child with traumatic brain injury. Neurocrit Care. 2008;9(3):366-9.) Intentional or accidental overdose leads to minimal side effects: sedation, hypotension, bradycardia, and no respiratory depression.(8787 Stahle H. A historical perspective: development of clonidine. Baillieres Clin Anaesthesiol. 2000;14(2):236-46.

88 Meyer C, Cambray R. One hundred times the intended dose of caudal clonidine in three pediatric patients. Paediatr Anaesth. 2008;18(9):888-90.
-8989 Isbister GK, Heppell SP, Page CB, Ryan NM. Adult clonidine overdose: prolonged bradycardia and central nervous system depression, but not severe toxicity. Clin Toxicol (Phila). 2017;55(3):187-92.) Naloxone does not revert sedation.(8989 Isbister GK, Heppell SP, Page CB, Ryan NM. Adult clonidine overdose: prolonged bradycardia and central nervous system depression, but not severe toxicity. Clin Toxicol (Phila). 2017;55(3):187-92.) This margin of safety should not allow one to forget to address contraindications (see above).

SWITCHING IN UNSTABLE PATIENTS

Refractory delirium tremens

Alpha-2 agonists have been used in the setting of refractory DT to supplement conventional sedation.(9090 Metz G, Nebel B. [Clonidine in severe alcohol withdrawal delirium]. Fortschrift Med. 1983;101(26):1260-4. German.

91 Bohrer H, Bach A, Layer M, Werning P. Clonidine as a sedative adjunct in intensive care. Intensive Care Med.1990;16(4):265-6.
-9292 Spies CD, Dubisz N, Neumann T, Blum S, Muller C, Rommelspacher H, et al. Therapy of alcohol withdrawal syndrome in intensive care unit patients following trauma: results of a prospective, randomized trial. Crit Care Med. 1996;24(3):414-22.) Recently,(9393 Carrasco G, Baeza N, Cabré L, Portillo E, Gimeno G, Manzanedo D, et al. Dexmedetomidine for the treatment of hyperactive delirium refractory to haloperidol in nonintubated ICU patients: a nonrandomized controlled trial. Crit Care Med. 2016;44(7):1295-306.) low-dose dexmedetomidine (0.7μg.kg-1.h-1) was successfully supplemented with haloperidol in nonintubated patients (goal: RASS = 0; maximum haloperidol dose: 30mg.day-1 [d-1]). Dexmedetomidine achieves ≈93% satisfactory sedation levels (haloperidol ≈60%) and halves the CCU stay.(9393 Carrasco G, Baeza N, Cabré L, Portillo E, Gimeno G, Manzanedo D, et al. Dexmedetomidine for the treatment of hyperactive delirium refractory to haloperidol in nonintubated ICU patients: a nonrandomized controlled trial. Crit Care Med. 2016;44(7):1295-306.)

The rationale for using alpha-2 agonists as first-line agents up to the “ceiling” effect,(77 Venn RM, Newman J, Grounds M. A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit. Intensive Care Med. 2003;29(2):201-7.) with neuroleptics as second-line agents, on an ad hoc basis, is as follows:
  1. DT involves hyperactivity or hypoactivity of several central pathways (noradrenaline via alpha-2 receptors, dopamine, glutamate versus GABA). Thus, a combination of drugs manages a complex neurochemical pattern.

  2. Alpha-2 agonists lower the baseline activity of noradrenergic neurons but increase their reactivity(9494 Saunier CF, Akaoka H, de La Chapelle B, Charléty PJ, Chergui K, Chouvet G, et al. Activation of brain noradrenergic neurons during recovery from halothane anesthesia. Persistence of phasic activation after clonidine. Anesthesiology. 1993;79(5):1072-82.) (lowered “tonic” background activity, i.e., suppressed overflow versus increased “phasic” activity). The signal-to-noise ratio(9595 Servan-Schreiber D, Printz H, Cohen JD. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science. 1990;249(4971):892-5.) and the gain of the central noradrenergic dorsal system increase.(9696 Aston-Jones G, Cohen JD. Adaptative gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 2005;493(1):99-110.) Clinically, the patient is quiet and sedated (stage 2 sleep;(2626 Alexopoulou C, Kondili E, Diamantaki E, Psarologakis C, Kokkini S, Bolaki M, et al. Effects of dexmedetomidine on sleep quality in critically ill patients: a pilot study. Anesthesiology. 2014;121(4):801-7.,9797 Miyazaki S, Uchida S, Mukai J, Nishihara K. Clonidine effects on all-night human sleep: opposite action of low- and medium-dose clonidine on human NREM-REM sleep proportion. Psychiatry Clin Neurosci. 2004;58(2):138-44.)-2 ≤ RASS ≤ 0) but “fairly alert”(55 Dollery CT, Davies DS, Draffan GH, Dargie HJ, Dean CR, Reid JL, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976;19(1):11-7.) or cognitively improved(2424 Mirski MA, Lewin JJ 3rd, Ledroux S, Thompson C, Murakami P, Zink EK, et al. Cognitive improvement during continuous sedation in critically ill, awake and responsive patients: the Acute Neurological ICU Sedation Trial (ANIST). Intensive Care Med. 2010;36(9):1505-13.) upon a stimulus.

  3. The muscular tremor is abated,(9898 Harron DW, Riddell JG, Shanks RG. Effects of azepexole and clonidine on baroreceptor mediated reflex bradycardia and physiological tremor in man. Br J Clin Pharmacol. 1985;20(5):431-6.,9999 Tremblay LE, Bedard PJ. Effect of clonidine on motoneuron excitability in spinalised rats. Neuropharmacology. 1986;25(1):41-6.) and the temperature(100100 Mokhtari M, Sistanizad M, Farasatinasab M. Antipyretic effect of clonidine in intensive care unit patients: a nested observational study. J Clin Pharmacol. 2017;57(1):48-51.) and oxygen consumption (VO2)(101101 Quintin L, Viale JP, Annat G, Hoen JP, Butin E, Cottet-Emard JM, et al. Oxygen uptake after major abdominal surgery: effect of clonidine. Anesthesiology. 1991;74(2):236-41.

    102 Takahashi H, Nishikawa T, Mizutani T, Handa F. Oral clonidine premedication decreases energy expenditure in human volunteers. Can J Anaesth. 1997;44(3):268-72.
    -103103 Liatsi D, Tsapas B, Pampori S, Tsagourias M, Pneumatikos I, Matamis D. Respiratory, metabolic and hemodynamic effects of clonidine in ventilated patients presenting with withdrawal syndrome. Intensive Care Med. 2009;35(2):275-81.) are lowered.

When high-dose alpha-2 agonists (dexmedetomidine 1.5μg.kg-1.h-1; clonidine 2μg.kg-1.h-1) are insufficient to achieve-2 ≤ RASS ≤ 0 (stringent absence of restlessness) without tremor, neuroleptics are employed as second-line agents. When hallucinations were prominent, haloperidol (bolus: 5mg four times per day: 5mg x 4 i.v.; or infusion: 50mg/48mL/24h: 2mL.h-1, to be lowered as soon as possible) is administered. In contrast, when agitation was prominent, loxapine (100mg x 4 p.o. or via the nasogastric tube) is selected. Neuroleptics, then alpha-2 agonists, are tapered as soon as the absence of restlessness without tremor is ascertained for 24 hours.

Refractory DT patients with Gayet-Wernicke disease required clonidine 4 μg.kg-1.h-1+loxapine 400mgx4 to achieve-2 ≤ RASS ≤ 0 and the absence of tremor. To supplement a combination of high-dose alpha-2 agonist + neuroleptic (dexmedetomidine 1.5μg.kg-1.h-1 + haloperidol up to 50mg.d-1; clonidine 2μg.kg-1.h-1 + loxapine 100mgx4) and to avoid the administration of higher doses of alpha-2 agonists + neuroleptics, baclofen (50 - 150mg according to kidney function)(104104 Vourc’h M, Feuillet F, Mahe PJ, Sebille V, Asehnoune K; BACLOREA trial group. Baclofen to prevent agitation in alcohol-addicted patients in the ICU: study protocol for a randomised controlled trial. Trials. 2016;17(1):415.) or low-dose midazolam (0.5mg.h-1) may be considered.

Refractory DT in nonintubated patients(9393 Carrasco G, Baeza N, Cabré L, Portillo E, Gimeno G, Manzanedo D, et al. Dexmedetomidine for the treatment of hyperactive delirium refractory to haloperidol in nonintubated ICU patients: a nonrandomized controlled trial. Crit Care Med. 2016;44(7):1295-306.) is an issue. Do they require GA + intubation? These patients present short bouts without agitation or restlessness. Thus, young, combative, addicted patients are able to swallow clonidine (p.o. 7.5 - 10μg.kg-1.h-1; pills crunched or vials in a minimal amount of water) and achieve quietness within 30 - 60 minutes. A similar regimen may be used to transition from i.v. dexmedetomidine to oral clonidine (300µg every 6 hours, then 9 hours, then 12 hours, etc.),(105105 Gagnon DJ, Riker RR, Glisic EK, Kelner A, Perrey HM, Fraser GL. Transition from dexmedetomidine to enteral clonidine for ICU sedation: an observational pilot study. Pharmacotherapy. 2015;35(3):251-9.) up to discontinuation.(105105 Gagnon DJ, Riker RR, Glisic EK, Kelner A, Perrey HM, Fraser GL. Transition from dexmedetomidine to enteral clonidine for ICU sedation: an observational pilot study. Pharmacotherapy. 2015;35(3):251-9.) In this respect, guanfacine (Estulic®; half-life: 10 - 30 hours or extended-release guanfacine: Intuniv®) may be considered to initiate oral therapy or to transition from i.v. dexmedetomidine to an oral alpha-2 agonist.

Circulatory distress

Given the contraindications (see above), the administration of alpha-2 agonists is inadvisable in the setting of uncontrolled hemorrhage, septic or cardiogenic shock, etc. Indeed, for a short period of time, sympathetic activation is a lifesaver in regards to control of the pathology, and exogenous vasopressors and/or inotropes are required to maintain left ventricular perfusion pressure and/or contractility, in addition to endogenous sympathetic nervous activation. In contrast, AFTER controls acute cardioventilatory distress, and alpha-2 agonists deactivate the prolonged sympathetic hyperactivity observed in the CCU. After circulatory optimization, normalized sympathetic hyperactivity toward baseline may benefit metabolic syndrome, immunoparalysis, etc., e.g., in the following settings: circulatory failure following cardiac surgery(106106 Herr DL, Sum-Ping ST, England M. ICU sedation after coronary artery bypass graft surgery: dexmedetomidine-based versus propofol-based sedation regimens. J Cardiothorac Vasc Anesth. 2003;17(5):576-84.,107107 Lam F, Ransom C, Gossett JM, Kelkhoff A, Seib PM, Schmitz ML, et al. Safety and efficacy of dexmedetomidine in children with heart failure. Pediatr Cardiol. 2013;34(4):835-41.) or low ejection fraction in the medical setting;(1818 Schraub P, Vecchi M, Matthys M, Lecomte B, Ferrara N, Ghignone M, et al. A centrally acting antihypertensive, clonidine, combined to a venous dilator, nitroglycerin, to handle severe pulmonary edema. Am J Emerg Med. 2016;34(3):676.e5-7.) Sepsis;(3939 Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, Herr DL, Maze M, Ely EW; MENDS investigators. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14(2):R38.) mild,(108108 Cioccari L, Luethi N, Bailey M, Shehabi Y, Howe B, Messmer AS, Proimos HK, Peck L, Young H, Eastwood GM, Merz TM, Takala J, Jakob SM, Bellomo R; ANZICS Clinical Trials Group and the SPICE III Investigators. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit Care. 2020;24(1):441.) severe(109109 Morelli A, Sanfilippo F, Arnemann P, Hessler M, Kampmeier TG, D’Egidio A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients: a crossover trial. Crit Care Med. 2019;47(2):e89-e95.,110110 Leroy S, Aladin L, Laplace C, Jalem S, Rosenthal JM, Abrial A, et al. Introduction of a centrally anti-hypertensive, clonidine, reduces noradrenaline requirements in septic shock caused by necrotizing enterocolitis. Am J Emerg Med. 2017;35(2):377.e3-377.e5.) or refractory(111111 Pichot C, Mathern P, Khettab F, Ghignone M, Geloen A, Quintin L. Increased pressor response to noradrenaline during septic shock following clonidine? Anaesth Intensive Care. 2010;38(4):784-5.) septic shock; or unclamping of a liver graft,(2828 De Kock M, Laterre PF, Van Obbergh L, Carlier M, Lerut J. The effects of intraoperative intravenous clonidine on fluid requirements, hemodynamic variables, and support during liver transplantation: a prospective, randomized study. Anesth Analg. 1998;86(3):468-76.) with lowered noradrenaline requirements.

Sympathetic hyperactivity is normalized back toward baseline by alpha-2 agonists; background activity is lowered. A reduced noradrenaline overflow in the synaptic cleft leads to reactivation of alpha-1 receptors: desensitized receptors return to baseline activity (“upregulation”;(108108 Cioccari L, Luethi N, Bailey M, Shehabi Y, Howe B, Messmer AS, Proimos HK, Peck L, Young H, Eastwood GM, Merz TM, Takala J, Jakob SM, Bellomo R; ANZICS Clinical Trials Group and the SPICE III Investigators. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit Care. 2020;24(1):441.

109 Morelli A, Sanfilippo F, Arnemann P, Hessler M, Kampmeier TG, D’Egidio A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients: a crossover trial. Crit Care Med. 2019;47(2):e89-e95.
-110110 Leroy S, Aladin L, Laplace C, Jalem S, Rosenthal JM, Abrial A, et al. Introduction of a centrally anti-hypertensive, clonidine, reduces noradrenaline requirements in septic shock caused by necrotizing enterocolitis. Am J Emerg Med. 2017;35(2):377.e3-377.e5.,112112 Pichot C, Géloen A, Ghignone M, Quintin L. Alpha-2 agonists to reduce vasopressor requirements in septic shock? Med Hypotheses. 2010;75(6):652-6.

113 Geloen A, Chapelier K, Cividjian A, Dantony E, Rabilloud M, May CN, et al. Clonidine and dexmedetomidine increase the pressor response to norepinephrine in experimental sepsis: a pilot study. Crit Care Med. 2013;41(12):e431-8.
-114114 Lankadeva YR, Booth LC, Kosaka J, Evans RG, Quintin L, Bellomo R, et al. Clonidine restores pressor responsiveness to phenylephrine and angiotensin II in ovine sepsis. Crit Care Med. 2015;43(7):e221-9.) “denervation hypersensitivity”(112112 Pichot C, Géloen A, Ghignone M, Quintin L. Alpha-2 agonists to reduce vasopressor requirements in septic shock? Med Hypotheses. 2010;75(6):652-6.,115115 Hoffman BB, Lefkowitz RJ. Alpha-adrenergic receptor subtypes. N Engl J Med. 1980;302(25):1390-6.)). Increased pressor responsiveness to noradrenaline toward baseline follows.(113113 Geloen A, Chapelier K, Cividjian A, Dantony E, Rabilloud M, May CN, et al. Clonidine and dexmedetomidine increase the pressor response to norepinephrine in experimental sepsis: a pilot study. Crit Care Med. 2013;41(12):e431-8.,114114 Lankadeva YR, Booth LC, Kosaka J, Evans RG, Quintin L, Bellomo R, et al. Clonidine restores pressor responsiveness to phenylephrine and angiotensin II in ovine sepsis. Crit Care Med. 2015;43(7):e221-9.) Presumably, improved microcirculation(2828 De Kock M, Laterre PF, Van Obbergh L, Carlier M, Lerut J. The effects of intraoperative intravenous clonidine on fluid requirements, hemodynamic variables, and support during liver transplantation: a prospective, randomized study. Anesth Analg. 1998;86(3):468-76.,116116 Kulka PJ, Tryba M, Reimer T, Weisser H. Clonidine prevents tissue-malperfusion during extracorporal circulation. Anesth Analg. 1996;82:S254.) extends this upregulation to the peripheral capillaries. Progressive sympathetic vasomotor deactivation in capacitance vessels (veins)(2121 Prys-Roberts C. Regulation of the circulation. In: Prys-Roberts C, editor. The circulation in anaesthesia: applied physiology and pharmacology. Oxford: Blackwell; 1980. p. 179-207.,117117 Mellander S. Comparative studies on the adrenergic neuro-hormonal control of resistance and capacitance blood vessels in the cat. Acta Physiol Scand Suppl. 1960;50(176):1-86.) is combined with volume loading, which maintains venous return.(109109 Morelli A, Sanfilippo F, Arnemann P, Hessler M, Kampmeier TG, D’Egidio A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients: a crossover trial. Crit Care Med. 2019;47(2):e89-e95.) Increased LV compliance(1717 Stefanadis C, Manolis A, Dernellis J, Tsioufis C, Tsiamis E, Gavras I, et al. Acute effect of clonidine on left ventricular pressure-volume relation in hypertensive patients with diastolic heart dysfunction. J Hum Hypertens. 2001;15(9):635-42.) and vasomotor sympathetic deactivation in resistance vessels (arteries)(1515 Giles TD, Iteld BJ, Mautner RK, Rognoni PA, Dillenkoffer RL. Short-term effects of intravenous clonidine in congestive heart failure. Clin Pharmacol Ther. 1981;30(6):724-8.,1616 Hermiller JB, Magorien RD, Leithe ME, Unverferth DV, Leier CV. Clonidine in congestive heart failure: a vasodilator with negative inotropic effects. Am J Cardiol. 1983;51(5):791-5.,118118 Olivari MT, Levine TB, Cohn JN. Acute hemodynamic and hormonal effects of central versus peripheral sympathetic inhibition in patients with congestive heart failure. J Cardiovasc Pharmacol. 1986;8(5):973-7) and lowered LV impedance(1919 Aars H. Effects of clonidine on aortic diameter and aortic baroreceptor activity. Eur J Pharmacol. 1972;20(1):52-9.,2020 Motz W, Ippisch R, Strauer BE. The role of clonidine in hypertensive heart disease. Influence on myocardial contractility and left ventricular afterload. Chest. 1983;83(2 Suppl):433-5.) maintain the SV. Any hypotension, bradycardia or supraventricular arrhythmia relates to lowered venous return, coronary perfusion pressure or compliance.

Drugs combining sedation and sympathetic deactivation modify the circulation and require the following:
  1. Abrupt withdrawal of conventional sedation with rescue sedation as needed, up to steady-state cooperative sedation. However, in the conditions of low flow or pressure, the requirements for rescue, conventional or cooperative sedation are usually minimal.

  2. No hypovolemia: Following alpha-2 agonist administration, SV maintenance is required:(109109 Morelli A, Sanfilippo F, Arnemann P, Hessler M, Kampmeier TG, D’Egidio A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients: a crossover trial. Crit Care Med. 2019;47(2):e89-e95.) further volume loading will not evoke any further increase in CO or BP following PLR. To achieve SV maintenance, different protocols were used: 1500mL of fluid;(109109 Morelli A, Sanfilippo F, Arnemann P, Hessler M, Kampmeier TG, D’Egidio A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients: a crossover trial. Crit Care Med. 2019;47(2):e89-e95.) 10mL.kg-1;(6565 Shehabi Y, Botha JA, Ernest D, Freebairn RC, Reade MC, Roberts BL, et al. Clinical application, the use of dexmedetomidine in intensive care sedation. Crit Care Shock. 2010;13(2):40-50.) and a combination of the following:
    • - First, after each bolus (1000mL/70kg) or each increment of alpha-2 agonist, absence of or minimal collapsibility of the vena cava(119119 Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30(9):1734-9.,120120 Vieillard-Baron A, Evrard B, Repessé X, Maizel J, Jacob C, Goudelin M, et al. Limited value of end-expiratory inferior vena cava diameter to predict fluid responsiveness impact of intra-abdominal pressure. Intensive Care Med. 2018;44(2):197-203.) and/or increase in CO or BP following adequate PLR (Figure 3(121121 Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34(4):659-63.,122122 Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19(1):18.)): PLR separates the volume-responsive versus nonresponsive patients: the volume-responsive patients are not necessarily in a hypovolemic state and do not necessarily need additional volume. Volume is minimized to prevent increased lung water.(122122 Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19(1):18.,123123 Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472-80.) Nevertheless, following dexmedetomidine, 5 out of 20 patients with septic shock switched from preload independence to preload dependence.(124124 Yu T, Huang Y, Guo F, Yang Y, Teboul JL, Qiu H. The effects of propofol and dexmedetomidine infusion on fluid responsiveness in critically ill patients. J Surg Res. 2013;185(2):763-73.) This may evoke hypotension within the first 3 hours of administration(125125 Nelson KM, Patel GP, Hammond DA. Effects from continuous infusions of dexmedetomidine and propofol on hemodynamic stability in critically ill adult patients with septic shock. J Intensive Care Med. 2020;35(9):875-80.) and suggests iterative circulatory optimization.

    • - Second, the adequacy of CO and microcirculation are addressed: diuresis, capillary refill, mottling, lactate,(2828 De Kock M, Laterre PF, Van Obbergh L, Carlier M, Lerut J. The effects of intraoperative intravenous clonidine on fluid requirements, hemodynamic variables, and support during liver transplantation: a prospective, randomized study. Anesth Analg. 1998;86(3):468-76.,116116 Kulka PJ, Tryba M, Reimer T, Weisser H. Clonidine prevents tissue-malperfusion during extracorporal circulation. Anesth Analg. 1996;82:S254.,126126 Miyamoto K, Nakashima T, Shima N, Kato S, Ueda K, Kawazoe Y, Ohta Y, Morimoto T, Yamamura H; DESIRE Trial Investigators. Effect of dexmedetomidine on lactate clearance in patients with septic shock: a subanalysis of a multicenter randomized controlled trial. Shock. 2018;50(2):162-6.) O2 arteriovenous difference(127127 Flacke JW. Alpha-2 adrenergic agonists in cardiovascular anesthesia. J Cardiothorac Vasc Anesth. 1992;6(3):344-59.) or superior vena cava oxygen saturation (SsvcO2), carbon dioxide (CO2) gap.

  3. Slow administration of a low-dose alpha-2 agonist (dexmedetomidine 0.125μg.kg-1.h-1 i.v. increased incrementally to 1.5μg.kg-1.h-1 over 3 - 12 hours). We propose this overtly cautious approach and termed it start slow, go slow”, borrowed from the administration of beta-blockers in heart failure(128128 Chatterjee K. The fear of beta-blocker therapy in heart failure: time to forget. Arch Intern Med. 2004;164(13):1370-1.) (Figure 3). No alpha-2 agonist bolus is ever administered. Indeed, a high alpha-2 agonist concentration (bolus) will first stimulate vascular alpha-1 receptors, leading to paradoxical hypertension. After dilution of the bolus, brain stem alpha-2 receptors are stimulated, deactivating vasomotor sympathetic hyperactivity, enlarging venous capacitance, and reducing venous return(124124 Yu T, Huang Y, Guo F, Yang Y, Teboul JL, Qiu H. The effects of propofol and dexmedetomidine infusion on fluid responsiveness in critically ill patients. J Surg Res. 2013;185(2):763-73.) (Figure 1).(2121 Prys-Roberts C. Regulation of the circulation. In: Prys-Roberts C, editor. The circulation in anaesthesia: applied physiology and pharmacology. Oxford: Blackwell; 1980. p. 179-207.)

In summary, bolus alpha-2 agonist administration with simultaneous conventional sedation administration or without the iterative assessment of volemia leads to severe bradycardia and hypotension.

Figure 3
“Start slow, go slow” administration of alpha-2 agonists in patients presenting with circulatory instability.

Ventilatory distress

Established practice(5151 Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16.,5252 Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-68.) presents shortcomings.(5050 Wrigge H, Downs JB, Hedenstierna G, Putensen C. Paralysis during mechanical ventilation in acute respiratory distress syndrome: back to the future? Crit Care Med. 2004;32(7):1628-9; author reply 1629-30.) Alternative practices(5353 Pichot C, Picoche A, Saboya-Steinbach MI, Rousseau R, de Guys J, Lahmar M, et al. Combination of clonidine sedation and spontaneous breathing-pressure support upon acute respiratory distress syndrome: a feasability study in four patients. Acta Anaesthesiol Belg. 2012;63(3):127-33.,5959 Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241-8.,6161 Petitjeans F, Martinez J, Danguy des Deserts M, Leroy S, Quintin L, Escarment J. A centrally acting antihypertensive, clonidine, sedates patients presenting with acute res-piratory distress syndrome evoked by Severe acute respiratory syndrome-coronavirus 2. Crit Care Med. 2020;48(10):e991-e993.) are in their infancy.

Switching from conventional to cooperative sedation in the setting of hypovolemia and vasopressor administration addresses only one circulatory issue. In the setting of ventilatory distress, circulatory distress is intermingled with ventilatory distress:(129129 Viires N, Sillye G, Aubier M, Rassidakis A, Roussos C. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest. 1983;72(3):935-47.) respiratory arrest usually occurs before cardiac arrest and requires addressing ventilatory distress upfront; positive pressure ventilation with positive end-expiratory pressure (PEEP) imposed on hypovolemia worsens circulatory distress.

Switching in a stable patient

Switching is considered for a patient who has recovered from acute respiratory distress, i.e., before switching to spontaneous breathing. Conventional sedation is abruptly withdrawn. Dexmedetomidine was introduced (up to 1.5μg.kg-1.h-1 incrementally over 2 - 3 hours or, better, to effect:-2 ≤ RASS ≤ 0; see “circulatory distress”). Rescue sedation is administered if needed. Muscle relaxants are withdrawn immediately before steady-state cooperative sedation is established, with reassurance. Spontaneous breathing is established as soon as(130130 Page B, Vieillard-Baron A, Beauchet A, Aegerter P, Prin S, Jardin F. Low stretch ventilation strategy in acute respiratory distress syndrome: eight years of clinical experience in a single center. Crit Care Med. 2003;31(3):765-9.) the factors evoking increased inspiratory activity are controlled (“respiratory drive”, tachypnea and hyperpnea): fever control,(131131 Manthous CA, Hall JB, Olson D, Singh M, Chatila W, Pohlman A, et al. Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med. 1995;151(1):10-4.

132 Schortgen F, Clabault K, Katsahian S, Devaquet J, Mercat A, Deye N, et al. Fever control using external cooling in septic shock: a randomized controlled trial. Am J Respir Crit Care Med. 2012;185(10):1088-95.
-133133 Petitjeans F, Leroy S, Pichot C, Geloen A, Ghignone M, Quintin L. Hypothesis: fever control, a niche for alpha-2 agonists in the setting of septic shock and severe acute respiratory distress syndrome? Temperature (Austin). 2018;5(3):224-56.) agitation,(103103 Liatsi D, Tsapas B, Pampori S, Tsagourias M, Pneumatikos I, Matamis D. Respiratory, metabolic and hemodynamic effects of clonidine in ventilated patients presenting with withdrawal syndrome. Intensive Care Med. 2009;35(2):275-81.,134134 Coggeshall JW, Marini JJ, Newman JH. Improved oxygenation after muscle relaxation in adult respiratory distress syndrome. Arch Intern Med 1985;145(9):1718-20.) inflammation,(135135 Mauri T, Grasselli G, Suriano G, Eronia N, Spadaro S, Turrini C, et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. 2016;125(1):159-67.,136136 Crotti S, Bottino N, Ruggeri GM, Spinelli E, Tubiolo D, Lissoni A, et al. Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology. 2017;126(4):678-87.) lung water,(123123 Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472-80.) systemic acidosis(136136 Crotti S, Bottino N, Ruggeri GM, Spinelli E, Tubiolo D, Lissoni A, et al. Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology. 2017;126(4):678-87.

137 Pichot C, Petitjeans F, Ghignone M, Quintin L. Spontaneous ventilation-high PEEP upon severe ARDS: an erratum to further the analysis. Med Hypotheses. 2013;81(5):967.
-138138 Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990;16(6):372-7.) and microcirculation, mild permissive hypercapnia (40 < PaCO2 ≤ 50mmHg),(1010 Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77(6):1125-33.,6161 Petitjeans F, Martinez J, Danguy des Deserts M, Leroy S, Quintin L, Escarment J. A centrally acting antihypertensive, clonidine, sedates patients presenting with acute res-piratory distress syndrome evoked by Severe acute respiratory syndrome-coronavirus 2. Crit Care Med. 2020;48(10):e991-e993.) and upright positioning.(139139 Dellamonica J, Lerolle N, Sargentini C, Hubert S, Beduneau G, Di Marco F, et al. Effect of different seated positions on lung volume and oxygenation in acute respiratory distress syndrome. Intensive Care Med. 2013;39(6):1121-7.) This was delineated(5353 Pichot C, Picoche A, Saboya-Steinbach MI, Rousseau R, de Guys J, Lahmar M, et al. Combination of clonidine sedation and spontaneous breathing-pressure support upon acute respiratory distress syndrome: a feasability study in four patients. Acta Anaesthesiol Belg. 2012;63(3):127-33.,5454 Pichot C, Petitjeans F, Ghignone M, Quintin L. Is there a place for pressure-support ventilation and high end-expiratory pressure combined to alpha-2 agonists early in severe diffuse acute respiratory distress syndrome? Med Hypotheses. 2013;80(6):732-7.,5656 Petitjeans F, Pichot C, Ghignone M, Quintin L. Building on the shoulders of giants: is the use of early spontaneous ventilation in the setting of severe diffuse acute respiratory distress syndrome actually heretical? Turk J Anaesthesiol Reanim. 2018;46(5):339-47.,6161 Petitjeans F, Martinez J, Danguy des Deserts M, Leroy S, Quintin L, Escarment J. A centrally acting antihypertensive, clonidine, sedates patients presenting with acute res-piratory distress syndrome evoked by Severe acute respiratory syndrome-coronavirus 2. Crit Care Med. 2020;48(10):e991-e993.,137137 Pichot C, Petitjeans F, Ghignone M, Quintin L. Spontaneous ventilation-high PEEP upon severe ARDS: an erratum to further the analysis. Med Hypotheses. 2013;81(5):967.) in table 1 in the reference.(5555 Petitjeans F, Pichot C, Ghignone M, Quintin L. Early severe acute respiratory distress syndrome: what’s going on? Part II: controlled vs. spontaneous ventilation? Anaesthesiol Intensive Ther. 2016;48(5):339-51. Table 1, An alternative strategy in early severe diffuse ARDS; p.341.) The respiratory drive is not to be suppressed pharmacologically with GA, opioids or muscle relaxants but is used physiologically. The respiratory generator is unaffected by alpha-2 agonists.(1111 Voituron N, Hilaire G, Quintin L. Dexmedetomidine and clonidine induce long-lasting activation of the respiratory rhythm generator of neonatal mice: possible implication for critical care. Respir Physiol Neurobiol. 2012;180(1):132-40.) In contrast, general anesthetics, benzodiazepines, or opioids suppress the activity of the respiratory generator. Each of the factors enumerated above generates tachypnea and hyperpnea and is addressed separately, a differentiation impossible under GA. The physiological control of increased inspiratory activity leads to the absence of patient self-inflicted lung injury (P-SILI).(140140 Carteaux G, Millan-Guilarte T, De Prost N, Razazi K, Abid S, Thille AW, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med. 2016;44(2):282-90.,141141 Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438-42.) Then, the patient handles only one last factor of increased inspiratory activity, i.e., only hypoxemia under low PS-high PEEP(5353 Pichot C, Picoche A, Saboya-Steinbach MI, Rousseau R, de Guys J, Lahmar M, et al. Combination of clonidine sedation and spontaneous breathing-pressure support upon acute respiratory distress syndrome: a feasability study in four patients. Acta Anaesthesiol Belg. 2012;63(3):127-33.

54 Pichot C, Petitjeans F, Ghignone M, Quintin L. Is there a place for pressure-support ventilation and high end-expiratory pressure combined to alpha-2 agonists early in severe diffuse acute respiratory distress syndrome? Med Hypotheses. 2013;80(6):732-7.

55 Petitjeans F, Pichot C, Ghignone M, Quintin L. Early severe acute respiratory distress syndrome: what’s going on? Part II: controlled vs. spontaneous ventilation? Anaesthesiol Intensive Ther. 2016;48(5):339-51. Table 1, An alternative strategy in early severe diffuse ARDS; p.341.
-5656 Petitjeans F, Pichot C, Ghignone M, Quintin L. Building on the shoulders of giants: is the use of early spontaneous ventilation in the setting of severe diffuse acute respiratory distress syndrome actually heretical? Turk J Anaesthesiol Reanim. 2018;46(5):339-47.,142142 Pichot C, Petitjeans F, Ghignone G, Quintin L. Commentary: Spontaneous ventilation in the setting of early severe stabilized ARDS: heresy? Austin J Pulm Respir Med. 2016;3(2):id1046.) and cooperative sedation. Low driving pressure,(143143 Freebairn R, Hickling K. Spontaneous breathing during mechanical ventilation in ARDS. Crit Care Shock. 2005;8(3):61-6.

144 Leray V, Bourdin G, Flandreau G, Bayle F, Wallet F, Richard JC, et al. A case of pneumomediastinum in a patient with acute respiratory distress syndrome on pressure support ventilation. Respir Care. 2010;55(6):770-3.

145 Guldner A, Pelosi P, Gama de Abreu M. Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr Opin Crit Care. 2014;20(1):69-76.

146 Rittayamai N, Brochard L. Recent advances in mechanical ventilation in patients with acute respiratory distress syndrome. Eur Respir Rev. 2015;24(135):132-40.
-147147 Mezidi M, Guérin C. Complete assessment of respiratory mechanics during pressure support ventilation. Intensive Care Med. 2019;45(4):557-8.) plateau pressure, minimal activity of inspiratory accessory muscles and no sternal notch retraction were observed.

When acceptable, given-2 ≤ RASS ≤ 0, tracheal extubation is achieved without withdrawal of alpha-2 agonists: as alpha-2 agonists do not depress airway reflexes even when very high doses are used,(8484 Wing LM, Reid JL, Davies DS, Dargie HJ, Dollery CT. Apparent resistance to hypotensive effect of clonidine. Br Med J. 1977;1(6054):136-8.,148148 Onesti G, Bock KD, Heimsoth V, Kim KE, Merguet P. Clonidine: a new antihypertensive agent. Am J Cardiol. 1971;28(1):74-83.) the issue is not the dose of alpha-2 agonist that is administered but the degree of alertness versus deep sedation to allow for extubation. Continuous NIV+PEEP is conducted under continued alpha-2 agonist administration titrated to-2 ≤ RASS ≤ 0 up to weaning.

In summary, the management becomes analytical: administration of an alpha-2 agonist allows one to separate the physiological versus pharmacological factors involved in the management of ventilatory distress (increased inspiratory activity versus depressed or preserved respiratory generator; ataraxia(88 Kauppila T, Kemppainen P, Tanila H, Pertovaara A. Effect of systemic medetomidine, an alpha-2 adrenoceptor agonist, on experimental pain in humans. Anesthesiology. 1991;74(1):3-8.,149149 Saito J, Amanai E, Hirota K. Dexmedetomidine-treated hyperventilation syndrome triggered by the distress related with a urinary catheter after general anesthesia: a case report. JA Clin Rep. 2017;3(1):22.) versus deep sedation).

Switching in an unstable patient

Switching in a patient presenting with acute cardioventilatory distress under conventional sedation in the CCU involves prioritizing between simultaneous issues beyond the scope of this manuscript: stabilized circulation (see above), stabilized ventilatory distress (very high oxygen flow, NIV versus controlled mandatory ventilation(150150 Gattinoni L, Carlesso E, Brazzi L, Cressoni M, Rosseau S, Kluge S, et al. Friday night ventilation: a safety starting tool kit for mechanically ventilated patients. Minerva Anestesiol. 2014;80(9):1046-57.)), and switching from conventional to cooperative sedation (see above).

INITIATION OF DE NOVO COOPERATIVE SEDATION

Upfront administration of cooperative sedation is simpler than switching: spontaneous breathing(99 Bailey PL, Sperry RJ, Johnson GK, Eldredge SJ, East KA, East TD, et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology. 1991;74(1):43-8.

10 Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77(6):1125-33.
-1111 Voituron N, Hilaire G, Quintin L. Dexmedetomidine and clonidine induce long-lasting activation of the respiratory rhythm generator of neonatal mice: possible implication for critical care. Respir Physiol Neurobiol. 2012;180(1):132-40.) and cognition(2424 Mirski MA, Lewin JJ 3rd, Ledroux S, Thompson C, Murakami P, Zink EK, et al. Cognitive improvement during continuous sedation in critically ill, awake and responsive patients: the Acute Neurological ICU Sedation Trial (ANIST). Intensive Care Med. 2010;36(9):1505-13.,2525 Arnsten AF, Jin LE. Guanfacine for the treatment of cognitive disorders: a century of discoveries at Yale. Yale J Biol Med. 2012;85(1):45-58.) are not deteriorated by first-line alpha-2 agonists.

Isolated ventilatory distress

Dexmedetomidine (infusion: 0.7μg.kg-1.h-1) addresses agitation in patients treated with NIV presenting with postoperative ventilatory failure.(151151 Akada S, Takeda S, Yoshida Y, Nakazato K, Mori M, Hongo T, et al. The efficacy of dexmedetomidine in patients with noninvasive ventilation: a preliminary study. Anesth Analg. 2008;107(1):167-70.) The RASS normalizes itself to-3 < RASS < 0 over 3 hours.(151151 Akada S, Takeda S, Yoshida Y, Nakazato K, Mori M, Hongo T, et al. The efficacy of dexmedetomidine in patients with noninvasive ventilation: a preliminary study. Anesth Analg. 2008;107(1):167-70.) Simultaneously, the respiratory rate (RR), PaO2/FiO2 (P/F), HR, and systolic BP normalize. The patient is discharged without intubation.(151151 Akada S, Takeda S, Yoshida Y, Nakazato K, Mori M, Hongo T, et al. The efficacy of dexmedetomidine in patients with noninvasive ventilation: a preliminary study. Anesth Analg. 2008;107(1):167-70.) Accordingly, dexmedetomidine 0.7μg.kg-1.h-1 eases the adaptation to NIV in the setting of chest trauma.(152152 Deletombe B, Trouve-Buisson T, Godon A, Falcon D, Giorgis-Allemand L, Bouzat P, et al. Dexmedetomidine to facilitate non-invasive ventilation after blunt chest trauma: a randomised, double-blind, crossover, placebo-controlled pilot study. Anaesth Crit Care Pain Med. 2019;38(5):477-83.) These reports need replication.

A similar positive outcome was observed in the setting of severe bronchospasm (dexmedetomidine: 0.25 - 0.8μg.kg-1.h-1)(153153 Tobias JD, Berkenbosch JW, Russo P. Additional experience with dexmedetomidine in pediatric patients. South Med J. 2003;96(9):871-5.

154 Venkatraman R, Hungerford JL, Hall MW, Moore-Clingenpeel M, Tobias JD. Dexmedetomidine for sedation during noninvasive ventilation in pediatric patients. Pediatr Crit Care Med. 2017;18(9):831-7.
-155155 Takasaki Y, Kido T, Semba K. Dexmedetomidine facilitates induction of noninvasive positive pressure ventilation for acute respiratory failure in patients with severe asthma. J Anesth. 2009;23(1):147-50.) or status asthmaticus (dexmedetomidine: 0.2 - 0.7μg.kg-1.h-1).(156156 Tian X, Li H, Ji Z, Zhao S, Sun M. [Application of dexmedetomidine sedation in treatment of continuous state of asthma: a case report]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014;26(8):598. Chinese.) Clonidine (4μg.kg-1 p.o.) achieves the same effect.(157157 Galland C, Sergent B, Pichot C, Ghignone M, Quintin L. Acute iterative bronchospasm and “do not re-intubate” orders: sedation by an alpha-2 agonist combined with noninvasive ventilation. Am J Emerg Med. 2015;33(6):857.e3-5.) The dose of alpha-2 agonists should be increased, e.g., up to a high dose (dexmedetomidine 1.5μg.kg-1.h-1, or clonidine 2μg.kg-1.h-1) and titrated to effect: stringent ataraxia is requested when psychogenic stimuli are presented.

Acute cardioventilatory distress

Septic shock(158158 Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R; Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165-228.) or early diffuse ARDS(150150 Gattinoni L, Carlesso E, Brazzi L, Cressoni M, Rosseau S, Kluge S, et al. Friday night ventilation: a safety starting tool kit for mechanically ventilated patients. Minerva Anestesiol. 2014;80(9):1046-57.) are beyond the scope of this section. SARS-CoV-2-ARDS (COVID-ARDS) is an inflammatory disease leading to a high respiratory drive and an inflammatory vascular disease of the pulmonary capillaries. Low or medium PEEP is required, with tight control of temperature, agitation and inflammation

Noninvasive ventilation (low PS,(143143 Freebairn R, Hickling K. Spontaneous breathing during mechanical ventilation in ARDS. Crit Care Shock. 2005;8(3):61-6.,159159 Anjos CF, Schettino GP, Park M, Souza VS, Scalabrini Neto A. A randomized trial of noninvasive positive end expiratory pressure in patients with acquired immune deficiency syndrome and hypoxemic respiratory failure. Respir Care. 2012;57(2):211-20.

160 Petitjeans F, Quintin L. Noninvasive failure in de novo acute hypoxemic respiratory failure: high positive end-expiratory pressure-low pressure support, i.e. “inverted settings”? Crit Care Med. 2016;44(11):e1153-e1154.
-161161 Carteaux G, Prost N, Razazi K, Mekontso Dessap A. The authors reply. Crit Care Med. 2016;44(11):e1154.) high FiO2, high PEEP) or very high O2 flow allows one to buy time, expedite preoxygenation(162162 Baillard C, Fosse JP, Sebbane M, Chanques G, Vincent F, Courouble P, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006;174(2):171-7.) and minimize the work of breathing. Simultaneously, volume loading (e.g., 1000mL bolus before endotracheal intubation: “intubation”) prevents the circulatory collapse observed immediately after intubation + positive pressure ventilation + PEEP in hypovolemic patients.(163163 Quenot JP, Binquet C, Pavon A. [Cardiovascular collapse due to ventilation: lack of understanding or failure to anticipate heart-lung interactions?]. Reanimation. 2012;21:710-4. French.)

If NIV partitions the patients in need of CMV versus NIV,(140140 Carteaux G, Millan-Guilarte T, De Prost N, Razazi K, Abid S, Thille AW, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med. 2016;44(2):282-90.) over 30 - 60 minutes, alpha-2 agonist infusion may be started before setting up NIV or during NIV. Conversely, alpha-2 agonists are infused immediately after intubation. Rescue or breakthrough sedation is used up to stable cooperative sedation.

The dose of dexmedetomidine is a function of the circulation (see above: 0.125μg.kg-1.h-1 incrementally up to 1.5μg.kg-1.h-1,-2 ≤ RASS ≤ 0 over 3 - 12 hours: start slow, go slow). As an extended CCU stay is likely, immediate stable cooperative sedation is not warranted. First, stabilization of the circulation should be achieved (volume vs. vasopressors when the diastolic pressure is low(164164 Hamzaoui O, Teboul JL. Importance of diastolic arterial pressure in septic shock rebuttal to comments of Dr. Magder. J Crit Care. 2019;51:244.)). Second, iterative rescue sedation allows one to stabilize incremental cooperative sedation. Finally, P-SILI and hypoxemia are addressed (Table 1(5555 Petitjeans F, Pichot C, Ghignone M, Quintin L. Early severe acute respiratory distress syndrome: what’s going on? Part II: controlled vs. spontaneous ventilation? Anaesthesiol Intensive Ther. 2016;48(5):339-51. Table 1, An alternative strategy in early severe diffuse ARDS; p.341.)).

Two issues deserve comment:
  1. Tolerance to the sedative effects of alpha-2 agonists develops over weeks(148148 Onesti G, Bock KD, Heimsoth V, Kim KE, Merguet P. Clonidine: a new antihypertensive agent. Am J Cardiol. 1971;28(1):74-83.) or days. In addition, septic confusion or low-flow obtundation improved over time. Therefore, the sedation achieved with alpha-2 agonists may become insufficient. Higher doses of alpha-2 agonists may be used. Conversely, supplementation with neuroleptics (see above) achieves-2 < RASS < 0.

  2. Muscle relaxation suppresses P-SILI and patient-to-ventilator dyssynchrony(165165 Slutsky AS. Neuromuscular blocking agents in ARDS. N Engl J Med. 2010;363(12):1176-80.) for 12-48 hours.(5151 Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16.,5757 Yoshida T, Papazian L. When to promote spontaneous respiratory activity in acute respiratory distress patients? Anesthesiology. 2014;120(6):1313-5.,5858 Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197(1):132-6.) Should first-line alpha-2 agonists administered to the ceiling effect be supplemented under muscle relaxation? Awareness will be minimized by iterative clinical examination, electroencephalography (BIS), titration of alpha-2 agonists to effect, reassurance and additional neuroleptics.

FINAL CONSIDERATIONS

In the critical care unit, alpha-2 agonists present intrinsically intertwined(1313 Ghignone M, Quintin L, Duke PC, Kehler CH, Calvillo O. Effects of clonidine on narcotic requirements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology. 1986;64(1):36-42.) therapeutic effects and side effects, i.e., cooperative sedation and sympathetic deactivation. Sympathetic deactivation is beneficial in the conditions of systolic or diastolic failure and detrimental in the hypovolemia conditions. To achieve beneficial effects, only niche indications are to be selected, which is at variance with a “one size fits all” approach. The learning curve extends from stable circulation (delirium tremens) to isolated ventilatory distress and then to acute cardioventilatory distress. A “start slow-go slow” approach is suggested. Neuroleptics supplement alpha-2 agonists, if needed, without benzodiazepines or propofol. Opioid-free analgesia is recommended. To avoid switching from conventional to cooperative sedation, alpha-2 agonists should be used as first-line sedatives.(4646 Pichot C, Ghignone M, Quintin L. Dexmedetomidine and clonidine: from second- to first-line sedative agents in the critical care setting? J Intensive Care Med. 2012;27(4):219-37.) The management is itemized as follows: cognition (ataraxia,(55 Dollery CT, Davies DS, Draffan GH, Dargie HJ, Dean CR, Reid JL, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976;19(1):11-7.) analgognosia(88 Kauppila T, Kemppainen P, Tanila H, Pertovaara A. Effect of systemic medetomidine, an alpha-2 adrenoceptor agonist, on experimental pain in humans. Anesthesiology. 1991;74(1):3-8.)), nociception, circulation (passive leg raising,(122122 Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19(1):18.) echocardiography,(119119 Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30(9):1734-9.,120120 Vieillard-Baron A, Evrard B, Repessé X, Maizel J, Jacob C, Goudelin M, et al. Limited value of end-expiratory inferior vena cava diameter to predict fluid responsiveness impact of intra-abdominal pressure. Intensive Care Med. 2018;44(2):197-203.) ventilation (fever control,(131131 Manthous CA, Hall JB, Olson D, Singh M, Chatila W, Pohlman A, et al. Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med. 1995;151(1):10-4.,132132 Schortgen F, Clabault K, Katsahian S, Devaquet J, Mercat A, Deye N, et al. Fever control using external cooling in septic shock: a randomized controlled trial. Am J Respir Crit Care Med. 2012;185(10):1088-95.) agitation,(103103 Liatsi D, Tsapas B, Pampori S, Tsagourias M, Pneumatikos I, Matamis D. Respiratory, metabolic and hemodynamic effects of clonidine in ventilated patients presenting with withdrawal syndrome. Intensive Care Med. 2009;35(2):275-81.) inflammation,(3131 von Dossow V, Baehr N, Moshirzadeh M, von Heymann C, Braun JP, Hein OV, et al. Clonidine attenuated early proinflammatory response in T-cell subsets after cardiac surgery. Anesth Analg. 2006;103(4):809-14.,3333 Ueki M, Kawasaki T, Habe K, Hamada K, Kawasaki C, Sata T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia. 2014;69(7):693-700.,3535 Ohta Y, Miyamoto K, Kawazoe Y, Yamamura H, Morimoto T. Effect of dexmedetomidine on inflammation in patients with sepsis requiring mechanical ventilation: a sub-analysis of a multicenter randomized clinical trial. Crit Care. 2020;24(1):493.,110110 Leroy S, Aladin L, Laplace C, Jalem S, Rosenthal JM, Abrial A, et al. Introduction of a centrally anti-hypertensive, clonidine, reduces noradrenaline requirements in septic shock caused by necrotizing enterocolitis. Am J Emerg Med. 2017;35(2):377.e3-377.e5.,166166 Xu B, Makris A, Thornton C, Ogle R, Horvath JS, Hennessy A. Antihypertensive drugs clonidine, diazoxide, hydralazine and furosemide regulate the production of cytokines by placentas and peripheral blood mononuclear cells in normal pregnancy. J Hypertens. 2006;24(5):915-22.) lung water,(123123 Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472-80.) pH, PaCO2, hypoxemia). Evidence gathered from a randomized trial using a clear-cut design(7373 Constantin JM, Godet T, James A, Monsel A. A small step for sedation that may become a giant leap for critical care medicine. Anaesth Crit Care Pain Med. 2019;38(5):425-7.,7474 Longrois D, Quintin L. Dexmedetomidine: superiority trials needed? Anaesth Crit Care Pain Med. 2016;35(3):237-8.) may extend the preliminary outcome data(3737 Gregorakos L, Kerezoudi E, Dimopoulos G, Thomaides T. Management of blood pressure instability in severe tetanus: the use of clonidine. Intensive Care Med. 1997;23(8):893-5.

38 Moritz RD, Machado FO, Pinto EP, Cardoso GS, Nassar SM. [Evaluate the clonidine use for sedoanalgesia in intensive care unit patients under prolonged mechanical ventilation]. Rev Bras Ter Intensiva. 2008;20(1):24-30. Portuguese.

39 Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, Herr DL, Maze M, Ely EW; MENDS investigators. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14(2):R38.

40 Ji F, Li Z, Nguyen H, Young N, Shi P, Fleming N, et al. Perioperative dexmedetomidine improves outcomes of cardiac surgery. Circulation. 2013;127(15):1576-84.

41 Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, Koami H, Beppu S, Katayama Y, Itoh M, Ohta Y, Yamamura H; Dexmedetomidine for Sepsis in Intensive Care Unit Randomized Evaluation (DESIRE) Trial Investigators. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: a randomized clinical trial. JAMA. 2017;317(13):1321-8.

42 Aso S, Matsui H, Fushimi K, Yasunaga H. Dexmedetomidine and mortality from sepsis requiring mecanical ventilation: a Japanese nationwide retrospective cohort study. J Intensive Care Med. 2020 Jul 22:885066620942154.

43 Eker C, Asgeirsson B, Grande PO, Schalén W, Nordstrom CH. Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med. 1998;26(11):1881-6.

44 Dizdarevic K, Hamdan A, Omerhodzic I, Kominlija-Smajic E. Modified Lund concept versus cerebral perfusion pressure-targeted therapy: a randomised controlled study in patients with secondary brain ischaemia. Clin Neurol Neurosurg. 2012;114(2):142-8.
-4545 Naredi S, Edén E, Zall S, Stephensen H, Rydenhag B. A standardized neurosurgical neurointensive therapy directed toward vasogenic edema after severe traumatic brain injury: clinical results. Intensive Care Med. 1998;24(5):446-51.) and implement the present suggestions.

ACKNOWLEDGMENT

A Cividjian, MEng, PhD, Alpha-2 Ltd, Lyon, created figure 3. Additional figures are available through Research Gate.

  • #
    After clonidine 300mg p.o., volunteers switch easily from light sleep to wakefulness (“fairly alert”) and back. Low dose clonidine (10mg.kg-1) improves memory in aged primates. In the critical care unit, under dexmedetomidine, a) an intubated child plays a game of little horses with his nurse (P Delaire, RN, personal communication), and b) an intubated patient reported ischemic chest pain, allowing for treatment.
  • $
    The innate immune system is not considered.
  • &
    There is no reason to add alpha-2 agonists on top of beta-blockers in the critical care unit setting (except in the rare case of resistant hypertension in young patients to control the HR at 55 < HR < 65 beats per minute). If alpha-2 agonists are to be selected, then beta-blockers are withdrawn as soon as steady state cooperative sedation is achieved to evoke no further bradycardia, and then reintroduced later if appropriate. High dose amiodarone is tapered over 24 - 72 hours to avoid excessive bradycardia. If needed for supraventricular arrhythmiae, verapamil or amiodarone loading doses are halved and administered over a longer interval (e.g., amiodarone 300mg over 20 minutes is administered as 150mg over 40 minutes, repeated if necessary).
  • £
    A switch may be performed at night only if the intensivist on call is versed with alpha-2 agonists, with time to supervise the switch performed by trained, nonoverloaded, nurses.

REFERÊNCIAS

  • 1
    Petty TL. Suspended life or extending death? Chest. 1998;114(2):360-1.
  • 2
    Brochard L. Less sedation in intensive care: the pendulum swings back. Lancet. 2010;375(9713):436-8.
  • 3
    Strom T, Martinussen T, Toft P. A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet. 2010;375(9713):475-80.
  • 4
    Strom T, Stylsvig M, Toft P. Long-term psychological effects of a no-sedation protocol in critically ill patients. Crit Care. 2011;15(6):R293.
  • 5
    Dollery CT, Davies DS, Draffan GH, Dargie HJ, Dean CR, Reid JL, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976;19(1):11-7.
  • 6
    Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230(4731):1273-6.
  • 7
    Venn RM, Newman J, Grounds M. A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit. Intensive Care Med. 2003;29(2):201-7.
  • 8
    Kauppila T, Kemppainen P, Tanila H, Pertovaara A. Effect of systemic medetomidine, an alpha-2 adrenoceptor agonist, on experimental pain in humans. Anesthesiology. 1991;74(1):3-8.
  • 9
    Bailey PL, Sperry RJ, Johnson GK, Eldredge SJ, East KA, East TD, et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology. 1991;74(1):43-8.
  • 10
    Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77(6):1125-33.
  • 11
    Voituron N, Hilaire G, Quintin L. Dexmedetomidine and clonidine induce long-lasting activation of the respiratory rhythm generator of neonatal mice: possible implication for critical care. Respir Physiol Neurobiol. 2012;180(1):132-40.
  • 12
    Davies DS, Wing AM, Reid JL, Neill DM, Tipett P, Dollery CT. Pharmacokinetics and concentration-effect relationships of intravenous and oral clonidine. Clin Pharmacol Ther. 1977;21(5):593-601.
  • 13
    Ghignone M, Quintin L, Duke PC, Kehler CH, Calvillo O. Effects of clonidine on narcotic requirements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology. 1986;64(1):36-42.
  • 14
    Colin PJ, Hannivoort LN, Eleveld DJ, Reyntjens KM, Absalom AR, Vereecke HE, et al. Dexmedetomidine pharmacodynamics in healthy volunteers: 2. Haemodynamic profile. Br J Anaesth. 2017;119(2):211-20.
  • 15
    Giles TD, Iteld BJ, Mautner RK, Rognoni PA, Dillenkoffer RL. Short-term effects of intravenous clonidine in congestive heart failure. Clin Pharmacol Ther. 1981;30(6):724-8.
  • 16
    Hermiller JB, Magorien RD, Leithe ME, Unverferth DV, Leier CV. Clonidine in congestive heart failure: a vasodilator with negative inotropic effects. Am J Cardiol. 1983;51(5):791-5.
  • 17
    Stefanadis C, Manolis A, Dernellis J, Tsioufis C, Tsiamis E, Gavras I, et al. Acute effect of clonidine on left ventricular pressure-volume relation in hypertensive patients with diastolic heart dysfunction. J Hum Hypertens. 2001;15(9):635-42.
  • 18
    Schraub P, Vecchi M, Matthys M, Lecomte B, Ferrara N, Ghignone M, et al. A centrally acting antihypertensive, clonidine, combined to a venous dilator, nitroglycerin, to handle severe pulmonary edema. Am J Emerg Med. 2016;34(3):676.e5-7.
  • 19
    Aars H. Effects of clonidine on aortic diameter and aortic baroreceptor activity. Eur J Pharmacol. 1972;20(1):52-9.
  • 20
    Motz W, Ippisch R, Strauer BE. The role of clonidine in hypertensive heart disease. Influence on myocardial contractility and left ventricular afterload. Chest. 1983;83(2 Suppl):433-5.
  • 21
    Prys-Roberts C. Regulation of the circulation. In: Prys-Roberts C, editor. The circulation in anaesthesia: applied physiology and pharmacology. Oxford: Blackwell; 1980. p. 179-207.
  • 22
    Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298(22):2644-53.
  • 23
    Riker RR, Shehabi Y, Bokesch PM, Ceraso D, Wisemandle W, Koura F, Whitten P, Margolis BD, Byrne DW, Ely EW, Rocha MG; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared with Midazolam) Study Group. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA. 2009;301(5):489-99.
  • 24
    Mirski MA, Lewin JJ 3rd, Ledroux S, Thompson C, Murakami P, Zink EK, et al. Cognitive improvement during continuous sedation in critically ill, awake and responsive patients: the Acute Neurological ICU Sedation Trial (ANIST). Intensive Care Med. 2010;36(9):1505-13.
  • 25
    Arnsten AF, Jin LE. Guanfacine for the treatment of cognitive disorders: a century of discoveries at Yale. Yale J Biol Med. 2012;85(1):45-58.
  • 26
    Alexopoulou C, Kondili E, Diamantaki E, Psarologakis C, Kokkini S, Bolaki M, et al. Effects of dexmedetomidine on sleep quality in critically ill patients: a pilot study. Anesthesiology. 2014;121(4):801-7.
  • 27
    Ruokonen E, Parviainen I, Jakob SM, Nunes S, Kaukonen M, Shepherd ST, Sarapohja T, Bratty JR, Takala J; “Dexmedetomidine for Continuous Sedation” Investigators. Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation. Intensive Care Med. 2009;35(2):282-90.
  • 28
    De Kock M, Laterre PF, Van Obbergh L, Carlier M, Lerut J. The effects of intraoperative intravenous clonidine on fluid requirements, hemodynamic variables, and support during liver transplantation: a prospective, randomized study. Anesth Analg. 1998;86(3):468-76.
  • 29
    Liepert DJ, Townsend GE. Improved hemodynamic and renal function with clonidine in coronary artery bypass grafting. Anesth Analg. 1990;70(2):S240.
  • 30
    Kulka PJ, Tryba M, Zenz M. Preoperative alpha-2 adrenergic receptor agonists prevent the deterioration of renal function after cardiac surgery: results of a randomized, controlled trial. Crit Care Med. 1996;24(6):947-52.
  • 31
    von Dossow V, Baehr N, Moshirzadeh M, von Heymann C, Braun JP, Hein OV, et al. Clonidine attenuated early proinflammatory response in T-cell subsets after cardiac surgery. Anesth Analg. 2006;103(4):809-14.
  • 32
    Li B, Li Y, Tian S, Wang H, Wu H, Zhang A, et al. Anti-inflammatory effects of perioperative dexmedetomidine administered as an adjunct to general anesthesia: a meta-analysis. Sci Rep. 2015;5:12342.
  • 33
    Ueki M, Kawasaki T, Habe K, Hamada K, Kawasaki C, Sata T. The effects of dexmedetomidine on inflammatory mediators after cardiopulmonary bypass. Anaesthesia. 2014;69(7):693-700.
  • 34
    Flanders CA, Rocke AS, Edwardson SA, Baillie JK, Walsh TS. The effect of dexmedetomidine and clonidine on the inflammatory response in critical illness: a systematic review of animal and human studies. Crit Care. 2019;23(1):402.
  • 35
    Ohta Y, Miyamoto K, Kawazoe Y, Yamamura H, Morimoto T. Effect of dexmedetomidine on inflammation in patients with sepsis requiring mechanical ventilation: a sub-analysis of a multicenter randomized clinical trial. Crit Care. 2020;24(1):493.
  • 36
    Zhang Z, Chen K, Ni H, Zhang X, Fan H. Sedation of mechanically ventilated adults in intensive care unit: a network meta-analysis. Sci Rep. 2017;7:44979.
  • 37
    Gregorakos L, Kerezoudi E, Dimopoulos G, Thomaides T. Management of blood pressure instability in severe tetanus: the use of clonidine. Intensive Care Med. 1997;23(8):893-5.
  • 38
    Moritz RD, Machado FO, Pinto EP, Cardoso GS, Nassar SM. [Evaluate the clonidine use for sedoanalgesia in intensive care unit patients under prolonged mechanical ventilation]. Rev Bras Ter Intensiva. 2008;20(1):24-30. Portuguese.
  • 39
    Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, Herr DL, Maze M, Ely EW; MENDS investigators. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care. 2010;14(2):R38.
  • 40
    Ji F, Li Z, Nguyen H, Young N, Shi P, Fleming N, et al. Perioperative dexmedetomidine improves outcomes of cardiac surgery. Circulation. 2013;127(15):1576-84.
  • 41
    Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, Koami H, Beppu S, Katayama Y, Itoh M, Ohta Y, Yamamura H; Dexmedetomidine for Sepsis in Intensive Care Unit Randomized Evaluation (DESIRE) Trial Investigators. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: a randomized clinical trial. JAMA. 2017;317(13):1321-8.
  • 42
    Aso S, Matsui H, Fushimi K, Yasunaga H. Dexmedetomidine and mortality from sepsis requiring mecanical ventilation: a Japanese nationwide retrospective cohort study. J Intensive Care Med. 2020 Jul 22:885066620942154.
  • 43
    Eker C, Asgeirsson B, Grande PO, Schalén W, Nordstrom CH. Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med. 1998;26(11):1881-6.
  • 44
    Dizdarevic K, Hamdan A, Omerhodzic I, Kominlija-Smajic E. Modified Lund concept versus cerebral perfusion pressure-targeted therapy: a randomised controlled study in patients with secondary brain ischaemia. Clin Neurol Neurosurg. 2012;114(2):142-8.
  • 45
    Naredi S, Edén E, Zall S, Stephensen H, Rydenhag B. A standardized neurosurgical neurointensive therapy directed toward vasogenic edema after severe traumatic brain injury: clinical results. Intensive Care Med. 1998;24(5):446-51.
  • 46
    Pichot C, Ghignone M, Quintin L. Dexmedetomidine and clonidine: from second- to first-line sedative agents in the critical care setting? J Intensive Care Med. 2012;27(4):219-37.
  • 47
    Pichot C, Longrois D, Ghignone M, Quintin L. Dexmédetomidine et clonidine: revue de leurs propriétés pharmacodynamiques en vue de définir la place des agonistes alpha-2 adrénergiques dans la sédation en réanimation. Ann Fr Anesth Reanim. 2012;31(11):876-96.
  • 48
    Longrois D, Petitjeans F, Simonet O, de Kock M, Belliveau M, Pichot C, et al. Clinical practice: should we radically alter our sedation of critical care patients, especially given the COVID-19 pandemics? Rom J Anaesth Intensive Care. 2020;27(2):43-76.
  • 49
    Chanques G, Jaber S, Jung B, Payen JF. Sédation-analgésie en réanimation de l’adulte. EMC Anesth Reanim. 2013;10:1-12.
  • 50
    Wrigge H, Downs JB, Hedenstierna G, Putensen C. Paralysis during mechanical ventilation in acute respiratory distress syndrome: back to the future? Crit Care Med. 2004;32(7):1628-9; author reply 1629-30.
  • 51
    Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guérin C, Prat G, Morange S, Roch A; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16.
  • 52
    Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, Clavel M, Chatellier D, Jaber S, Rosselli S, Mancebo J, Sirodot M, Hilbert G, Bengler C, Richecoeur J, Gainnier M, Bayle F, Bourdin G, Leray V, Girard R, Baboi L, Ayzac L; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-68.
  • 53
    Pichot C, Picoche A, Saboya-Steinbach MI, Rousseau R, de Guys J, Lahmar M, et al. Combination of clonidine sedation and spontaneous breathing-pressure support upon acute respiratory distress syndrome: a feasability study in four patients. Acta Anaesthesiol Belg. 2012;63(3):127-33.
  • 54
    Pichot C, Petitjeans F, Ghignone M, Quintin L. Is there a place for pressure-support ventilation and high end-expiratory pressure combined to alpha-2 agonists early in severe diffuse acute respiratory distress syndrome? Med Hypotheses. 2013;80(6):732-7.
  • 55
    Petitjeans F, Pichot C, Ghignone M, Quintin L. Early severe acute respiratory distress syndrome: what’s going on? Part II: controlled vs. spontaneous ventilation? Anaesthesiol Intensive Ther. 2016;48(5):339-51. Table 1, An alternative strategy in early severe diffuse ARDS; p.341.
  • 56
    Petitjeans F, Pichot C, Ghignone M, Quintin L. Building on the shoulders of giants: is the use of early spontaneous ventilation in the setting of severe diffuse acute respiratory distress syndrome actually heretical? Turk J Anaesthesiol Reanim. 2018;46(5):339-47.
  • 57
    Yoshida T, Papazian L. When to promote spontaneous respiratory activity in acute respiratory distress patients? Anesthesiology. 2014;120(6):1313-5.
  • 58
    Chen L, Del Sorbo L, Grieco DL, Shklar O, Junhasavasdikul D, Telias I, et al. Airway closure in acute respiratory distress syndrome: an underestimated and misinterpreted phenomenon. Am J Respir Crit Care Med. 2018;197(1):132-6.
  • 59
    Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241-8.
  • 60
    Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151(8):566-76.
  • 61
    Petitjeans F, Martinez J, Danguy des Deserts M, Leroy S, Quintin L, Escarment J. A centrally acting antihypertensive, clonidine, sedates patients presenting with acute res-piratory distress syndrome evoked by Severe acute respiratory syndrome-coronavirus 2. Crit Care Med. 2020;48(10):e991-e993.
  • 62
    Wang L, Zhang A, Liu W, Liu H, Su F, Qi L. Effects of dexmedetomidine on perioperative stress response, inflammation and immune function in patients with different degrees of liver cirrhosis. Exp Ther Med. 2018;16(5):3869-74.
  • 63
    Virtanen R, Savola JM, Saano V, Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur J Pharmacol. 1988;150(1-2):9-14.
  • 64
    Chamadia S, Pedemonte JC, Hobbs LE, Deng H, Nguyen S, Cortinez LI, et al. A pharmacokinetic and pharmacodynamic study of oral dexmedetomidine. Anesthesiology. 2020;133(6):1223-33.
  • 65
    Shehabi Y, Botha JA, Ernest D, Freebairn RC, Reade MC, Roberts BL, et al. Clinical application, the use of dexmedetomidine in intensive care sedation. Crit Care Shock. 2010;13(2):40-50.
  • 66
    Sauder P, Andreoletti M, Cambonie G, Capellier G, Feissel M, Gall O, et al. [Sedation and analgesia in intensive care (with the exception of new-born babies). French Society of Anesthesia and Resuscitation. French-speaking Resuscitation Society]. Ann Fr Anesth Reanim. 2008;27(7-9):541-51.
  • 67
    Sun MK, Guyenet P. Effect of clonidine and gamma-aminobutyric acid on the discharges of medullo-spinal sympathoexcitatory neurons in the rat. Brain Res. 1986;368(1):1-17.
  • 68
    Krassioukov AV, Gelb AW, Weaver LC. Action of propofol on central sympathetic mechanisms controlling blood pressure. Can J Anaesth. 1993;40(8):761-9.
  • 69
    Bernard JM, Bourélli B, Homméril JL, Pinaud M. Effects of oral clonidine premedication and postoperative i.v. infusion on haemodynamic and adrenergic responses during recovery from anesthesia. Acta Anaesthesiol Scand. 1991;35(1):54-9.
  • 70
    Devereaux PJ, Sessler DI, Leslie K, Kurz A, Mrkobrada M, Alonso-Coello P, Villar JC, Sigamani A, Biccard BM, Meyhoff CS, Parlow JL, Guyatt G, Robinson A, Garg AX, Rodseth RN, Botto F, Lurati Buse G, Xavier D, Chan MT, Tiboni M, Cook D, Kumar PA, Forget P, Malaga G, Fleischmann E, Amir M, Eikelboom J, Mizera R, Torres D, Wang CY, Vanhelder T, Paniagua P, Berwanger O, Srinathan S, Graham M, Pasin L, Le Manach Y, Gao P, Pogue J, Whitlock R, Lamy A, Kearon C, Chow C, Pettit S, Chrolavicius S, Yusuf S; POISE-2 Investigators. Clonidine in patients undergoing noncardiac surgery. N Engl J Med. 2014;370(16):1504-13.
  • 71
    Sessler DI, Conen D, Leslie K, Yusuf S, Popova E, Graham M, Kurz A, Villar JC, Mrkobrada M, Sigamani A, Biccard BM, Meyhoff CS, Parlow JL, Guyatt G, Xavier D, Chan MTV, Kumar PA, Forget P, Malaga G, Fleischmann E, Amir M, Torres D, Wang CY, Paniagua P, Berwanger O, Srinathan S, Landoni G, Manach YL, Whitlock R, Lamy A, Balasubramanian K, Gilron I, Turan A, Pettit S, Devereaux PJ; Perioperative Ischemic Evaluation-2 Trial (POISE-2) Investigators. One-year results of a factorial randomized trial of aspirin versus placebo and clonidine versus placebo in patients having noncardiac surgery. Anesthesiology. 2020;132(4):692-701.
  • 72
    Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadiman S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA; ANZICS Clinical Trials Group and the SPICE III Investigators. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506-17.
  • 73
    Constantin JM, Godet T, James A, Monsel A. A small step for sedation that may become a giant leap for critical care medicine. Anaesth Crit Care Pain Med. 2019;38(5):425-7.
  • 74
    Longrois D, Quintin L. Dexmedetomidine: superiority trials needed? Anaesth Crit Care Pain Med. 2016;35(3):237-8.
  • 75
    Abi-Jaoude F, Brusset A, Ceddaha A, Schlumberger S, Raffin L, Dubois C, et al. Clonidine premedication for coronary artery bypass grafting under high-dose alfentanil anesthesia: intraoperative and postoperative hemodynamic study. J Cardiothorac Vasc Anesth. 1993;7(1):35-40.
  • 76
    De Kock M, Wiederkher P, Laghmiche A, Scholtes JL. Epidural clonidine used as the sole analgesic agent during and after abdominal surgery. A dose-response study. Anesthesiology. 1997;86(2):285-92.
  • 77
    Ghignone M, Calvillo O, Quintin L. Anesthesia and hypertension: the effect of clonidine on perioperative hemodynamics and isoflurane requirements. Anesthesiology. 1987;67(1):3-10.
  • 78
    Ghignone M, Noe C, Calvillo O, Quintin L. Anesthesia for ophthalmic surgery in the elderly: the effects of clonidine on intraocular pressure, perioperative hemodynamics, and anesthetic requirements. Anesthesiology. 1988;68(5):707-16.
  • 79
    Flacke JW, Bloor BC, Flacke WE, Wong D, Dazza S, Stead SW, et al. Reduced narcotic requirement by clonidine with improved hemodynamic and adrenergic stability in patients undergoing coronary bypass surgery. Anesthesiology. 1987;67(1):11-9.
  • 80
    Quintin L, Bouilloc X, Butin E, Bayon MC, Brudon JR, Levron JC, et al. Clonidine for major vascular surgery in hypertensive patients: a double-blind, controlled, randomized study. Anesth Analg. 1996;83(4):687-95.
  • 81
    Shehabi Y, Ruettimann U, Adamson H, Innes R, Ickeringill M. Dexmedetomidine infusion for more than 24 hours in critically ill patients: sedative and cardiovascular effects. Intensive Care Med. 2004;30(12):2188-96.
  • 82
    Gold MS, Pottash AL, Extein I, Kleber HD. Clonidine and opiate withdrawal. Lancet. 1980;2(8203):1078-9.
  • 83
    Schlager E, Meier T. A strange Balinese method of inducing sleep with some notes about balyans. Acta Trop. 1947;4(2):127-34.
  • 84
    Wing LM, Reid JL, Davies DS, Dargie HJ, Dollery CT. Apparent resistance to hypotensive effect of clonidine. Br Med J. 1977;1(6054):136-8.
  • 85
    Frisk-Holmberg M, Paalzow L, Wibell L. Relationship between the cardiovascular effects and steady-state kinetics of clonidine in hypertension. Demonstration of a therapeutic window in man. Eur J Clin Pharmacol. 1984;26(3):309-13.
  • 86
    Erkonen G, Lamb F, Tobias JD. High-dose dexmedetomidine-induced hypertension in a child with traumatic brain injury. Neurocrit Care. 2008;9(3):366-9.
  • 87
    Stahle H. A historical perspective: development of clonidine. Baillieres Clin Anaesthesiol. 2000;14(2):236-46.
  • 88
    Meyer C, Cambray R. One hundred times the intended dose of caudal clonidine in three pediatric patients. Paediatr Anaesth. 2008;18(9):888-90.
  • 89
    Isbister GK, Heppell SP, Page CB, Ryan NM. Adult clonidine overdose: prolonged bradycardia and central nervous system depression, but not severe toxicity. Clin Toxicol (Phila). 2017;55(3):187-92.
  • 90
    Metz G, Nebel B. [Clonidine in severe alcohol withdrawal delirium]. Fortschrift Med. 1983;101(26):1260-4. German.
  • 91
    Bohrer H, Bach A, Layer M, Werning P. Clonidine as a sedative adjunct in intensive care. Intensive Care Med.1990;16(4):265-6.
  • 92
    Spies CD, Dubisz N, Neumann T, Blum S, Muller C, Rommelspacher H, et al. Therapy of alcohol withdrawal syndrome in intensive care unit patients following trauma: results of a prospective, randomized trial. Crit Care Med. 1996;24(3):414-22.
  • 93
    Carrasco G, Baeza N, Cabré L, Portillo E, Gimeno G, Manzanedo D, et al. Dexmedetomidine for the treatment of hyperactive delirium refractory to haloperidol in nonintubated ICU patients: a nonrandomized controlled trial. Crit Care Med. 2016;44(7):1295-306.
  • 94
    Saunier CF, Akaoka H, de La Chapelle B, Charléty PJ, Chergui K, Chouvet G, et al. Activation of brain noradrenergic neurons during recovery from halothane anesthesia. Persistence of phasic activation after clonidine. Anesthesiology. 1993;79(5):1072-82.
  • 95
    Servan-Schreiber D, Printz H, Cohen JD. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science. 1990;249(4971):892-5.
  • 96
    Aston-Jones G, Cohen JD. Adaptative gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol. 2005;493(1):99-110.
  • 97
    Miyazaki S, Uchida S, Mukai J, Nishihara K. Clonidine effects on all-night human sleep: opposite action of low- and medium-dose clonidine on human NREM-REM sleep proportion. Psychiatry Clin Neurosci. 2004;58(2):138-44.
  • 98
    Harron DW, Riddell JG, Shanks RG. Effects of azepexole and clonidine on baroreceptor mediated reflex bradycardia and physiological tremor in man. Br J Clin Pharmacol. 1985;20(5):431-6.
  • 99
    Tremblay LE, Bedard PJ. Effect of clonidine on motoneuron excitability in spinalised rats. Neuropharmacology. 1986;25(1):41-6.
  • 100
    Mokhtari M, Sistanizad M, Farasatinasab M. Antipyretic effect of clonidine in intensive care unit patients: a nested observational study. J Clin Pharmacol. 2017;57(1):48-51.
  • 101
    Quintin L, Viale JP, Annat G, Hoen JP, Butin E, Cottet-Emard JM, et al. Oxygen uptake after major abdominal surgery: effect of clonidine. Anesthesiology. 1991;74(2):236-41.
  • 102
    Takahashi H, Nishikawa T, Mizutani T, Handa F. Oral clonidine premedication decreases energy expenditure in human volunteers. Can J Anaesth. 1997;44(3):268-72.
  • 103
    Liatsi D, Tsapas B, Pampori S, Tsagourias M, Pneumatikos I, Matamis D. Respiratory, metabolic and hemodynamic effects of clonidine in ventilated patients presenting with withdrawal syndrome. Intensive Care Med. 2009;35(2):275-81.
  • 104
    Vourc’h M, Feuillet F, Mahe PJ, Sebille V, Asehnoune K; BACLOREA trial group. Baclofen to prevent agitation in alcohol-addicted patients in the ICU: study protocol for a randomised controlled trial. Trials. 2016;17(1):415.
  • 105
    Gagnon DJ, Riker RR, Glisic EK, Kelner A, Perrey HM, Fraser GL. Transition from dexmedetomidine to enteral clonidine for ICU sedation: an observational pilot study. Pharmacotherapy. 2015;35(3):251-9.
  • 106
    Herr DL, Sum-Ping ST, England M. ICU sedation after coronary artery bypass graft surgery: dexmedetomidine-based versus propofol-based sedation regimens. J Cardiothorac Vasc Anesth. 2003;17(5):576-84.
  • 107
    Lam F, Ransom C, Gossett JM, Kelkhoff A, Seib PM, Schmitz ML, et al. Safety and efficacy of dexmedetomidine in children with heart failure. Pediatr Cardiol. 2013;34(4):835-41.
  • 108
    Cioccari L, Luethi N, Bailey M, Shehabi Y, Howe B, Messmer AS, Proimos HK, Peck L, Young H, Eastwood GM, Merz TM, Takala J, Jakob SM, Bellomo R; ANZICS Clinical Trials Group and the SPICE III Investigators. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the Sedation Practice in Intensive Care Evaluation [SPICE III] Trial. Crit Care. 2020;24(1):441.
  • 109
    Morelli A, Sanfilippo F, Arnemann P, Hessler M, Kampmeier TG, D’Egidio A, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients: a crossover trial. Crit Care Med. 2019;47(2):e89-e95.
  • 110
    Leroy S, Aladin L, Laplace C, Jalem S, Rosenthal JM, Abrial A, et al. Introduction of a centrally anti-hypertensive, clonidine, reduces noradrenaline requirements in septic shock caused by necrotizing enterocolitis. Am J Emerg Med. 2017;35(2):377.e3-377.e5.
  • 111
    Pichot C, Mathern P, Khettab F, Ghignone M, Geloen A, Quintin L. Increased pressor response to noradrenaline during septic shock following clonidine? Anaesth Intensive Care. 2010;38(4):784-5.
  • 112
    Pichot C, Géloen A, Ghignone M, Quintin L. Alpha-2 agonists to reduce vasopressor requirements in septic shock? Med Hypotheses. 2010;75(6):652-6.
  • 113
    Geloen A, Chapelier K, Cividjian A, Dantony E, Rabilloud M, May CN, et al. Clonidine and dexmedetomidine increase the pressor response to norepinephrine in experimental sepsis: a pilot study. Crit Care Med. 2013;41(12):e431-8.
  • 114
    Lankadeva YR, Booth LC, Kosaka J, Evans RG, Quintin L, Bellomo R, et al. Clonidine restores pressor responsiveness to phenylephrine and angiotensin II in ovine sepsis. Crit Care Med. 2015;43(7):e221-9.
  • 115
    Hoffman BB, Lefkowitz RJ. Alpha-adrenergic receptor subtypes. N Engl J Med. 1980;302(25):1390-6.
  • 116
    Kulka PJ, Tryba M, Reimer T, Weisser H. Clonidine prevents tissue-malperfusion during extracorporal circulation. Anesth Analg. 1996;82:S254.
  • 117
    Mellander S. Comparative studies on the adrenergic neuro-hormonal control of resistance and capacitance blood vessels in the cat. Acta Physiol Scand Suppl. 1960;50(176):1-86.
  • 118
    Olivari MT, Levine TB, Cohn JN. Acute hemodynamic and hormonal effects of central versus peripheral sympathetic inhibition in patients with congestive heart failure. J Cardiovasc Pharmacol. 1986;8(5):973-7
  • 119
    Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30(9):1734-9.
  • 120
    Vieillard-Baron A, Evrard B, Repessé X, Maizel J, Jacob C, Goudelin M, et al. Limited value of end-expiratory inferior vena cava diameter to predict fluid responsiveness impact of intra-abdominal pressure. Intensive Care Med. 2018;44(2):197-203.
  • 121
    Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34(4):659-63.
  • 122
    Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19(1):18.
  • 123
    Jozwiak M, Silva S, Persichini R, Anguel N, Osman D, Richard C, et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit Care Med. 2013;41(2):472-80.
  • 124
    Yu T, Huang Y, Guo F, Yang Y, Teboul JL, Qiu H. The effects of propofol and dexmedetomidine infusion on fluid responsiveness in critically ill patients. J Surg Res. 2013;185(2):763-73.
  • 125
    Nelson KM, Patel GP, Hammond DA. Effects from continuous infusions of dexmedetomidine and propofol on hemodynamic stability in critically ill adult patients with septic shock. J Intensive Care Med. 2020;35(9):875-80.
  • 126
    Miyamoto K, Nakashima T, Shima N, Kato S, Ueda K, Kawazoe Y, Ohta Y, Morimoto T, Yamamura H; DESIRE Trial Investigators. Effect of dexmedetomidine on lactate clearance in patients with septic shock: a subanalysis of a multicenter randomized controlled trial. Shock. 2018;50(2):162-6.
  • 127
    Flacke JW. Alpha-2 adrenergic agonists in cardiovascular anesthesia. J Cardiothorac Vasc Anesth. 1992;6(3):344-59.
  • 128
    Chatterjee K. The fear of beta-blocker therapy in heart failure: time to forget. Arch Intern Med. 2004;164(13):1370-1.
  • 129
    Viires N, Sillye G, Aubier M, Rassidakis A, Roussos C. Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest. 1983;72(3):935-47.
  • 130
    Page B, Vieillard-Baron A, Beauchet A, Aegerter P, Prin S, Jardin F. Low stretch ventilation strategy in acute respiratory distress syndrome: eight years of clinical experience in a single center. Crit Care Med. 2003;31(3):765-9.
  • 131
    Manthous CA, Hall JB, Olson D, Singh M, Chatila W, Pohlman A, et al. Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med. 1995;151(1):10-4.
  • 132
    Schortgen F, Clabault K, Katsahian S, Devaquet J, Mercat A, Deye N, et al. Fever control using external cooling in septic shock: a randomized controlled trial. Am J Respir Crit Care Med. 2012;185(10):1088-95.
  • 133
    Petitjeans F, Leroy S, Pichot C, Geloen A, Ghignone M, Quintin L. Hypothesis: fever control, a niche for alpha-2 agonists in the setting of septic shock and severe acute respiratory distress syndrome? Temperature (Austin). 2018;5(3):224-56.
  • 134
    Coggeshall JW, Marini JJ, Newman JH. Improved oxygenation after muscle relaxation in adult respiratory distress syndrome. Arch Intern Med 1985;145(9):1718-20.
  • 135
    Mauri T, Grasselli G, Suriano G, Eronia N, Spadaro S, Turrini C, et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. 2016;125(1):159-67.
  • 136
    Crotti S, Bottino N, Ruggeri GM, Spinelli E, Tubiolo D, Lissoni A, et al. Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology. 2017;126(4):678-87.
  • 137
    Pichot C, Petitjeans F, Ghignone M, Quintin L. Spontaneous ventilation-high PEEP upon severe ARDS: an erratum to further the analysis. Med Hypotheses. 2013;81(5):967.
  • 138
    Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med. 1990;16(6):372-7.
  • 139
    Dellamonica J, Lerolle N, Sargentini C, Hubert S, Beduneau G, Di Marco F, et al. Effect of different seated positions on lung volume and oxygenation in acute respiratory distress syndrome. Intensive Care Med. 2013;39(6):1121-7.
  • 140
    Carteaux G, Millan-Guilarte T, De Prost N, Razazi K, Abid S, Thille AW, et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med. 2016;44(2):282-90.
  • 141
    Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438-42.
  • 142
    Pichot C, Petitjeans F, Ghignone G, Quintin L. Commentary: Spontaneous ventilation in the setting of early severe stabilized ARDS: heresy? Austin J Pulm Respir Med. 2016;3(2):id1046.
  • 143
    Freebairn R, Hickling K. Spontaneous breathing during mechanical ventilation in ARDS. Crit Care Shock. 2005;8(3):61-6.
  • 144
    Leray V, Bourdin G, Flandreau G, Bayle F, Wallet F, Richard JC, et al. A case of pneumomediastinum in a patient with acute respiratory distress syndrome on pressure support ventilation. Respir Care. 2010;55(6):770-3.
  • 145
    Guldner A, Pelosi P, Gama de Abreu M. Spontaneous breathing in mild and moderate versus severe acute respiratory distress syndrome. Curr Opin Crit Care. 2014;20(1):69-76.
  • 146
    Rittayamai N, Brochard L. Recent advances in mechanical ventilation in patients with acute respiratory distress syndrome. Eur Respir Rev. 2015;24(135):132-40.
  • 147
    Mezidi M, Guérin C. Complete assessment of respiratory mechanics during pressure support ventilation. Intensive Care Med. 2019;45(4):557-8.
  • 148
    Onesti G, Bock KD, Heimsoth V, Kim KE, Merguet P. Clonidine: a new antihypertensive agent. Am J Cardiol. 1971;28(1):74-83.
  • 149
    Saito J, Amanai E, Hirota K. Dexmedetomidine-treated hyperventilation syndrome triggered by the distress related with a urinary catheter after general anesthesia: a case report. JA Clin Rep. 2017;3(1):22.
  • 150
    Gattinoni L, Carlesso E, Brazzi L, Cressoni M, Rosseau S, Kluge S, et al. Friday night ventilation: a safety starting tool kit for mechanically ventilated patients. Minerva Anestesiol. 2014;80(9):1046-57.
  • 151
    Akada S, Takeda S, Yoshida Y, Nakazato K, Mori M, Hongo T, et al. The efficacy of dexmedetomidine in patients with noninvasive ventilation: a preliminary study. Anesth Analg. 2008;107(1):167-70.
  • 152
    Deletombe B, Trouve-Buisson T, Godon A, Falcon D, Giorgis-Allemand L, Bouzat P, et al. Dexmedetomidine to facilitate non-invasive ventilation after blunt chest trauma: a randomised, double-blind, crossover, placebo-controlled pilot study. Anaesth Crit Care Pain Med. 2019;38(5):477-83.
  • 153
    Tobias JD, Berkenbosch JW, Russo P. Additional experience with dexmedetomidine in pediatric patients. South Med J. 2003;96(9):871-5.
  • 154
    Venkatraman R, Hungerford JL, Hall MW, Moore-Clingenpeel M, Tobias JD. Dexmedetomidine for sedation during noninvasive ventilation in pediatric patients. Pediatr Crit Care Med. 2017;18(9):831-7.
  • 155
    Takasaki Y, Kido T, Semba K. Dexmedetomidine facilitates induction of noninvasive positive pressure ventilation for acute respiratory failure in patients with severe asthma. J Anesth. 2009;23(1):147-50.
  • 156
    Tian X, Li H, Ji Z, Zhao S, Sun M. [Application of dexmedetomidine sedation in treatment of continuous state of asthma: a case report]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2014;26(8):598. Chinese.
  • 157
    Galland C, Sergent B, Pichot C, Ghignone M, Quintin L. Acute iterative bronchospasm and “do not re-intubate” orders: sedation by an alpha-2 agonist combined with noninvasive ventilation. Am J Emerg Med. 2015;33(6):857.e3-5.
  • 158
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R; Surviving Sepsis Campaign Guidelines Committee including The Pediatric Subgroup. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165-228.
  • 159
    Anjos CF, Schettino GP, Park M, Souza VS, Scalabrini Neto A. A randomized trial of noninvasive positive end expiratory pressure in patients with acquired immune deficiency syndrome and hypoxemic respiratory failure. Respir Care. 2012;57(2):211-20.
  • 160
    Petitjeans F, Quintin L. Noninvasive failure in de novo acute hypoxemic respiratory failure: high positive end-expiratory pressure-low pressure support, i.e. “inverted settings”? Crit Care Med. 2016;44(11):e1153-e1154.
  • 161
    Carteaux G, Prost N, Razazi K, Mekontso Dessap A. The authors reply. Crit Care Med. 2016;44(11):e1154.
  • 162
    Baillard C, Fosse JP, Sebbane M, Chanques G, Vincent F, Courouble P, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006;174(2):171-7.
  • 163
    Quenot JP, Binquet C, Pavon A. [Cardiovascular collapse due to ventilation: lack of understanding or failure to anticipate heart-lung interactions?]. Reanimation. 2012;21:710-4. French.
  • 164
    Hamzaoui O, Teboul JL. Importance of diastolic arterial pressure in septic shock rebuttal to comments of Dr. Magder. J Crit Care. 2019;51:244.
  • 165
    Slutsky AS. Neuromuscular blocking agents in ARDS. N Engl J Med. 2010;363(12):1176-80.
  • 166
    Xu B, Makris A, Thornton C, Ogle R, Horvath JS, Hennessy A. Antihypertensive drugs clonidine, diazoxide, hydralazine and furosemide regulate the production of cytokines by placentas and peripheral blood mononuclear cells in normal pregnancy. J Hypertens. 2006;24(5):915-22.

Edited by

Responsible editor: Antonio Paulo Nassar Jr.

Publication Dates

  • Publication in this collection
    24 Jan 2022
  • Date of issue
    2021

History

  • Received
    22 May 2020
  • Accepted
    20 Oct 2020
Associação de Medicina Intensiva Brasileira - AMIB Rua Arminda, 93 - Vila Olímpia, CEP 04545-100 - São Paulo - SP - Brasil, Tel.: (11) 5089-2642 - São Paulo - SP - Brazil
E-mail: rbti.artigos@amib.com.br